MAX3982UTE [MAXIM]

SFP Copper-Cable Preemphasis Driver; SFP铜缆预加重驱动器
MAX3982UTE
型号: MAX3982UTE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SFP Copper-Cable Preemphasis Driver
SFP铜缆预加重驱动器

驱动器
文件: 总15页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3354; Rev 0; 8/04  
SFP Copper-Cable Preemphasis Driver  
General Description  
Features  
The MAX3982 is a single-channel, copper-cable preem-  
phasis driver that operates from 1Gbps to 4.25Gbps. It  
provides compensation for copper links, such as  
4.25Gbps Fibre Channel, allowing spans of up to 15m  
with 24AWG. The cable driver provides four selectable  
preemphasis levels. The input compensates for up to  
10in of FR4 circuit board material at 4.25Gbps.  
Drives Up to 15m with 24AWG Cable  
Drives Up to 30in of FR4  
0.25W Total Power with +3.3V Supply  
Selectable 1600mV  
or 1200mV  
Differential  
P-P  
P-P  
Output Swing  
Selectable Output Preemphasis  
Fixed Input Equalization  
The MAX3982 also features SFP-compliant loss-of-signal  
detection with selectable sensitivity and TX_DISABLE.  
Selectable output swing reduces EMI and power con-  
sumption. It is packaged in a 3mm x 3mm, 16-pin thin  
QFN and operates from 0°C to +85°C temperature range.  
Loss-of-Signal Detection with Selectable  
Sensitivity  
Transmit Disable  
Applications  
SFP Active Copper-Cable Assemblies  
Backplanes  
Ordering Information  
1.0625Gbps, 2.125Gbps, and 4.25Gbps Fibre  
Channel  
TEMP  
PIN-  
PKG  
PART  
RANGE  
PACKAGE  
CODE  
1.25Gbps Ethernet  
2.488Gbps STM16  
InfiniBand  
MAX3982UTE 0°C to +85°C 16 Thin QFN  
T1633-4  
Pin Configuration appears at end of data sheet.  
PCI Express  
Typical Application Circuit  
DISK  
ENCLOSURE  
FABRIC SWITCH  
SFP ACTIVE CABLE ASSEMBLY  
5V  
+3.3V  
+3.3V  
4.7kΩ  
V
15m (24AWG)  
V
CC  
CC  
TX_DISABLE  
PE0  
PE1  
LOSLEV  
OUTLEV  
UP TO 4.25Gbps  
LOS  
V
OR  
CC  
GND  
LOS  
MAX3982  
4.25Gbps LIMITING  
SWITCH OR  
SERDES  
COPPER-CABLE  
DIFFERENTIAL 100TWIN-AX  
SWITCH OR  
SERDES  
AMPLIFIER  
0.01µF  
0.01µF  
0.01µF  
T
R
IN+  
IN-  
OUT+  
OUT-  
IN+  
IN-  
OUT+  
OUT-  
X+  
X+  
0.01µF  
0.01µF  
0.01µF  
T
R
X-  
X-  
GND  
GND  
+3.3V  
+3.3V  
0.01µF  
0.01µF  
0.01µF  
V
V
CC  
CC  
R
T
OUT+  
OUT-  
IN+  
IN-  
OUT+  
OUT-  
IN+  
IN-  
X+  
X+  
X-  
0.01µF  
0.01µF  
0.01µF  
R
T
X-  
4.25Gbps LIMITING  
AMPLIFIER  
MAX3982  
5V  
PE0  
PE1  
LOSLEV  
OUTLEV  
V
OR  
GND  
LOS  
CC  
4.7kΩ  
TX_DISABLE  
LOS  
GND  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
SFP Copper-Cable Preemphasis Driver  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V ..............................................-0.5V to +6.0V  
LOS Open Collector Supply Voltage  
CC  
Continuous CML Output Current  
at OUT+, OUT-..............................................-25mA to +25mA  
Voltage at IN+, IN-, LOSLEV, LOS,  
with 4.7kPullup Resistor..............................-0.5V to +5.5V  
Continuous Power Dissipation at +85°C  
(derate 20.8mW/°C above +85°C).................................1.35W  
Operating Junction Temperature Range (T )....-55C° to +150°C  
J
TX_DISABLE, PE0, PE1, OUTLEV ..........-0.5V to (V  
+ 0.5V)  
CC  
Storage Ambient Temperature Range (T ) .......-55C° to +150°C  
S
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at T = +25°C and V  
= +3.3V, unless otherwise noted.)  
CC  
A
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
97  
UNITS  
mA  
Supply Current  
TX_DISABLE=low  
75  
Inrush Current  
Current beyond steady-state current  
10  
mA  
Power-On-Reset Delay  
t
1
40  
ms  
POR  
OPERATING CONDITIONS  
Supply Voltage  
V
3.0  
3.3  
40  
25  
3.6  
V
CC  
Supply-Noise Tolerance  
Operating Ambient Temperature  
Bit Rate  
1MHz f < 2GHz  
mV  
P-P  
T
0
85  
4.25  
10  
°C  
A
NRZ data (Note 1)  
1.0  
Gbps  
Bits  
CID  
Consecutive identical digits (bits) (Note 1)  
CONTROL INPUTS: TX_DISABLE, PE0, PE1, OUTLEV, LOSLEV  
Voltage, Logic High  
Voltage, Logic Low  
Current, Logic High  
Current, Logic Low  
STATUS OUTPUT: LOS  
V
2.0  
V
IH  
V
0.8  
-150  
350  
V
IL  
I
V
V
= V + 0.5V  
CC  
µA  
µA  
IH  
IH  
IL  
I
= 0.8V  
IL  
LOS asserted  
0
25  
µA  
LOS unasserted, V 0.4V with 4.7kΩ  
pullup resistor, pullup supply = 5.5V  
OL  
1.0  
mA  
LOS Open Collector Current Sink  
V
= 0V, pullup supply = 5.5V, external  
CC  
0
25  
µA  
pullup resistor 4.7kΩ  
LOSLEV = high (Note 1)  
LOSLEV = low (Note 1)  
LOSLEV = high (Note 1)  
LOSLEV = low (Note 1)  
LOSLEV = high (Note 1)  
LOSLEV = low (Note 1)  
100  
50  
mV  
mV  
mV  
mV  
mV  
mV  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
LOS Assert Level  
LOS Deassert Level  
LOS Hysteresis  
300  
120  
20  
4
Time from IN dropping below assert level,  
or rising above deassert level to 50% point  
of LOS  
LOS Response Time  
LOS Transition Time  
10  
µs  
Rise-time or fall-time (10% to 90%), external  
pullup resistor = 4.7kΩ  
250  
ns  
2
_______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, T = 0°C to +85°C. Typical values are at T = +25°C and V  
= +3.3V, unless otherwise noted.)  
CC  
A
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EQUALIZER AND CABLE DRIVER SPECIFICATIONS  
Measured differentially at point A of Figure  
2 (Note 1)  
Input Swing  
600  
2000  
115  
mV  
P-P  
Input Resistance  
Input Return Loss  
Measured differentially  
100MHz to 2GHz (Note 1)  
TX_DISABLE = low,  
85  
10  
100  
dB  
1450  
1000  
1800  
1350  
Measured  
OUTLEV = high  
differentially at point  
B of Figure 2  
(Notes 1, 2)  
Differential Output Swing  
mV  
P-P  
TX_DISABLE = low,  
OUTLEV = low  
TX_DISABLE = high  
40  
(OUT+) + (OUT-), measured at point B of  
Figure 2; TX_DISABLE = low, OUTLEV =  
high (Notes 1, 2)  
Common-Mode Output  
60  
58  
mV  
P-P  
Output Resistance  
Output Return Loss  
Output Transition Time  
Random Jitter  
OUT+ or OUT- to V , single ended  
CC  
42  
10  
50  
50  
100MHz to 2GHz (Note 1)  
20% to 80% (Notes 1, 3)  
(Notes 1, 3)  
dB  
ps  
t , t  
80  
r
f
1.6  
ps  
RMS  
PE1 PE0  
0
0
1
1
0
1
0
1
2
4
Output Preemphasis  
See Figure 1  
Source to IN  
dB  
8
14  
OUT to Load PE1 PE0  
1m, 24AWG  
5m, 24AWG  
10m, 24AWG  
15m, 24AWG  
0
0
1
1
0
1
0
1
Residual Output Deterministic  
Jitter at 1.0625Gbps to  
2.125Gbps (Notes 1, 4, 5)  
0.10  
0.15  
0.15  
0.20  
UI  
P-P  
6 mil  
FR4 10in  
Source to IN  
OUT to Load PE1 PE0  
1m, 24AWG  
5m, 24AWG  
10m, 24AWG  
15m, 24AWG  
0
0
1
1
0
1
0
1
Residual Output Deterministic  
Jitter at 4.25Gbps (Notes 1, 4, 5)  
UI  
P-P  
6 mil  
FR4 10in  
Note 1: Guaranteed by design and characterization.  
Note 2: PE1 = PE0 = 1 for maximum preemphasis, load is 501% at each side, and the pattern is 0000011111 at 1Gbps.  
Note 3: Measured at point B in Figure 2 using 0000011111 at 1Gbps. PE1 = PE0 = 0 for minimum preemphasis. For transition time,  
the 0% reference level is the steady-state level after four zeros, just before the transition. The 100% reference level is the  
maximum voltage of the transition.  
Note 4: Tested with CJTPAT, as well as this pattern: 19 zeros, 1, 10 zeros, 1010101010 (D21.5 character), 1100000101 (K28.5+  
character), 19 ones, 0, 10 ones, 0101010101 (D10.2 character), 0011111010 (K28.5 character).  
Note 5: Cables are unequalized, Amphenol Spectra-Strip 24AWG. Residual deterministic jitter is the difference between the source  
jitter at point A, and load jitter at point D in Figure 2. The deterministic jitter at the output of the transmission line must be  
from media-induced loss and not from clock-source modulation.  
_______________________________________________________________________________________  
3
SFP Copper-Cable Preemphasis Driver  
V
V
LOW_PP HIGH_PP  
V
HIGH_PP  
PE(dB) = 20 log  
V
LOW _PP  
Figure 1. Illustration of Tx Preemphasis in dB  
TEST SETUP  
PCBOARD (FR4)  
A
SIGNAL  
SOURCE  
B
MAX3982  
24AWG 100TWIN-AX  
6 mil  
6 mil  
IN  
OUT  
L = 2in  
1in L 10in  
SMA CONNECTORS  
SMA CONNECTORS  
OSCILLOSCOPE OR  
ERROR DETECTOR  
L 1in  
6 mil  
FR4  
4.0 ≤ ε 4.4  
R
tan δ = 0.022  
D
Figure 2. Test Setup. The points labeled A, B, and D are referenced for AC parameter test conditions. Deterministic jitter and eye  
diagrams measured at point D.  
4
_______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
TEST SETUP  
PC BOARD (FR4)  
A
SIGNAL  
SOURCE  
B
MAX3982  
24AWG 100TWIN-AX  
6 mil  
6 mil  
IN  
OUT  
L = 2in  
1in L 12in  
L 1in  
SMA CONNECTORS  
SMA CONNECTORS  
L 1in  
39Ω  
OSCILLOSCOPE OR  
ERROR DETECTOR  
22pF  
MAX3748  
6 mil  
FR4  
IN  
OUT  
22pF  
4.0 ≤ ε 4.4  
R
D
tan δ = 0.022  
39Ω  
Figure 3. End-to-End Test Setup Using the MAX3748 as a Receiver. Deterministic jitter and eye diagrams measured at point D.  
Typical Operating Characteristics  
7
7
(V = +3.3V, T = +25°C, unless otherwise noted. PRBS7 + 100CID pattern is PRBS 2 , 100 zeros, 1010, PRBS 2 , 100 ones, 0101.)  
CC  
A
END-TO-END DETERMINISTIC JITTER  
vs. CABLE LENGTH AT 4.25Gbps  
END-TO-END DETERMINISTIC JITTER  
vs. CABLE LENGTH AT 2.125Gbps  
TRANSIENT RESPONSE  
MAX3982 toc01  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.25Gbps K28.7 PATTERN  
OUTLEV = HIGH  
4.25Gbps PRBS7 + 100CID  
2.125Gbps PRBS7 + 100CID  
PE[1,0] = 00  
12in FR4 AT INPUT  
USING MAX3748 AS RECEIVER,  
AS SHOWN IN FIGURE 3  
A
B
C
D
PE[1,0] = 01  
12in FR4 AT INPUT  
USING MAX3748 AS  
RECEIVER, AS SHOWN  
IN FIGURE 3  
PE[1,0] = 00  
PE[1,0] = 01  
PE[1,0] = 10  
PE[1,0] = 10  
D
C
B
A
PE[1,0] = 11  
PE[1,0] = 11  
A = 2dB, PE = 00  
B = 4dB, PE = 01  
C = 8dB, PE = 10  
D = 14dB, PE = 11  
0
5
10  
CABLE LENGTH (m)  
15  
20  
0
5
10  
15  
20  
CABLE LENGTH (m)  
_______________________________________________________________________________________  
5
SFP Copper-Cable Preemphasis Driver  
Typical Operating Characteristics (continued)  
7
7
(V = +3.3V, T = +25°C, unless otherwise noted. PRBS7 + 100CID pattern is PRBS 2 , 100 zeros, 1010, PRBS 2 , 100 ones, 0101.)  
CC  
A
END-TO-END EYE DIAGRAM,  
END-TO-END EYE DIAGRAM,  
END-TO-END EYE DIAGRAM,  
20m 24AWG CABLE AT 4.25Gbps  
20m 24AWG CABLE AT 2.125Gbps  
20m 24AWG CABLE AT 1.0625Gbps  
MAX3982 toc04  
MAX3982 toc05  
MAX3982 toc06  
4.25Gbps PRBS7 + 100CID PATTERN,  
0in FR4 AT INPUT, USING MAX3748  
AS RECEIVER, AS SHOWN IN FIGURE 3  
2.125Gbps PRBS7 + 100CID PATTERN,  
0in FR4 AT INPUT, USING MAX3748  
AS RECEIVER, AS SHOWN IN FIGURE 3  
1.0625Gbps PRBS7 + 100CID PATTERN,  
0in FR4 AT INPUT, USING MAX3748  
AS RECEIVER, AS SHOWN IN FIGURE 3  
VERTICAL EYE OPENING  
vs. CABLE LENGTH WITH OUTLEV = LOW  
END-TO-END DETERMINISTIC JITTER  
vs. CABLE LENGTH AT 1.0625Gbps  
700  
600  
500  
400  
300  
200  
100  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0625Gbps PRBS7 + 100CID  
PE[1,0] = 00  
12in FR4 AT INPUT  
USING MAX3748 AS RECEIVER,  
AS SHOWN IN FIGURE 3  
PE[1,0] = 00  
PE[1,0] = 01  
PE[1,0] = 01  
PE[1,0] = 10  
PE[1,0] = 11  
PE[1,0] = 10  
PE[1,0] = 11  
4.25Gbps PRBS7 + 100CID  
0
5
10  
15  
0
5
10  
15  
20  
CABLE LENGTH (m)  
CABLE LENGTH (m)  
VERTICAL EYE OPENING  
vs. CABLE LENGTH WITH OUTLEV = LOW  
INPUT RETURN LOSS vs. FREQUENCY  
0
-5  
700  
600  
500  
400  
300  
200  
100  
0
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR, COUPLING  
CAPACITOR, AND 1cm TRACE  
PE[1,0] = 00  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
PE[1,0] = 01  
PE[1,0] = 10  
PE[1,0] = 11  
4.25Gbps PRBS7 + 100CID  
100  
1000  
10,000  
0
5
10  
15  
FREQUENCY (MHz)  
CABLE LENGTH (m)  
6
_______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
Typical Operating Characteristics (continued)  
7
7
(V = +3.3V, T = +25°C, unless otherwise noted. PRBS7 + 100CID pattern is PRBS 2 , 100 zeros, 1010, PRBS 2 , 100 ones, 0101.)  
CC  
A
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITHOUT MAX3982,  
4.25Gbps CJTPAT  
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITH MAX3982  
DETERMINISTIC JITTER  
vs. CABLE LENGTH  
PREEMPHASIS, 4.25Gbps CJTPAT  
MAX3982 toc11  
MAX3982 toc12  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.25Gbps  
PRBS7 + 100CID  
PE[1,0] = 00  
PE[1,0] = 01  
PE[1,0] = 10  
PE[1,0] = 11  
PREEMPHASIS, PE[1,0] = 11, OUTLEV = HIGH  
0
5
10  
15  
CABLE LENGTH (m)  
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITHOUT MAX3982,  
4.25Gbps PRBS7 + 100CID  
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITH MAX3982  
OUTPUT RETURN LOSS  
vs. FREQUENCY  
PREEMPHASIS, 4.25Gbps PRBS7 + 100CID  
MAX3982 toc14  
MAX3982 toc15  
0
-5  
USING AGILENT 8720ES AND ATN MICROWAVE  
ATN-4112A S-PARAMETER TEST SET  
DE-EMBEDDING SMA CONNECTOR, COUPLING  
CAPACITOR, AND 1cm TRACE  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
PREEMPHASIS, PE[1,0] = 11, OUTLEV = HIGH  
100  
1000  
10,000  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
SFP Copper-Cable Preemphasis Driver  
Typical Operating Characteristics (continued)  
7
7
(V = +3.3V, T = +25°C, unless otherwise noted. PRBS7 + 100CID pattern is PRBS 2 , 100 zeros, 1010, PRBS 2 , 100 ones, 0101.)  
CC  
A
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITHOUT MAX3982,  
4.25Gbps PRBS31  
15m 24AWG CABLE ASSEMBLY  
OUTPUT WITH MAX3982  
HOT-PLUG WITH TX_DISABLE LOW  
PREEMPHASIS, 4.25Gbps PRBS31  
MAX3982 toc17  
MAX3982 toc19  
MAX3982 toc18  
3.3V  
V
CC  
0V  
LOW  
TX_DISABLE  
OUT+  
t
= 27ms  
POR  
PREEMPHASIS, PE[1,0] = 11, OUTLEV = HIGH  
10ms/div  
30in FR4 OUTPUT  
WITH MAX3982 PREEMPHASIS,  
4.25Gbps CJTPAT  
30in FR4 OUTPUT  
WITHOUT MAX3982,  
4.25Gbps CJTPAT  
DETERMINISTIC JITTER  
vs. FR4 LENGTH  
MAX3982 toc20  
MAX3982 toc21  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.25Gbps PRBS7  
PE[1,0] = 00  
DRIVING FR4 AT OUT+ AND  
OUT-, NO FR4 AT INPUT  
PE[1,0] = 01  
PE[1,0] = 10  
PE[1,0] = 11  
PREEMPHASIS, PE[1,0] = 10,  
OUTLEV = HIGH  
0
10  
20  
30  
40  
50  
FR4 LENGTH (in)  
8
_______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
Typical Operating Characteristics (continued)  
7
7
(V = +3.3V, T = +25°C, unless otherwise noted. PRBS7 + 100CID pattern is PRBS 2 , 100 zeros, 1010, PRBS 2 , 100 ones, 0101.)  
CC  
A
30in FR4 OUTPUT  
WITHOUT MAX3982  
4.25Gbps PRBS7 + 100CID  
30in FR4 OUTPUT  
WITH MAX3982 PREEMPHASIS,  
4.25Gbps PRBS7 + 100CID  
TRANSMITTER ENABLE  
MAX3982 toc23  
MAX3982 toc24  
MAX3982 toc25  
V
CC  
3.3V  
HIGH  
TX_DISABLE  
OUT+  
LOW  
PREEMPHASIS, PE[1,0] = 10,  
OUTLEV = HIGH  
200ns/div  
30in FR4 OUTPUT  
WITH MAX3982 PREEMPHASIS,  
4.25Gbps PRBS31  
30in FR4 OUTPUT  
WITHOUT MAX3982,  
4.25Gbps PRBS31  
TRANSMITTER DISABLE  
MAX3982 toc28  
MAX3982 toc27  
MAX3982 toc26  
V
CC  
3.3V  
LOW  
HIGH  
TX_DISABLE  
OUT+  
PREEMPHASIS, PE[1,0] = 10, OUTLEV = HIGH  
200ns/div  
_______________________________________________________________________________________  
9
SFP Copper-Cable Preemphasis Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
Power-Supply Connection for Input. Connect to +3.3V.  
Positive Data Input, CML. This input is internally terminated with 50to V  
1
V
CC1  
2
3
IN+  
IN-  
.
CC1  
Negative Data Input, CML. This input is internally terminated with 50to V  
.
CC1  
4, 8, 9  
GND  
Circuit Ground  
Output-Swing Control Input, LVTTL with 40kInternal Pullup. Set to TTL high or open for maximum  
output swing, or set to TTL low for reduced swing.  
5
6
7
OUTLEV  
PE1  
Output Preemphasis Control Input, LVTTL with 10kInternal Pullup. This pin is the most significant bit  
of the 2-bit preemphasis control. Set high or open to assert this bit.  
Output Preemphasis Control Input, LVTTL with 10kInternal Pullup. This pin is the least significant bit  
of the 2-bit preemphasis control. Set high or open to assert this bit.  
PE0  
10  
11  
OUT-  
Negative Data Output, CML. This output is terminated with 50to V  
.
CC2  
OUT+  
Positive Data Output, CML. This output is terminated with 50to V  
.
CC2  
12, 13  
V
Power-Supply Connection for Output. Connect to +3.3V.  
CC2  
Transmitter Disable Input, LVTTL with 10kInternal Pullup. When high or open, differential output is  
14  
TX_DISABLE  
40mV . Set low for normal operation.  
P-P  
Loss-of-Signal Detect, TTL Output. This output is open-collector TTL, and therefore requires an external  
15  
LOS  
4.7kto 10kpullup resistor (5.5V maximum). This output sinks current when the input signal level is  
valid.  
LOS Sensitivity Control Input, LVTTL with 40kInternal Pullup. Set to TTL high or open for less  
sensitivity (higher assert threshold). Set to TTL low for more sensitivity (lower assert threshold).  
16  
EP  
LOSLEV  
EXPOSED  
PAD  
Exposed Pad. For optimal thermal conductivity, this pad must be soldered to the circuit board ground.  
Pin Configuration  
TOP VIEW  
16 15 14 13  
V
V
CC2  
1
2
3
4
12  
11  
10  
9
CC1  
IN+  
MAX3982UTE  
OUT+  
OUT-  
GND  
IN-  
GND  
EXPOSED PAD*  
5
6
7
8
THIN QFN  
*THE EXPOSED PAD OF THE QFN PACKAGE MUST BE SOLDERED TO GROUND  
FOR PROPER THERMAL OPERATION OF THE MAX3982.  
10 ______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
V
CC2  
V
CC2  
MAX3982  
10kΩ  
2
2
PE0  
PE1  
LVTTL  
V
CC2  
V
CC1  
IN+  
LIMITER  
OUT+  
OUT-  
LOS  
FIXED  
EQUALIZER  
PREEMPHASIS  
SIGNAL DETECT  
CML  
CML  
IN-  
V
V
V
CC1  
40kΩ  
V
CC1  
V
CC2  
V
CC2  
LOSLEV  
TX_DISABLE  
OUTLEV  
LVTTL  
LVTTL  
LVTTL  
CC2  
10kΩ  
CC2  
40kΩ  
GND  
Figure 4. Functional Diagram  
1600mV . Residual jitter of the MAX3982 is indepen-  
P-P  
Detailed Description  
dent of up to 0.20UI  
source jitter.  
P-P  
The MAX3982 comprises a PC board receiver, a cable  
driver, and a loss-of-signal detector with adjustable  
threshold (Figure 4). Equalization is provided in the  
receiver. Selectable preemphasis and selectable output  
amplitude are included in the transmitter. The MAX3982  
also includes transmit disable control for the output.  
Loss-of-Signal (LOS) Output  
Loss-of-signal detection is provided on the data input.  
Pullup resistors should be connected from LOS to a  
supply in the range of +3.0V to +5.5V. The LOS output  
is not valid until power-up is complete. Typical LOS  
response time is 100ns.  
PC Board Receiver and Cable Driver  
Data is fed into the MAX3982 through a CML input  
stage and fixed equalization stage. The fixed equalizer  
in the receiver corrects for up to 10in of PC board loss  
on FR4 material at 4.25Gbps.  
The LOS assert and deassert levels are set by the  
LOSLEV pin. When LOSLEV is LVTTL high or open, the  
LOS assert threshold is 180mV . When LOSLEV is  
P-P  
LVTTL low, the LOS assert threshold is 85mV  
.
P-P  
The cable driver includes four-state preemphasis to  
compensate for up to 15m of 24AWG, 100balanced  
cable. Table 1 is provided for easy translation between  
preemphasis expressions. The OUTLEV pin selects the  
output amplitude. When OUTLEV is low, the amplitude  
TX Disable  
Transmit disable is provided to turn off the output when  
desired. The TX_DISABLE pin can be connected to  
LOS to automatically squelch the output when the  
incoming signal is below the threshold set by LOSLEV  
(see the Autodetect section).  
is 1200mV . When OUTLEV is high, the amplitude is  
P-P  
______________________________________________________________________________________ 11  
SFP Copper-Cable Preemphasis Driver  
Table 1. Preemphasis Translation  
Ratio  
α
10Gbase–CX4  
IN dB  
V
V
V  
V
V
HIGH_PP  
HIGH_PP  
LOW _PP  
LOW _PP  
HIGH_PP  
1 −  
20 log  
V
V
+ V  
V
V
LOW _PP  
HIGH_PP  
LOW _PP  
HIGH_PP  
LOW _PP  
V
V
LOW_PP HIGH_PP  
1.26  
1.58  
2.51  
5.01  
0.11  
0.21  
0.37  
0.6  
2
4
0.23  
0.43  
0.67  
8
0.8  
14  
Layout Considerations  
Applications Information  
Circuit board layout and design can significantly affect  
the performance of the MAX3982. Use good high-fre-  
quency design techniques, including minimizing ground  
inductance and using controlled-impedance transmis-  
sion lines on the data signals. Power-supply decoupling  
Autodetect  
The MAX3982 can automatically detect an incoming  
signal and enable the data outputs. Autodetect can be  
accomplished by connecting the LOS pin to TX_DIS-  
ABLE. TX_DISABLE has a 10kinternal pullup resistor.  
If a loss-of-signal is detected, the TX_DISABLE pin is  
forced high and disables the outputs. Leaving the  
inputs to the MAX3982 open (i.e., floating) is not recom-  
mended as noise amplification may occur and create  
undesirable output signals. Autodetect is recommend-  
ed to eliminate noise amplification or possible oscilla-  
tion. For periods much greater than 100ns without data  
transitions, autodetect disables the output.  
should also be placed as close to the V  
pins as possi-  
CC  
ble. This should be sufficient supply filtering. Always con-  
nect all V  
pins to a power plane. Take care to isolate  
the input from the output signals to reduce feedthrough.  
CC  
Exposed Pad Package  
The exposed-pad, 16-pin QFN package incorporates  
features that provide a very low thermal resistance path  
for heat removal from the IC. The exposed pad on the  
MAX3982 must be soldered to the circuit board for  
proper thermal performance. For more information on  
exposed-pad packages, refer to Maxim Application  
Note HFAN-08.1: Thermal Considerations of QFN and  
Other Exposed-Paddle Packages.  
Interface Schematics  
V
CC2  
V
CC1  
50  
50Ω  
50Ω  
50Ω  
OUT+  
OUT-  
IN+  
IN-  
GND  
GND  
Figure 5. IN+/IN- Equivalent Input Structure  
Figure 6. OUT+/OUT- Equivalent Output Structure  
12 ______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
LOS  
V
CCX  
R
PULLUP  
GND  
LVTTL IN  
Figure 8. Loss-of-Signal Equivalent Output Structure  
GND  
Chip Information  
R
(kΩ)  
V
CCX  
V
CC1  
V
CC2  
V
CC2  
PIN NAME  
LOSLEV  
OUTLEV  
TX_DISABLE, PE0, PE1  
PULLUP  
TRANSISTOR COUNT: 2957  
40  
PROCESS: SiGe Bipolar  
40  
10  
Figure 7. LVTTL Equivalent Input Structure  
______________________________________________________________________________________ 13  
SFP Copper-Cable Preemphasis Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
b
0.10 M  
C
A
B
D
D2/2  
D/2  
E/2  
E2/2  
(NE - 1)  
X e  
C
E
E2  
L
L
k
e
C
L
(ND - 1)  
X e  
C
L
C
L
0.10  
C
0.08 C  
A
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
1
E
21-0136  
2
14 ______________________________________________________________________________________  
SFP Copper-Cable Preemphasis Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
EXPOSED PAD VARIATIONS  
DOWN  
BONDS  
ALLOWED  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
2
E
21-0136  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3982UTE+T

Interface Circuit, BIPolar, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220, TQFN-16
MAXIM

MAX3983

Quad Copper-Cable Signal Conditioner
MAXIM

MAX3983EVKIT

Evaluation Kit for the MAX3983
MAXIM

MAX3983UGK

Quad Copper-Cable Signal Conditioner
MAXIM

MAX3983UGK+

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX3983UGK+D

暂无描述
MAXIM

MAX3983UGK+TD

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX3983UGK-D

Telecom Circuit, 1-Func, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX3984

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer
MAXIM

MAX3984UTE+

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer
MAXIM

MAX3987ETM+

Interface Circuit,
MAXIM

MAX398C/D

Precision, 8-Channel/Dual 4-Channel, Low-Voltage, CMOS Analog Multiplexers
MAXIM