MAX4000_V01 [MAXIM]

2.5GHz 45dB RF-Detecting Controllers;
MAX4000_V01
型号: MAX4000_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.5GHz 45dB RF-Detecting Controllers

文件: 总19页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2288; Rev 2; 12/07  
2.5GHz 45dB RF-Detecting Controllers  
General Description  
Features  
Complete RF-Detecting PA Controllers  
The MAX4000/MAX4001/MAX4002 low-cost, low-power  
logarithmic amplifiers are designed to control RF power  
amplifiers (PA) operating in the 0.1GHz to 2.5GHz fre-  
quency range. A typical dynamic range of 45dB makes  
this family of log amps useful in a variety of wireless appli-  
cations including cellular handset PA control, transmitter  
power measurement, and RSSI for terminal devices.  
Logarithmic amplifiers provide much wider measurement  
range and superior accuracy to controllers based on  
diode detectors. Excellent temperature stability is  
achieved over the full operating range of -40°C to +85°C.  
Variety of Input Ranges  
MAX4000: -58dBV to -13dBV  
(-45dBm to 0dBm in 50Ω)  
MAX4001: -48dBV to -3dBV  
(-35dBm to +10dBm in 50Ω)  
MAX4002: -43dBV to +2dBV  
(-30dBm to +15dBm in 50Ω)  
Frequency Range from 100MHz to 2.5GHz  
Temperature Stable Linear-in-dB Response  
Fast Response: 70ns 10dB Step  
10mA Output Sourcing Capability  
Low Power: 17mW at 3V (typ)  
The choice of three different input voltage ranges elimi-  
nates the need for external attenuators, thus simplifying  
PA control-loop design. The logarithmic amplifier is a volt-  
age-measuring device with a typical signal range of  
-58dBV to -13dBV for the MAX4000, -48dBV to -3dBV for  
the MAX4001, and -43dBV to +2dBV for the MAX4002.  
Shutdown Current 30µA (max)  
The input signal for the MAX4000 is internally AC-coupled  
using an on-chip 5pF capacitor in series with a 2kΩ input  
resistance. This highpass coupling, with a corner at  
16MHz, sets the lowest operating frequency and allows  
the input signal source to be DC grounded. The  
MAX4001/MAX4002 require an external coupling capaci-  
tor in series with the RF input port. These PA controllers  
feature a power-on delay when coming out of shutdown,  
holding OUT low for approximately 5µs to ensure glitch-  
free controller output.  
Available in an 8-Bump UCSP and a Small 8-Pin  
µMAX Package  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
ABF  
MAX4000EBL-T -40°C to +85°C  
MAX4000EUA -40°C to +85°C  
MAX4001EBL-T -40°C to +85°C  
MAX4001EUA -40°C to +85°C  
MAX4002EBL-T -40°C to +85°C  
MAX4002EUA -40°C to +85°C  
8 UCSP-8  
8 µMAX  
The MAX4000/MAX4001/MAX4002 family is available in  
ABE  
8 UCSP-8  
8 µMAX  
®
an 8-pin µMAX package and an 8-bump chip-scale  
package (UCSP™). The device consumes 5.9mA with a  
5.5V supply, and when powered down the typical shut-  
down current is 13µA.  
ABD  
8 UCSP-8  
8 µMAX  
Applications  
Pin Configurations appear at end of data sheet.  
Transmitter Power Measurement and Control  
TSSI for Wireless Terminal Devices  
Cellular Handsets (TDMA, CDMA, GPRS, GSM)  
RSSI for Fiber Modules  
Functional Diagram  
OUTPUT  
ENABLE  
DELAY  
SHDN  
V
CC  
-
gm  
+
X1  
OUT  
DET  
DET  
DET  
DET  
DET  
CLPF  
SET  
RFIN  
10dB  
10dB  
10dB  
10dB  
V-I  
LOW-  
NOISE  
BANDGAP  
OFFSET  
COMP  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
MAX4000  
GND  
(PADDLE)  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2.5GHz 45dB RF-Detecting Controllers  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
OUT Short Circuit to GND ..........................................Continuous  
V
...........................................................................-0.3V to +6V  
Continuous Power Dissipation (TA = +70°C)  
CC  
OUT, SET, SHDN, CLPF.............................-0.3V to (V  
RFIN  
MAX4000......................................................................+6dBm  
MAX4001....................................................................+16dBm  
MAX4002....................................................................+19dBm  
Equivalent Voltage  
+ 0.3V)  
8-Bump UCSP (derate 4.7mW/°C above +70°C).........379mW  
8-Pin µMAX (derate 4.5mW/°C above +70°C).............362mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering , 10s) ................................+300°C  
CC  
MAX4000 ..................................................................0.45V  
MAX4001 ....................................................................1.4V  
MAX4002 ....................................................................2.0V  
RMS  
RMS  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
CC  
= 3V, SHDN = 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
9.3  
30  
UNITS  
V
Supply Voltage  
V
2.7  
CC  
CC  
CC  
Supply Current  
I
I
V
= 5.5V  
5.9  
13  
mA  
µA  
mV  
V
CC  
Shutdown Supply Current  
Shutdown Output Voltage  
Logic-High Threshold  
Logic-Low Threshold  
SHDN = 0.8V, V  
= 5.5V  
CC  
V
SHDN = 0.8V  
100  
OUT  
V
1.8  
H
V
0.8  
20  
V
L
SHDN = 3V  
SHDN = 0  
5
SHDN Input Current  
I
µA  
SHDN  
-0.8  
-0.01  
SET-POINT INPUT  
Voltage Range (Note 2)  
Input Resistance  
V
Corresponding to central 40dB  
0.35  
1.45  
V
SET  
R
30  
16  
MΩ  
V/µs  
IN  
Slew Rate (Note 3)  
MAIN OUTPUT  
High, I  
= 10mA  
2.65  
2.75  
0.15  
8
SOURCE  
Voltage Range  
V
V
OUT  
Low, I  
= 350µA  
SINK  
Output-Referred Noise  
Small-Signal Bandwidth  
Slew Rate  
From CLPF  
From CLPF  
nV/Hz  
MHz  
BW  
20  
8
V
= 0.2V to 2.6V  
V/µs  
OUT  
2
_______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
ELECTRICAL CHARACTERISTICS  
(V  
CC  
= 3V, SHDN = 1.8V, f = 100MHz to 2.5GHz, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
RF A A  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
-58  
-48  
-43  
-45  
-35  
-30  
22.5  
TYP  
MAX  
2500  
-13  
-3  
UNITS  
RF Input Frequency  
f
RF  
MHz  
MAX4000  
RF Input Voltage Range  
(Note 4)  
V
P
MAX4001  
MAX4002  
MAX4000  
MAX4001  
MAX4002  
dBV  
dBm  
RF  
RF  
+2  
0
Equivalent Power Range  
(50Ω Terminated) (Note 4)  
+10  
+15  
28.5  
f
f
f
= 100MHz  
= 900MHz  
= 1900MHz  
25.5  
25  
RF  
RF  
RF  
Logarithmic Slope  
V
mV/dB  
S
29  
MAX4000  
-62  
-52  
-47  
-55  
-45  
-40  
-57  
-48  
-43  
-56  
-45  
-41  
-49  
-39  
-34  
f
f
f
= 100MHz  
= 900MHz  
= 1900MHz  
MAX4001  
MAX4002  
MAX4000  
MAX4001  
MAX4002  
MAX4000  
MAX4001  
MAX4002  
RF  
RF  
RF  
Logarithmic Intercept  
P
dBm  
X
RF INPUT INTERFACE  
DC Resistance  
MAX4001/MAX4002, connected to V  
(Note 5)  
CC  
R
2
2
kΩ  
kΩ  
pF  
DC  
Inband Resistance  
Inband Capacitance  
R
IB  
IB  
MAX4000, internally AC-coupled  
(Note 6)  
C
0.5  
Note 1: All devices are 100% production tested at T = +25°C and are guaranteed by design for T = -40°C to +85°C as specified.  
A
A
All production AC testing is done at 100MHz.  
Note 2: Typical value only, set-point input voltage range determined by logarithmic slope and logarithmic intercept.  
Note 3: Set-point slew rate is the rate at which the reference level voltage, applied to the inverting input of the g stage, responds to  
m
a voltage step at the SET pin (see Figure 1).  
Note 4: Typical min/max range for detector.  
Note 5: MAX4000 internally AC-coupled.  
Note 6: MAX4001/MAX4002 are internally resistive-coupled to V  
.
CC  
_______________________________________________________________________________________  
3
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4000  
SET vs. INPUT POWER (μMAX)  
MAX4001  
SET vs. INPUT POWER (μMAX)  
MAX4002  
SET vs. INPUT POWER (μMAX)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.9GHz  
2.5GHz  
1.9GHz  
2.5GHz  
1.9GHz  
2.5GHz  
0.9GHz  
0.1GHz  
0.1GHz  
0.9GHz  
0.9GHz  
0.1GHz  
-60 -50 -40 -30 -20 -10  
0
10  
-50 -40 -30 -20 -10  
0
10  
20  
-40 -30 -20 -10  
0
10  
20  
30  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4000  
SET vs. INPUT POWER (UCSP)  
MAX4001  
SET vs. INPUT POWER (UCSP)  
MAX4002  
SET vs. INPUT POWER (UCSP)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5GHz  
2.5GHz  
1.9GHz  
0.1GHz  
0.9GHz  
1.9GHz  
0.9GHz  
1.9GHz  
0.1GHz  
0.9GHz  
0.1GHz  
2.5GHz  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-50 -40 -30 -20 -10  
0
10  
20  
-40 -30 -20 -10  
0
10  
20  
30  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4001 LOG CONFORMANCE  
vs. INPUT POWER (μMAX)  
MAX4002 LOG CONFORMANCE  
vs. INPUT POWER (μMAX)  
MAX4000 LOG CONFORMANCE  
vs. INPUT POWER (μMAX)  
4
3
4
4
3
2.5GHz  
0.1GHz  
2.5GHz  
0.1GHz  
3
2
2.5GHz  
1.9GHz  
2
2
1.9GHz  
1
1
1
0
0
0
0.9GHz  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
1.9GHz  
0.9GHz  
0.9GHz  
-30  
0.1GHz  
-40  
-30  
-20  
-10  
0
10  
20  
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-20  
-10  
0
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
4
_______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4002 LOG CONFORMANCE  
vs. INPUT POWER (UCSP)  
MAX4001 LOG CONFORMANCE  
vs. INPUT POWER (UCSP)  
MAX4000 LOG CONFORMANCE  
vs. INPUT POWER (UCSP)  
4
3
4
3
4
3
2.5GHz  
0.1GHz  
0.1GHz  
0.9GHz  
2
2
2
2.5GHz  
1
1
1
0.9GHz  
0
0
0
0.9GHz  
1.9GHz  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
2.5GHz  
0.1GHz  
1.9GHz  
1.9GHz  
-35  
-25  
-15  
-5  
5
15  
25  
-40  
-30  
-20  
-10  
0
10  
20  
-50  
-40  
-30  
-20  
-10  
0
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4002 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
MAX4001 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 0.1GHz (μMAX)  
vs. INPUT POWER AT 0.1GHz (μMAX)  
vs. INPUT POWER AT 0.1GHz (μMAX)  
MAX4000 toc15  
MAX4000 toc13  
MAX4000 toc14  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
2
2
2
1
1
1
0
0
0
T
T
= +85°C  
= +25°C  
= -40°C  
T
T
= +85°C  
= +25°C  
A
T
= +85°C  
= +25°C  
= -40°C  
A
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
A
A
A
T
A
T
T
A
= -40°C  
T
A
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-30  
-20  
-10  
0
10  
-40  
-30  
-20  
-10  
0
10  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4001 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
MAX4002 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 0.1GHz (UCSP)  
vs. INPUT POWER AT 0.1GHz (UCSP)  
vs. INPUT POWER AT 0.1GHz (UCSP)  
MAX4000 toc17  
MAX4000 toc16  
MAX4000 toc18  
1.8  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
2
2
2
1
1
1
0
0
0
T
= +85°C  
= +25°C  
= -40°C  
T
= +85°C  
= +25°C  
A
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
= +85°C  
= +25°C  
A
T
A
T
A
T
A
T
T
A
= -40°C  
A
T
A
= -40°C  
-40  
-30  
-20  
-10  
0
10  
20  
-50  
-40  
-30  
-20  
-10  
0
10  
-35  
-25  
-15  
-5  
5
15  
25  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
_______________________________________________________________________________________  
5
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4002 SET AND LOG CONFORMANCE  
MAX4001 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 0.9GHz (μMAX)  
vs. INPUT POWER AT 0.9GHz (μMAX)  
vs. INPUT POWER AT 0.9GHz (μMAX)  
MAX4000 toc21  
MAX4000 toc19  
MAX4000 toc20  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
2
2
2
T
A
= +85°C  
T
= +85°C  
A
1
1
1
0
0
0
T
= +85°C  
= +25°C  
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
T
= +25°C  
= -40°C  
T
T
= +25°C  
= -40°C  
A
A
A
T
= -40°C  
T
A
A
A
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-30  
-20  
-10  
0
10  
-40  
-30  
-20  
-10  
0
10  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4002 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
MAX4001 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 0.9GHz (UCSP)  
vs. INPUT POWER AT 0.9GHz (UCSP)  
vs. INPUT POWER AT 0.9GHz (UCSP)  
MAX4000 toc24  
MAX4000 toc22  
MAX4000 toc23  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
2
2
2
1
1
1
T
A
= +85°C  
0
0
0
T
= +85°C  
= -40°C  
T
= +85°C  
= +25°C  
A
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
A
T
T
= +25°C  
T
A
A
T
= +25°C  
A
= -40°C  
T
= -40°C  
A
A
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-30  
-20  
-10  
0
10  
-40  
-30  
-20  
-10  
0
10  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4001 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
MAX4002 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.9GHz (μMAX)  
vs. INPUT POWER AT 1.9GHz (μMAX)  
vs. INPUT POWER AT 1.9GHz (μMAX)  
MAX4000 toc26  
MAX4000 toc25  
MAX4000 toc27  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
T
A
= +85°C  
T
= +85°C  
A
T
A
= +85°C  
T = +25°C  
A
T
= +25°C  
T
A
= +25°C  
A
2
2
2
T
A
= -40°C  
T
A
= -40°C  
T
A
= -40°C  
1
1
1
0
0
0
T
A
= +85°C  
T
A
= +85°C  
= +25°C  
= -40°C  
T
= +85°C  
= +25°C  
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
A
= +25°C  
T
A
T
T
A
T
A
= -40°C  
T
A
= -40°C  
A
-40  
-30  
-20  
-10  
0
10  
20  
-50  
-40  
-30  
-20  
-10  
0
10  
-35  
-25  
-15  
-5  
5
15  
25  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
6
_______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4000 SET AND LOG CONFORMANCE  
MAX4001 SET AND LOG CONFORMANCE  
MAX4002 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.9GHz (UCSP)  
vs. INPUT POWER AT 1.9GHz (UCSP)  
vs. INPUT POWER AT 1.9GHz (UCSP)  
MAX4000 toc28  
MAX4000 toc29  
MAX4000 toc30  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
T
= +85°C  
A
T
= +85°C  
A
T
= +85°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
= +25°C  
A
2
2
2
T
= -40°C  
T
= -40°C  
A
A
1
1
T
= -40°C  
1
A
0
0
0
T
A
= +85°C  
T = +85°C  
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
= +25°C  
T
= +25°C  
= -40°C  
A
A
T
A
= -40°C  
T
A
T
= -40°C  
A
-50  
-40  
-30  
-20  
-10  
0
10  
-40  
-30  
-20  
-10  
0
10  
20  
-35  
-25  
-15  
-5  
5
15  
25  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4001 SET AND LOG CONFORMANCE  
MAX4002 SET AND LOG CONFORMANCE  
MAX4000 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 2.5GHz (μMAX)  
vs. INPUT POWER AT 2.5GHz (μMAX)  
vs. INPUT POWER AT 2.5GHz (μMAX)  
MAX4000 toc32  
MAX4000 toc33  
MAX4000 toc31  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
T
= +85°C  
T
= +85°C  
A
A
T
A
= +85°C  
3
2
T
A
= +25°C  
T
A
= +25°C  
A
T
= +25°C  
A
T
= -40°C  
2
2
T
= -40°C  
A
T
= -40°C  
A
1
1
1
0
0
0
T
= +85°C  
= +25°C  
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
A
T
= +85°C  
= +25°C  
T
A
= +85°C  
= +25°C  
A
T
A
T
A
T
A
= -40°C  
T
= -40°C  
T
A
= -40°C  
A
-40  
-30  
-20  
-10  
0
10  
20  
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-30  
-20  
-10  
0
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX4000 SET AND LOG CONFORMANCE  
MAX4001 SET AND LOG CONFORMANCE  
MAX4002 SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 2.5GHz (UCSP)  
vs. INPUT POWER AT 2.5GHz (UCSP)  
vs. INPUT POWER AT 2.5GHz (UCSP)  
MAX4000 toc35  
MAX4000 toc36  
MAX4000 toc34  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
T
A
= +85°C  
T
A
= +85°C  
3
2
T
A
= +25°C  
T
A
= +25°C  
2
2
T
= -40°C  
A
T
A
= -40°C  
1
1
1
T
A
= +25°C  
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
A
= +85°C  
T
A
= +85°C  
T
= +85°C  
= -40°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
A
T
A
= -40°C  
T
A
= -40°C  
-40  
-30  
-20  
-10  
0
10  
20  
-35  
-25  
-15  
-5  
5
15  
25  
-50  
-40  
-30  
-20  
-10  
0
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
_______________________________________________________________________________________  
7
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4001  
LOG SLOPE vs. FREQUENCY (μMAX)  
MAX4000  
LOG SLOPE vs. FREQUENCY (μMAX)  
MAX4002  
LOG SLOPE vs. FREQUENCY (μMAX)  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
31  
30  
29  
28  
27  
26  
25  
24  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
T
= +85°C  
A
T
T
= +85°C  
= +25°C  
A
T
= +85°C  
A
A
T
= +25°C  
A
T
A
= +25°C  
T
= -40°C  
A
T
= -40°C  
A
T
A
= -40°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
MAX4000  
LOG SLOPE vs. FREQUENCY (UCSP)  
MAX4001  
LOG SLOPE vs. FREQUENCY (UCSP)  
MAX4002  
LOG SLOPE vs. FREQUENCY (UCSP)  
31  
30  
29  
28  
27  
26  
25  
24  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
31  
30  
29  
28  
27  
26  
25  
24  
T
= +85°C  
A
T = +25°C  
A
T
= +85°C  
A
T = -40°C  
A
T
= +85°C  
A
T = +25°C  
A
T = +25°C  
A
T = -40°C  
A
T = -40°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
MAX4002  
MAX4001  
MAX4000  
LOG SLOPE vs. V (μMAX)  
LOG SLOPE vs. V (μMAX)  
LOG SLOPE vs. V (μMAX)  
CC  
CC  
CC  
32  
31  
30  
29  
28  
27  
26  
25  
24  
34  
32  
31  
30  
29  
28  
27  
26  
25  
24  
2.5GHz  
2.5GHz  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
2.5GHz  
1.9GHz  
1.9GHz  
1.9GHz  
0.1GHz  
0.9GHz  
0.1GHz  
0.9GHz  
0.9GHz  
5.0  
0.1GHz  
5.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.5  
V
V
V
CC  
CC  
CC  
8
_______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4000  
MAX4001  
MAX4002  
LOG SLOPE vs. V (UCSP)  
LOG SLOPE vs. V (UCSP)  
LOG SLOPE vs. V (UCSP)  
CC  
CC  
CC  
32  
31  
30  
29  
28  
27  
26  
25  
33  
31  
29  
27  
25  
23  
33  
31  
29  
27  
25  
23  
2.5GHz  
2.5GHz  
2.5GHz  
1.9GHz  
1.9GHz  
1.9GHz  
0.1GHz  
0.1GHz  
0.1GHz  
0.9GHz  
0.9GHz  
5.0  
0.9GHz  
24  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
V
CC  
CC  
CC  
MAX4000  
LOG INTERCEPT vs. FREQUENCY (μMAX)  
MAX4001  
LOG INTERCEPT vs. FREQUENCY (μMAX)  
MAX4002  
LOG INTERCEPT vs. FREQUENCY (μMAX)  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
-32  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
T
A
= +85°C  
T
A
= +85°C  
T
= +85°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
A
= +25°C  
T
A
= -40°C  
T
A
= -40°C  
T
A
= -40°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
MAX4001  
MAX4002  
MAX4000  
LOG INTERCEPT vs. FREQUENCY (UCSP)  
LOG INTERCEPT vs. FREQUENCY (UCSP)  
LOG INTERCEPT vs. FREQUENCY (UCSP)  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-32  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
T
= +25°C  
A
T
A
= +25°C  
T
= +25°C  
A
T = +85°C  
A
T = -40°C  
A
T = -40°C  
T = +85°C  
A
T = +85°C  
A
A
T = -40°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
_______________________________________________________________________________________  
9
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAX4002  
LOG INTERCEPT vs. V (μMAX)  
MAX4001  
LOG INTERCEPT vs. V (μMAX)  
MAX4000  
LOG INTERCEPT vs. V (μMAX)  
CC  
CC  
CC  
-33  
-35  
-37  
-39  
-41  
-43  
-45  
-47  
-36  
-38  
-40  
-42  
-44  
-46  
-48  
-50  
-49  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
2.5GHz  
2.5GHz  
2.5GHz  
0.1GHz  
0.1GHz  
1.9GHz  
1.9GHz  
1.9GHz  
0.1GHz  
0.9GHz  
0.9GHz  
0.9GHz  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
CC  
V
V
CC  
CC  
MAX4000  
LOG INTERCEPT vs. V (UCSP)  
MAX4001  
LOG INTERCEPT vs. V (UCSP)  
MAX4002  
LOG INTERCEPT vs. V (UCSP)  
CC  
CC  
CC  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
2.5GHz  
2.5GHz  
2.5GHz  
0.1GHz  
1.9GHz  
0.1GHz  
0.9GHz  
0.1GHz  
0.9GHz  
1.9GHz  
1.9GHz  
0.9GHz  
3.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
V
CC  
CC  
CC  
MAX4002 INPUT IMPEDANCE  
vs. FREQUENCY (μMAX)  
MAX4000 toc63  
2500  
2000  
1500  
1000  
500  
0
2500  
2000  
1500  
1000  
500  
0
2500  
2000  
1500  
1000  
500  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
X
FREQUENCY (GHz) R JXΩ  
0.1  
0.9  
1.9  
2.5  
2309 -1137  
943  
129  
-120  
-36  
30  
-26  
R
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
10 ______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC  
A
peratures.)  
MAX4001 INPUT IMPEDANCE  
vs. FREQUENCY (UCSP)  
MAX4000 INPUT IMPEDANCE  
vs. FREQUENCY (UCSP)  
MAX4000 toc65  
MAX4000 toc64  
2500  
2000  
1500  
1000  
500  
0
2500  
2000  
1500  
1000  
500  
0
-100  
-200  
-300  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
X
X
FREQUENCY (GHz) R JXΩ  
FREQUENCY (GHz) R JXΩ  
0.1  
0.9  
1.9  
2.5  
1916 -839  
909 -125  
228 -48  
0.1  
0.9  
1.9  
2.5  
1942 -927  
1009 -136  
-400  
314  
-57  
-500  
-600  
-700  
-800  
-900  
-1000  
102  
-29  
139 -37  
R
R
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
MAX4002 INPUT IMPEDANCE  
vs. FREQUENCY (UCSP)  
SUPPLY CURRENT  
vs. SHDN VOLTAGE  
MAX4000 toc66  
2500  
2000  
1500  
1000  
500  
0
7
6
V
CC  
= 5.5V  
-100  
-200  
-300  
X
FREQUENCY (GHz) R JXΩ  
5
0.1  
0.9  
1.9  
2.5  
1961 -1137  
1130  
315  
-120  
-36  
4
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
163  
-26  
3
2
1
1.2V  
R
0
0
-1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
SHDN (V)  
FREQUENCY (GHz)  
SHDN POWER-ON DELAY RESPONSE TIME  
SHDN RESPONSE TIME  
1.5V/div  
SHDN  
1.5V/div  
SHDN  
5μs  
OUT  
500mV/div  
OUT  
500mV/div  
2μs/div  
2μs/div  
______________________________________________________________________________________ 11  
2.5GHz 45dB RF-Detecting Controllers  
Typical Operating Characteristics (continued)  
(V  
CC  
= 3V, SHDN = V , T = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-  
CC A  
peratures.)  
MAXIMUM OUT VOLTAGE  
MAIN OUTPUT NOISE SPECTRAL DENSITY  
vs. V BY LOAD CURRENT  
CC  
10  
9
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
8
7
6
0
5
5mA  
4
10mA  
3
2
1
100  
1k  
10k  
100k  
1M  
10M  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
FREQUENCY (Hz)  
V
CC  
Pin Description  
PIN  
NAME  
FUNCTION  
µMAX UCSP  
1
2
3
A1  
A2  
A3  
RFIN  
SHDN  
SET  
RF Input  
Shutdown. Connect to V for normal operation.  
Set-Point Input for Controller Mode Operation  
CC  
Lowpass Filter Connection. Connect external capacitor between CLPF and GND to set  
control-loop bandwidth.  
4
B3  
CLPF  
5
6
7
8
C3  
GND  
N.C.  
OUT  
Ground  
No Connection. Not internally connected.  
Output to PA Gain-Control Pin  
C2  
B1, C1  
V
Supply Voltage. V = 2.7V to 5.5V.  
CC  
CC  
Block Diagram  
OUTPUT-  
ENABLE  
DELAY  
SHDN  
V
CC  
LOG  
DETECTOR  
RFIN  
SET  
g
m
x1  
OUT  
BLOCK  
V-I*  
BUFFER  
C
CLPF  
MAX4000  
MAX4001  
MAX4002  
GND  
12 ______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
ANTENNA  
POWER AMPLIFIER  
OUTPUT  
ENABLE  
DELAY  
SHDN  
RF INPUT  
XX  
V
CC  
-
gm  
+
X1  
OUT  
DET  
DET  
DET  
DET  
DET  
50Ω  
MAX4000  
CLPF  
SET  
V
RFIN  
SHDN  
SET  
V
CC  
RFIN  
CC  
10dB  
10dB  
10dB  
10dB  
0.1μF  
V
V-I  
CC  
OUT  
N.C.  
GND  
LOW-  
NOISE  
BANDGAP  
OFFSET  
COMP  
DAC  
MAX4000  
CLPF  
GND  
(PADDLE)  
C
F
Figure 1. Functional Diagram  
Figure 2. Controller Mode Application Circuit Block  
capacitor from the CLPF pin to ground sets the band-  
width of the PA control loop.  
Detailed Description  
The MAX4000/MAX4001/MAX4002 family of logarithmic  
amplifiers (log amps) is comprised of four main amplifi-  
er/limiter stages each with a small-signal gain of 10dB.  
The output stage of each amplifier is applied to a full-  
wave rectifier (detector). A detector stage also pre-  
cedes the first gain stage. In total, five detectors each  
separated by 10dB, comprise the log amp strip. Figure  
1 shows the functional diagram of the log amps.  
Transfer Function  
Logarithmic slope and intercept determine the transfer  
function of the MAX4000/MAX4001/MAX4002 family of  
log amps. The change in SET voltage per dB change in  
RF input defines the logarithmic slope. Therefore, a  
250mV change at SET results in a 10dB change at  
RFIN. The Log-Conformance plots (see Typical Oper-  
ating Characteristics) show the dynamic range of the  
log amp family. Dynamic range is the range for which  
the error remains within a band of 1dB.  
A portion of the PA output power is coupled to RFIN of  
the log amp controller, and is applied to the log amp  
strip. Each detector cell outputs a rectified current and  
all cell currents are summed and form a logarithmic  
output. The detected output is applied to a high-gain  
The intercept is defined as the point where the linear  
response, when extrapolated, intersects the y-axis of  
the Log-Conformance plot. Using these parameters,  
the input power can be calculated at any SET voltage  
level within the specified input range with the following  
equation:  
g
m
stage, which is buffered and then applied to OUT.  
OUT is applied to the gain-control pin of the PA to close  
the control loop. The voltage applied to SET determines  
the output power of the PA in the control loop. The volt-  
age applied to SET relates to an input power level  
determined by the log amp detector characteristics.  
SET  
SLOPE  
RFIN=  
+IP  
Extrapolating a straight-line fit of the graph of SET vs.  
RFIN provides the logarithmic intercept. Logarithmic  
slope, the amount SET changes for each dB change of  
RF input, is generally independent of waveform or ter-  
mination impedance. The MAX4000/MAX4001/  
MAX4002 slope at low frequencies is about 25mV/dB.  
Variance in temperature and supply voltage does not  
alter the slope significantly as shown in the Typical  
Operating Characteristics.  
where SET is the set-point voltage, SLOPE is the loga-  
rithmic slope (V/dB), RFIN is in either dBm or dBV and  
IP is the logarithmic intercept point utilizing the same  
units as RFIN.  
Applications Information  
Controller Mode  
Figure 2 provides a circuit example of the MAX4000/  
MAX4001/MAX4002 configured as a controller. The  
MAX4000/MAX4001/MAX4002 require a 2.7V to 5.5V  
supply voltage. Place a 0.1µF low-ESR, surface-mount  
The MAX4000/MAX4001/MAX4002 are specifically des-  
igned for use in PA control applications. In a control  
loop, the output starts at approximately 2.9V (with sup-  
ply voltage of 3V) for the minimum input signal and falls  
to a value close to ground at the maximum input. With a  
portion of the PA output power coupled to RFIN, apply  
a voltage to SET and connect OUT to the gain-control  
pin of the PA to control its output power. An external  
ceramic capacitor close to V  
to decouple the supply.  
CC  
Electrically isolate the RF input from other pins (espe-  
cially SET) to maximize performance at high frequencies  
(especially at the high-power levels of the MAX4002).  
The MAX4000 has an internal input-coupling capacitor  
______________________________________________________________________________________ 13  
2.5GHz 45dB RF-Detecting Controllers  
and does not require external AC-coupling. Achieve  
GAIN AND PHASE vs. FREQUENCY  
50Ω input matching by connecting a 50Ω resistor  
between RFIN and ground. See the Typical Operating  
Characteristics section for a plot of Input Impedance vs.  
Frequency. See the Additional Input Coupling section  
for other coupling methods.  
MAX4000 fig03  
80  
60  
180  
135  
90  
GAIN  
C = 2000pF  
F
40  
C = 200pF  
F
20  
45  
C = 200pF  
F
The MAX4000/MAX4001/MAX4002 log amps function  
as both the detector and controller in power-control  
loops. Use a directional coupler to couple a portion of  
the PA’s output power to the log amp’s RF input. In  
applications requiring dual-mode operation where there  
are two PAs and two directional couplers, passively  
combine the outputs of the directional couplers before  
applying to the log amp. Apply a set-point voltage to  
SET from a controlling source (usually a DAC). OUT,  
which drives the automatic gain-control pin of the PA,  
corrects any inequality between the RF input level and  
the corresponding set-point level. This is valid assum-  
ing the gain control of the variable gain element is posi-  
tive, such that increasing OUT voltage increases gain.  
OUT voltage can range from 150mV to within 250mV of  
the supply rail while sourcing 10mA. Use a suitable  
load resistor between OUT and GND for PA control  
inputs that source current. The Typical Operating  
Characteristics section has a plot of the sourcing capa-  
bilities and output swing of OUT.  
0
0
-20  
-40  
-60  
-80  
-100  
-45  
-90  
-135  
-180  
-225  
C = 2000pF  
F
PHASE  
10 100 1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
Figure 3. Gain and Phase vs. Frequency Graph  
Filter Capacitor and Transient Response  
In general, the choice of filter capacitor only partially  
determines the time-domain response of a PA control  
loop. However, some simple conventions can be  
applied to affect transient response. A large filter  
capacitor, C , dominates time-domain response, but  
F
the loop bandwidth remains a factor of the PA gain-  
control range. The bandwidth is maximized at power  
outputs near the center of the PA’s range, and mini-  
mized at the low and high power levels, where the  
slope of the gain-control curve is lowest.  
SHDN and Power-On  
The MAX4000/MAX4001/MAX4002 can be placed in  
shutdown by pulling SHDN to ground. SHDN reduces  
supply current to typically 13µA. A graph of SHDN  
Response is included in the Typical Operating  
A smaller valued C results in an increased loop band-  
F
width inversely proportional to the capacitor value.  
Inherent phase lag in the PA’s control path, usually  
caused by parasitics at the OUT pin, ultimately results  
in the addition of complex poles in the AC loop equa-  
tion. To avoid this secondary effect, experimentally  
Characteristics section. Connect SHDN and V  
together for continuous on-operation.  
CC  
Power Convention  
Expressing power in dBm, decibels above 1mW, is the  
most common convention in RF systems. Log amp  
input levels specified in terms of power are a result of  
following common convention. Note that input power  
does not refer to power, but rather to input voltage rela-  
tive to a 50Ω impedance. Use of dBV, decibels with  
determine the lowest usable C for the power amplifier  
F
of interest. This requires full consideration to the intrica-  
cies of the PA control function. The worst-case condi-  
tion, where the PA output is smallest (gain function is  
steepest), should be used because the PA control  
function is typically nonlinear. An additional zero can  
be added to improve loop dynamics by placing a resis-  
respect to a 1V  
sine wave, yields a less ambiguous  
RMS  
tor in series with C . See Figure 3 for the gain and  
phase response for different C values.  
F
result. The dBV convention has its own pitfalls in that  
log amp response is also dependent on waveform. A  
complex input such as CDMA does not have the exact  
same output response as the sinusoidal signal. The  
MAX4000/MAX4001/MAX4002 performance specifica-  
tions are in both dBV and dBm, with equivalent dBm  
levels for a 50Ω environment. To convert dBV values  
into dBm in a 50Ω network, add 13dB.  
F
Additional Input Coupling  
There are three common methods for input coupling:  
broadband resistive, narrowband reactive, and series  
attenuation. A broadband resistive match is implemented  
by connecting a resistor to ground at RFIN as shown in  
Figure 4a. A 50Ω resistor (use other values for different  
input impedances) in this configuration in parallel with the  
input impedance of the MAX4000 presents an input  
14 ______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
impedance of approximately 50Ω. See the Typical  
Operating Characteristics for the input impedance plot to  
determine the required external termination at the fre-  
quency of interest. The MAX4001/MAX4002 require an  
additional external coupling capacitor in series with the  
RF input. As the operating frequency increases over  
2GHz, input impedance is reduced, resulting in the need  
for a larger-valued shunt resistor. Use a Smith Chart for  
calculating the ideal shunt resistor value.  
MAX4000  
MAX4001  
MAX4002  
50Ω SOURCE  
50Ω  
C **  
C *  
C
C
RFIN  
R
S
C
V
R
IN  
IN  
For high frequencies, use narrowband reactive coupling.  
This implementation is shown in Figure 4b. The matching  
components are drawn as reactances since these can  
be either capacitors or inductors depending on the input  
impedance at the desired frequency and available stan-  
dard value components. A Smith Chart is used to obtain  
the input impedance at the desired frequency and then  
matching reactive components are chosen. Table 1 pro-  
vides standard component values at some common fre-  
quencies for the MAX4001. Note that these inductors  
must have a high SRF (self-resonant frequency), much  
higher than the intended frequency of operation to imple-  
ment this matching scheme.  
50Ω  
CC  
*MAX4000 ONLY INTERNALLY COUPLED  
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING  
Figure 4a. Broadband Resistive Matching  
MAX4000  
MAX4001  
MAX4002  
Device sensitivity is increased by the use of a reactive  
matching network, because a voltage gain occurs  
before being applied to RFIN. The associated gain is  
calculated with the following equation:  
50Ω SOURCE  
C **  
C
C *  
C
j
X1  
50Ω  
RFIN  
C
V
R
IN  
IN  
R2  
R1  
j
X2  
Voltage Gain  
= 20log  
10  
dB  
CC  
where R1 is the source impedance to which the device  
is being matched, and R2 is the input resistance of the  
device. The gain is the best-case scenario for a perfect  
match. However, component tolerance and standard  
value choice often result in a reduced gain.  
*MAX4000 ONLY INTERNALLY COUPLED  
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING  
Figure 4b. Narrowband Reactive Matching  
Figure 4c demonstrates series attenuation coupling.  
This method is intended for use in applications where  
the RF input signal is greater than the input range of the  
device. The input signal is thus resistively divided by  
the use of a series resistor connected to the RF source.  
Since the MAX4000/MAX4001/MAX4002 log amps offer  
a wide selection of RF input ranges, series attenuation  
coupling is not needed for typical applications.  
MAX4000  
MAX4001  
MAX4002  
C **  
C
C *  
C
R
ATTN  
RFIN  
STRIPLINE  
Table 1. Suggested Components for  
MAX4001 Reactive Matching Network  
C
V
R
IN  
IN  
FREQUENCY  
(GHz)  
VOLTAGE  
GAIN (dB)  
j
X1  
(nH)  
j
X2  
(nH)  
CC  
*MAX4000 ONLY INTERNALLY COUPLED  
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING  
0.9  
1.9  
2.5  
38  
47  
12.8  
3.2  
4.4  
4.7  
1.8  
Figure 4c. Series Attenuation Network  
-0.3  
______________________________________________________________________________________ 15  
2.5GHz 45dB RF-Detecting Controllers  
Waveform Considerations  
UCSP Reliability  
The MAX4000/MAX4001/MAX4002 family of log amps  
respond to voltage, not power, even though input levels  
are specified in dBm. It is important to realize that input  
signals with identical RMS power but unique waveforms  
results in different log amp outputs.  
The UCSP represents a unique package that greatly  
reduces board space compared to other packages.  
UCSP reliability is integrally linked to the user’s assem-  
bly methods, circuit board material, and usage environ-  
ment. The user should closely review these areas when  
considering use of a UCSP. This form factor may not  
perform equally to a packaged product through tradi-  
tional mechanical reliability tests. Performance through  
operating life test and moisture resistance remains  
uncompromised as it is primarily determined by the  
wafer fabrication process. Mechanical stress perform-  
ance is a greater consideration for a UCSP. UCSP sol-  
der joint contact integrity must be considered since the  
package is attached through direct solder contact to  
the user’s PCB. Testing done to characterize the UCSP  
reliability performance shows that it is capable of per-  
forming reliably through environmental stresses.  
Results of environmental stress tests and additional  
usage data and recommendations are detailed in the  
UCSP application note, which can be found on Maxim’s  
website, www.maxim-ic.com.  
Differing signal waveforms result in either an upward or  
downward shift in the logarithmic intercept. However,  
the logarithmic slope remains the same.  
Layout Considerations  
As with any RF circuit, the layout of the MAX4000/  
MAX4001/MAX4002 circuits affects performance. Use a  
short 50Ω line at the input with multiple ground vias  
along the length of the line. The input capacitor and  
resistor should both be placed as close to the IC as  
possible. V  
should be bypassed as close as possi-  
CC  
ble to the IC with multiple vias connecting the capacitor  
to the ground plane. It is recommended that good RF  
components be chosen for the desired operating fre-  
quency range. Electrically isolate RF input from  
other pins (especially SET) to maximize perfor-  
mance at high frequencies (especially at the high  
power levels of the MAX4002).  
Chip Information  
TRANSISTOR COUNT: 358  
Pin Configurations  
TOP VIEW  
PROCESS: Bipolar  
RFIN  
SHDN  
SET  
1
2
3
4
8
7
6
5
V
CC  
OUT  
N.C.  
GND  
MAX4000  
MAX4001  
MAX4002  
CLPF  
μMAX  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
A
B
C
RFIN  
SHDN  
SET  
MAX4000  
MAX4001  
MAX4002  
V
CLPF  
GND  
CC  
CC  
V
OUT  
UCSP  
16 ______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 3x3 UCSP  
1
21-0093  
L
1
______________________________________________________________________________________ 17  
2.5GHz 45dB RF-Detecting Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
18 ______________________________________________________________________________________  
2.5GHz 45dB RF-Detecting Controllers  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
1
2
7/02  
12/07  
Insertion/correction of figures and text changes.  
1, 4–13, 16  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY