MAX40077AUA+T [MAXIM]

Operational Amplifier,;
MAX40077AUA+T
型号: MAX40077AUA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier,

放大器 光电二极管
文件: 总17页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
General Description  
Benefits and Features  
The  
MAX40079/MAX40087/MAX40077/MAX40089/  
● Low Input Voltage Noise Density: 4.2nV/√Hz at 30KHz  
● Low Input Current Noise Density: 0.5fA/√Hz  
Low Input Bias Current: 0.3pA (typ)  
MAX40078 are wide band, low-noise, low-input bias  
current operational amplifiers that offer rail-to-rail outputs  
and single-supply operation from 2.7V to 5.5V. These low-  
noise amps draw 2.2mA of quiescent supply current per  
amplifier. This family of amplifiers offers ultra-low distortion  
(0.0002% THD+N), as well as low input voltage-noise  
density (4.2nV/√Hz) and low input current-noise density  
(0.5fA/√Hz). The low input bias current of 50fA(typ) and  
low noise(4.5nV/√Hz), together with the wide bandwidth,  
provides excellent performance for trans-impedance (TIA)  
and imaging applications.  
● Low Distortion: 0.00035% or -109dB THD+N (1kΩ  
Load)  
Single-Supply Operation from +2.7V to +5.5V  
Input Common-Mode Voltage Range Includes  
Ground  
● Rail-to-Rail Output Swings with a 1kΩ Load  
Wide Bandwidth: MAX40079/MAX40077/MAX40078  
(10MHz); MAX40087/MAX40089 (42MHz)  
Excellent DC Characteristics: V  
Single-Channel 6-bump WLP in 1.11mm x 0.76mm  
with 0.35mm Bump Pitch  
Dual-Channel 8-bump WLP in 0.96mm x 1.66mm  
with 0.35mm Bump Pitch  
Available in Space-Saving 6-WLP, 6-SOT, 8-WLP  
≤ 70μV  
OS  
These amplifiers have outputs which swing rail-to-rail and  
their input common-mode voltage range includes ground.  
The MAX40079/MAX40077/MAX40078 are single/dual/  
quad respectively in unity-gain stable with a bandwidth  
of 10MHz. The MAX40087/MAX40089 are single/dual  
respectively with gain ≥ 5 stable and bandwidth of 42MHz.  
They operate over the full -40°C to +125°C temperature  
range.  
and μMAX Packages  
Single channel op amps are available in 6-bump wafer-level  
package (WLP) and SOT23 6-pin packages. The dual channel  
op amps are available in 8-bump WLP and μMAX-8 packages.  
The quad channel option is available in 14-TSSOP package.  
THD+N Performance  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
Applications  
toc20  
-80  
Transimpedance Amplifiers  
pH Probes and Reference Electrodes  
ADC Buffers  
VOUT = 4 VP-P  
-90  
DAC Output Amplifiers  
Low-Noise Microphone/Preamplifiers  
Digital Scales  
-100  
RL = 1KΩ  
Strain Gauges/Sensor Amplifiers  
Medical Instrumentation  
-110  
RL = 10KΩ  
Ordering Information appears at end of data sheet.  
-120  
20  
200  
2000  
20000  
FREQUENCY(Hz)  
19-100237; Rev 1; 3/18  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Absolute Maximum Ratings  
Input Differential Voltage(IN+ - IN-)  
Operating Temperature Range......................... -40°C to +125°C  
MAX40079/MAX40087/MAX40077/MAX40089/MAX40078  
(continuous)............................................................-3V to +3V  
MAX40079/MAX40087/MAX40077/MAX40089/MAX40078  
(transient, 10s)........................................................-6V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
SOT23-6 (derate 8.7mW/°C above +70°C).................696mW  
6-Bump WLP (derate 10.19mW/°C above +70°C)......815mW  
8-μMAX (derate 4.8mW/°C above +70°C) .............387.80mW  
8-Bump WLP (derate 10.90mW/°C above +70°C)......872mW  
14-TSSOP (derate 10mW/°C above +70°C)..........796.80mW  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature ((soldering, 10s))...............................+300°C  
Soldering Temperature (reflow).......................................+260°C  
Power-Supply Voltage (V  
Analog Input Voltage  
to V ).......................-0.3V to +6V  
DD  
SS  
((IN+,IN-) to V )............................V - 0.3V to V + 0.3V  
SS  
SS  
DD  
SHDN Input Voltage (to V ).........................V - 0.3V to +6V  
SS  
SS  
Continuous Input Current (IN+,IN-)..................................±20mA  
Output Short-Circuit Duration to Either Supply .........Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
6-SOT23  
PACKAGE CODE  
U6+1  
N60F1+1  
U8+1  
Outline Number  
21-0058  
90-0175  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
115°C/W  
80°C/W  
JA  
Junction to Case (θ  
)
JC  
6-WLP  
PACKAGE CODE  
Outline Number  
21-100174  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
98.06°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
8-μMAX  
PACKAGE CODE  
Outline Number  
21-0036  
90-0092  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
221°C/W  
42°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
206.30°C/W  
42°C/W  
JA  
Junction to Case (θ  
)
JC  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Package Information (continued)  
8-WLP  
PACKAGE CODE  
N80C1+1  
Outline Number  
21-100236  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Refer to Application Note 1891  
Junction to Ambient (θ  
)
91.72°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
14-TSSOP  
PACKAGE CODE  
U14M+1  
Outline Number  
21-0066  
90-0113  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
110°C/W  
30°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
100.4°C/W  
30°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= +5V, V = 0V, V  
= 2.5V, SHDN = V , V  
= V /2, R = 10kΩ = tied to V /2, T = -40°C to +125°C, unless otherwise  
DD  
SS  
CM  
DD OUT DD L DD A  
noted. Typical values are at T = +25°C. (Note 1))  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
V
DD  
V
V
V
= 3.3V (T = 25°C only)  
A
2.2  
2.5  
13  
2.9  
Quiescent Supply Current,  
per Amplifier  
DD  
DD  
DD  
I
mA  
µs  
DD  
= 5V, over temperature to 125°C  
3.8  
Power-Up Time  
= 0 to 5V step, V  
= 2.5V ±1%  
OUT  
at 25°C  
30  
350  
750  
6
Input Offset Voltage  
V
µV  
OS  
Over the full temperature range  
Over temperature, to 125°C  
Input Offset Drift  
V
-TC  
0.3  
0.3  
µV/°C  
pA  
OS  
Input Bias Current (Note 2)  
I
260  
B
Input Offset Current  
(Note 2)  
I
0.1  
150  
pA  
OS  
Input Resistance  
R
1000  
GΩ  
IN  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Electrical Characteristics (continued)  
(V  
= +5V, V = 0V, V  
= 2.5V, SHDN = V , V  
= V /2, R = 10kΩ = tied to V /2, T = -40°C to +125°C, unless otherwise  
DD  
SS  
CM  
DD OUT  
DD  
L
DD  
A
noted. Typical values are at T = +25°C. (Note 1))  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Capacitance  
C
Either input, over entire CMIR  
7
pF  
IN  
V
1.5  
-
DD  
Guaranteed by CMRR test at 25°C  
-0.2  
Input Common Mode  
Range  
V
, V  
V
IN+ IN-  
V
- 1.5  
DD  
Guaranteed by CMRR test, -40°C to+125°C  
-0.1  
90  
DC, -0.2V <V ,V < V  
- 1.5V, at 25°C  
- 1.5V, -40°C to  
120  
IN+ IN-  
DD  
DC, -0.1V <V ,V < V  
IN+ IN-  
DD  
Common Mode Rejection  
Ratio  
87  
CMRR  
+125°C  
dB  
AC, 100mV at 10kHz, DC in 0V to V  
- 2V  
PP  
DD  
60  
120  
40  
range  
Power Supply Rejection  
Ratio, DC  
PSRR  
PSRR  
DC, 2.7V < V  
< 5.5V  
90  
dB  
dB  
DD  
Power Supply Rejection  
Ratio, AC  
AC,100mV at 1MHz with V  
= 5V DC offset  
DD  
PP  
R = 10KΩ to V /2, V  
= 200mV to  
L
DD  
OUT  
90  
85  
85  
120  
110  
110  
V
- 250mV  
DD  
R = 1kΩ to V /2, V  
= 200mV to  
= 200mV to  
L
DD  
OUT  
Open-Loop Gain  
A
dB  
OL  
V
- 250mV  
DD  
R = 50Ω to V /2, V  
L
DD  
OUT  
V
-250mV  
DD  
R = 10KΩ to V /2 , V  
- V  
10  
80  
45  
200  
300  
40  
L
DD  
DD  
DD  
OH  
Output Voltage Swing High  
V
-V  
R = 1KΩ to V /2 , V  
- V  
mV  
DD OH  
L
DD  
DD  
OH  
(V  
)
OH  
R = 500Ω to V /2 , V  
- V  
100  
10  
L
DD  
OH  
SS  
R = 10KΩ to V /2 , V - V  
L
DD  
OL  
Output Voltage Swing Low  
(V  
V
R = 1KΩ to V /2 , V - V  
SS  
50  
150  
250  
mV  
mA  
OL  
L
DD  
OL  
)
OL  
R = 500Ω to V /2 , V - V  
80  
L
DD  
OL  
SS  
Short-Circuit Current  
I
To either V  
or V  
50  
SC  
DD  
SS  
Unity Gain, A = +1 (MAX40079/MAX40077/  
V
MAX40078)  
10  
42  
Gain Bandwidth Product  
GBWP  
MHz  
Min Gain version, A = +5 (MAX40087/  
V
MAX40089)  
Unity Gain version, A = +1  
70  
80  
12  
3
V
Phase Margin  
Gain Margin  
Slew Rate  
Φ
°
m
Minimum Gain, A = +5 version  
V
GM  
SR  
dB  
Unity Gain version, A = +1  
V
V/µs  
Minimum Gain, A = +5 version  
10  
V
Maxim Integrated  
4  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Electrical Characteristics (continued)  
(V  
= +5V, V = 0V, V  
= 2.5V, SHDN = V , V  
= V /2, R = 10kΩ = tied to V /2, T = -40°C to +125°C, unless otherwise  
DD  
SS  
CM  
DD OUT  
DD  
L
DD  
A
noted. Typical values are at T = +25°C. (Note 1))  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Unity gain version, A = +1, to 0.01%,  
MIN  
TYP  
MAX  
UNITS  
µs  
V
2
V
= 2V step  
OUT  
Settling Time  
Minimum gain, A = +5, to 0.01%,  
V
2
V
= 2V step  
OUT  
Stable Capacitive Load  
C
No sustained oscillation  
50  
1.7  
pF  
LOAD  
Integrated 1/f Input  
Voltage Noise  
Vn  
0.1Hz to 10Hz  
µV  
PP  
f = 10Hz  
f = 1kHz  
f = 30kHz  
260  
5.5  
4.2  
Input Voltage Noise  
Density  
e
nV/√Hz  
fA/√Hz  
N
Input Current Noise  
density  
i
f = 1kHz  
0.5  
114  
103  
114  
100  
108  
110  
106  
110  
N
Unity gain, A = +1, V  
= 4V  
1kHz,  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
PP at  
R = 10kΩ to GND  
L
Unity gain, A = +1, V  
V
= 4V at 20kHz,  
PP  
R = 10kΩ to GND  
Total Harmonic Distortion  
+ Noise (A = +1 stable)  
V
L
THD+N  
dB  
Unity gain, A = +1, V  
V
= 4V at 1kHz,  
PP  
R = 1kΩ to GND  
L
Unity gain, A = +1, V  
= 4V at 20kHz,  
PP  
V
R = 1kΩ to GND  
L
Unity gain, A = +5, V  
= 4V at 1kHz,  
PP  
V
R = 10kΩ to GND  
L
Unity gain, A = +5, V  
V
= 4V at 20kHz,  
PP  
R = 10kΩ to GND  
Total Harmonic Distortion +  
Noise (Min A = +5 stable)  
V
L
THD+N  
EMIRR  
dB  
dB  
Unity gain, A = +5, V  
V
= 4V at 1kHz,  
PP  
R = 1kΩ to GND  
L
Unity gain, A = +5, V  
= 4V at 20kHz,  
PP  
V
R = 1kΩ to GND  
L
ElectroMagnetic  
Interference Rejection  
Ratio  
V
= 100mV, f = 2400MHz  
55  
RF_PP  
IN  
Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
Note 2: Guaranteed by design and bench characterization.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Typical Operating Characteristics  
V
= +5V, V = 0V, V  
= V /2, R = 10kΩ to V /2, C = 10pF to GND, T = +25°C, unless otherwise noted. (T = +25°C, unless  
DD  
SS  
CM  
DD  
L
DD  
L
A
A
otherwise noted.)  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
OFFSET VOLTAGE HISTOGRAM  
toc02  
toc01  
toc03  
10  
8
3
2.5  
2
2.6  
2.55  
2.5  
TA = 125°C  
TA = 85°C  
VDD = 3.3V  
6
1.5  
1
4
2.45  
2.4  
TA = 25°C  
TA = -40°C  
2
0.5  
0
0
2.35  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
OFFSET VOLTAGE (µV)  
SUPPLY VOLTAGE (V)  
TEMPERATURE(°C)  
INPUT OFFSET VOLTAGE  
vs. INPUT COMMON MODE VOTLAGE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
toc04  
toc05  
toc06  
30  
20  
5
0
50  
VDD = 5V  
TA = -40°C  
40  
30  
20  
10  
0
-5  
10  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
TA = 25°C  
TA = 85°C  
0
-10  
-20  
-30  
-40  
-10  
-20  
TA = 125°C  
1.7 2.3  
-0.1  
0.5  
1.1  
2.9  
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
OUTPUT VOLTAGE LOW  
vs. OUTPUT SINK CURRENT  
VDD = 5V, VSS = 0V  
OUTPUT VOLTAGE HIGH  
vs. OUTPUT SOURCE CURRENT  
INPUT BIAS CURRENT vs.  
INPUT COMMON MODE VOLTAGE  
VDD = 5V  
toc08  
toc09  
toc07  
160  
140  
120  
100  
80  
140  
120  
100  
80  
0.5  
0.3  
VDD = 5.0V  
0.1  
60  
-0.1  
-0.3  
-0.5  
60  
40  
40  
20  
20  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
ISINK (mA)  
ISOURCE (mA)  
INPUT COMMON MODE VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Typical Operating Characteristics (continued)  
V
= +5V, V = 0V, V  
= V /2, R = 10kΩ to V /2, C = 10pF to GND, T = +25°C, unless otherwise noted. (T = +25°C, unless  
DD  
SS  
CM  
DD  
L
DD  
L
A
A
otherwise noted.)  
OUTPUT VOLTAGE LOW vs. TEMPERATURE  
OUTPUT VOLTAGE HIGH vs. TEMPERATURE  
OPEN-LOOP GAIN vs. TEMPERATURE  
toc10  
toc11  
toc12  
100  
10  
1
100  
10  
1
125  
120  
115  
110  
105  
100  
95  
RLOAD = 500  
RLOAD = 500Ω  
VDD = 5V  
RLOAD = 1kΩ  
RLOAD = 1kΩ  
RLOAD = 10kΩ  
VDD = 5.5V  
RLOAD = 10kΩ  
VDD = 2.7V  
VSUPPLY = 5V  
VSUPPLY = 5V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
INPUT VOLTAGE NOISE 0.1Hz TO 10Hz NOISE  
VOLTAGENOISE DENSITY vs. FREQUENCY  
toc14  
toc15  
toc13  
2.E-6  
2.E-6  
1.E-6  
5.E-7  
0.E+0  
-5.E-7  
-1.E-6  
-2.E-6  
-2.E-6  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
eN = 1.73µVP-P  
-40  
-60  
-80  
-100  
-120  
1
10  
100  
1000  
10000 100000  
0
10  
20  
30  
40  
50  
60  
0.01 0.1  
1
10  
100 1000 10000 100000  
FREQUENCY(Hz)  
10s/div  
FREQUENCY(kHz)  
GAIN AND PHASE vs. FREQUENCY  
COMMON MODE REJECTION RATIO  
vs. TEMPERATURE  
COMMON MODE REJECTION RATIO  
vs. FREQUENCY  
(RL = 10k, CL = 10pF)  
toc17  
toc138  
toc16  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
AV = 1000V/V  
VDD = 2.7V  
PHASE CURVE IS  
REFERRED TO DEGREE  
UNITS ON AXIS FAR RIGHT  
GAIN  
VDD = 5.5V  
PHASE  
0
60  
-50  
40  
-100  
-150  
-200  
20  
-10  
0
0.01 0.1  
1
10  
100 1000 10000 100000  
0.01 0.1  
1
10  
100 1000 10000 100000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
FREQUENCY(kHz)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Typical Operating Characteristics (continued)  
V
= +5V, V = 0V, V  
= V /2, R = 10kΩ to V /2, C = 10pF to GND, T = +25°C, unless otherwise noted. (T = +25°C, unless  
DD  
SS  
CM  
DD  
L
DD  
L
A
A
otherwise noted.)  
GAIN AND PHASE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
(RL = 10k, CL = 10pF)  
vs. FREQUENCY  
vs. OUTPUT VOLTAGE SWING  
toc20  
toc21  
toc193  
-80  
-80  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 4 VP-P  
fIN = 20kHz  
PHASE CURVE IS  
REFERRED TO DEGREE  
UNITS ON AXIS FAR RIGHT  
-90  
-100  
-110  
-120  
-90  
-100  
-110  
-120  
PHASE  
GAIN  
0
RL = 1kΩ  
RL = 1KΩ  
-50  
-100  
-150  
-200  
-250  
AV = 5V/V or 14dB  
RL = 10KΩ  
-10  
-20  
RL = 10kΩ  
0.01 0.1  
1
10  
100 1000 10000 100000  
20  
200  
2000  
20000  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Thousands  
FREQUENCY (kHz)  
FREQUENCY(Hz)  
OUTPUT VOLTAGE SWING (VP-P  
)
STABILITY vs. CAPACITIVE AND RESISTIVE  
ISOLATION RESISTANCE  
vs. CAPACITIVE STABILITY  
SMALL-SIGNAL PULSE RESPONSE  
(CLOAD= 10pF)  
LOAD IN PARALLEL WITH CL  
toc23  
toc22  
100  
60  
50  
40  
30  
20  
10  
0
toc24  
UNDER THECURVE AS  
SHOWN IS UNSTABLEREGION  
AV = 5V/V  
10  
1
IN+  
10mV/div  
UNSTABLE  
STABLE  
STABLE  
UNSTABLE  
OUTPUT  
50mV/div  
0.1  
10  
100  
1000  
10000  
100  
1000  
1µs/div  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
LARGE-SIGNAL PULSE RESPONSE  
CROSSTALK  
vs. FREQUENCY  
(CL = 10pF)  
toc25  
toc26  
0
-20  
A =5V/V  
V
IN+  
100mV/div  
-40  
-60  
-80  
OUTPUT  
500mV/div  
-100  
-120  
10  
100  
1K  
10K 100K 1M  
FREQUENCY (Hz)  
10M 100M  
1µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Pin Configurations  
TOP VIEW  
TOP VIEW  
MAX40079/  
MAX40087  
+
1
2
3
6
5
4
OUTA  
VDD  
2
1
3
MAX40079  
MAX40087  
INA+ INA-  
A
B
OUTA  
VSS  
SHDN  
INA-  
V
SS  
VDD  
SHDN  
INA+  
6-WLP  
SOT23-6  
TOP VIEW  
3
1
2
4
+
1
2
3
8
7
6
5
OUTA  
INA-  
INA+  
VSS  
VDD  
OUTA  
INA-  
VDD  
OUTB  
INB-  
A
B
OUTB  
INB-  
INB+  
MAX40077/  
MAX40089  
MAX40077/MAX40089  
INA+  
VSS  
INB+  
4
WLP  
µMAX  
TOP VIEW  
+
14 OUTD  
1
2
3
4
5
6
7
OUTA  
INA-  
13  
IND-  
12  
11  
10  
9
INA+  
IND+  
VSS  
MAX40078  
VDD  
INB+  
INB-  
INC+  
INC-  
OUTC  
8
OUTB  
TSSOP  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Pin Description  
PIN  
NAME  
FUNCTION  
SOT23-6  
6-WLP  
8-WLP  
8-ΜMAX 14-TSSOP  
1
A3  
A1  
1
1
OUTA  
Output, Channel A  
Negative Power Supply Input. Connect V to 0V  
SS  
2
B3  
B3  
4
11  
V
SS  
in single-supply application.  
Non-Inverting Input, Channel A  
Inverting Input, Channel A  
3
4
A1  
A2  
B2  
B1  
3
2
3
2
INA+  
INA-  
Shutdown. Pull high for normal operation and low  
for shutdown  
5
B1  
SHDN  
6
B2  
A2  
B4  
A4  
A3  
8
5
4
5
V
Positive Power Supply Voltage Input  
Noninverting Input, Channel B  
Inverting Input, Channel B  
Output, Channel B  
DD  
INB+  
INB-  
6
6
7
7
OUTB  
INC+  
INC-  
10  
9
Noninverting Input, Channel C  
Inverting Input, Channel C  
Output, Channel C  
8
OUTC  
IND+  
IND-  
12  
13  
14  
Noninverting Input, Channel D  
Inverting Input, Channel D  
Output, Channel D  
OUTD  
Functional Diagram  
Internal ESD Protection  
V
DD  
60Ω  
IN-  
MAX40079  
MAX40087  
OUT  
½ MAX40077  
½ MAX40089  
IN+  
60Ω  
SHDN  
V
SS  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Low Distortion  
Detailed Description  
Many factors can affect the noise and distortion  
performance of the amplifier based on the design choices  
made. The following guidelines offer valuable information  
on the impact of design choices on total harmonic distortion  
(THD). Choosing correct feedback and gain resistor  
values for a particular application can be a very important  
factor in reducing THD. In general, the smaller the closed-  
loop gain, the smaller the THD generated, especially  
when driving heavy resistive loads (in other words, smaller  
resistive load with higher output current). Operating the  
device near or above the full-power bandwidth significantly  
degrades distortion.  
The  
MAX40079/MAX40087/MAX40077/MAX40089/  
MAX40078 single/dual/quad channel operational amplifiers  
feature ultra-low noise and distortion. Their low distortion  
and low noise make them ideal for use as pre-amplifiers  
in wide dynamic range applications, such as 16-bit analog-  
to-digital converters. Their high input impedance and low  
noise are also useful for signal conditioning of high-impedance  
sources, such as piezoelectric transducers.  
These devices have true rail-to-rail output operation, drive  
output resistive loads as low as 1kΩ while maintaining DC  
accuracy and can drive capacitive loads up to 200pF without  
any oscillation. The input common-mode voltage range  
Referencing the load to either supply also improves the  
amplifier distortion performance, because only one of the  
MOSFETs of the push-pull output stage drives the output.  
Referencing the load to mid-supply increases the amplifier  
distortion for a given load and feedback setting (See the  
Total Harmonic Distortion vs. Frequency graph in the  
Typical Operating Characteristics).  
extends from 0.2V below V  
pull output stage maintains excellent DC characteristics,  
while delivering up to ±20 mA of source/sink output current.  
to (V  
- 1.5V). The push-  
SS  
DD  
The MAX40079/MAX40079/MAX40078 are single/dual/  
quad respectively that are unity-gain stable, while the  
MAX40087/MAX40089, single/dual respectively are  
decompensated version having higher slew rate and are  
stable for Gain ≥ 5V/V. The MAX40079/MAX40087 single  
channel op amps feature a low-power shutdown mode,  
which reduces the supply current to 0.1μA and places  
amplifiers outputs into a high impedance state.  
For gains ≥ 5V/V, the de-compensated MAX40087/  
MAX40089 deliver the best distortion performance as they  
have a higher slew rate and provide a higher amount of  
loop gain for a given closed-loop gain setting. Capacitive  
loads below 100pF do not significantly affect distortion  
results. Distortion performance is relatively constant over  
supply voltages.  
Low Noise  
The amplifiers input-referred voltage noise density is  
dominated by flicker noise(also known as 1/f noise)  
at lower frequencies and by thermal noise at higher  
frequencies. Overall thermal noise contribution is affected  
by the parallel combination of resistive feedback network  
Input Protection  
As per Functional Diagram, when voltage on either of the  
inputpinsgoesuporbelowV orV bymorethanadiode  
DD  
SS  
voltage drop, ESD diodes begin to turn-on/forward bias  
and large amount of current flow through these diodes. If  
op amp inputs in certain applications are subject to these  
over-voltage conditions, insert a series current limiting 50  
ohm resistors on either inputs. However, note that DC  
precision of the system be affected due to these series resistors  
and also thermal noise of these resistors need to be considered  
while making noise analysis of the entire circuit.  
(R ||R ) depicted in Figure 1. These resistors should be  
F
G
reduced in cases where system bandwidth is large and  
thermal noise is dominant. Noise contribution factor can  
be reduced with increased gain settings.  
For example, the input noise voltage density (e ) of the  
N
circuit with R = 100kΩ, R = 10kΩ with Gain = 11V/V  
F
G
non-inverting configuration is e = 12nV/√Hz.  
N
e
can be reduced to 6nV/√Hz by choosing R = 10kΩ,  
F
N
An input differential protection scheme is used (refer to  
FunctionalDiagram)thatprotectthedeviceifthereisalarge  
differential voltage applied across input pins. A series of  
60Ω resistors are used in conjunction with a pair of back  
to back diodes that turn on in an event of differential  
voltage beyond a diode drop. A pair of 60Ω resistors limit  
current flowing through these diodes so that the current is  
limited below abs max rating of ±20mA.  
smaller R = 1kΩ compared to 10kΩ with still same Gain  
G
= 11V/V but at the expense of higher current consumption  
and higher distortion. Noise of this circuit is effectively  
reduced due to smaller value of R that dominates  
G
system noise.  
Having a Gain of 101V/V with R = 100kΩ, R = 1kΩ,  
F
G
input referred voltage noise density is still a low 6nV/√Hz  
as the noise dominating resistor R remained the same.  
G
Maxim Integrated  
11  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Using a slightly smaller C than suggested by the formula  
Z
above achieves a higher bandwidth at the expense of  
reduced phase and gain margin. As a general guideline,  
V
= 5V  
DD  
consider using C for cases where R ||R is greater than  
Z
G
F
20kΩ (for MAX40079/MAX40077/MAX40078) and greater  
than 5kΩ (for MAX40087/MAX40089).  
IN+  
IN-  
V
OUT  
MAX40079/  
½MAX40077  
Applications Information  
V
IN  
The  
MAX40079/MAX40087/MAX40077/MAX40089/  
MAX40078 family of op amps combine good driving  
capability that can also support ground/low-side sensing  
input and rail-to-rail output operation. With their low distor-  
tion and low noise, they are ideal for use in ADC buffers,  
DAC output buffers, medical instrumentation systems and  
other noise-sensitive applications.  
SHDN =5V  
V
= 0V  
SS  
R
C
R
F
G
Z
However, there are two main application areas where  
these ultra-low input bias current op amps find place and  
they are to measure high impedance measurements.  
High Impedance measurements can be interfacing either  
Current output sensors or voltage output sensors that  
would need very high output resistance to be interfaced  
with. These op amps offer just that as the input imped-  
ance of these amplifiers is in the range of 1000GΩ.  
Figure 1. Adding Feed-Forward Compensation  
Since there is a differential protection scheme used in  
these family of op amps, these amplifiers cannot be used  
as comparators in open loop, which is often a possibility  
on an unused channel of op amp.  
Using a Feed-Forward Compensation  
Capacitor, C  
Voltage output sensors readout can be accomplished with  
unity gain buffer configuration and current output sensors  
like photo-diodes current read out can be accomplished  
in transimpedance amplifier configuration discussed later  
in this data sheet.  
Z
The amplifier’s input capacitance is 7pF and if the  
resistance seen by the inverting input is large (Figure  
1) as a result of feedback network, this resistance and  
capacitance combination can introduce a pole within the  
amplifier’s bandwidth resulting in reduced phase margin.  
Compensate the reduced phase margin by introducing  
Ground-Sensing and Rail-to-Rail Outputs  
The common-mode input range of these devices extends  
below ground over temperature that offers excellent com-  
mon mode rejection and can be used in low side current  
sensing applications. These devices are guaranteed not  
to undergo phase reversal when the input is overdriven  
over input common mode voltage range as shown in  
Figure 2.  
a feed-forward capacitor (C ) between the inverting  
input and the output (shown in Figure 1). This effectively  
cancels the pole from the inverting input of the amplifier.  
Z
Choose the value of C as follows:  
Z
C = 10 x (R /R ) [pF]  
Z
F
G
Intheunity-gainstable:MAX40079/MAX40077/MAX40078,  
the use of correct value C is most important for closed  
Z
Figure 3 showcases the true rail-to-rail output operation of  
loop non-inverting gain A = +2V/V, and inverting gain A  
V
V
the amplifier, configured with A = 5V/V. The output swings  
V
= -1V/V.  
to within 8mV of the supplies with a 10kΩ load, making the  
In the de-compensated MAX40087/MAX40089, C is  
devices ideal in low-supply voltage applications.  
Z
most important for closed loop gain A = +10V/V.  
V
Maxim Integrated  
12  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Figure 2. Scope Plot Showing Overdriven Input with No Phase  
Reversal  
Figure 3. Rail-to-Rail Output Operation with 10kΩ  
RSERIES  
IP  
IP  
CJ  
RSHUNT  
CJ  
SIMPLIFIED EQUIVALENT  
CIRCUIT  
PHOTODIODE  
EQUIVALENT CIRCUIT  
Figure 4. Photodiode Equivalent Circuit Showing Parasitics  
photo-voltaic mode with buffered reference. This enables  
negligible reverse-voltage across the photodiode which  
ensures little to no dark current. A typical bias point of  
100mV–200mV may be used to ensure the output of  
amplifier to be in linear range. Because of the nature of  
photo-diode in photo-voltaic modes, the input capaci-  
tance is more as compared to photo-conductive mode.  
Therefore, this mode is chosen for slower to moderate  
photo-diode current applications but this methodology  
provides high linearity, better accuracy and low noise  
performance.  
Typical Application Circuit  
Extremely Low-Leakage Op Amp (~50fA) Used as  
Transimpedance Amplifier  
The ultra-low input bias current and low noise profile  
makes it an excellent choice for high impedance applica-  
tions. It should be noted that unity gain stable is not a  
requirement for TIA applications. MAX40087/MAX40089  
with increased GBW of 42MHz (min A ≥ 5V/V) may also  
be an option.  
V
Figure 6 shows a transimpedance amplifier using  
MAX40077 suited for low to moderate TIA applications in  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Photodiode Equivalent Circuit (Figure 4):  
is required to add a zero to compensate for the phase  
shift. To learn more about Trans-impedance amplifier  
stabilization, please refer to the app note: AN5129:  
Stabilize your Transimpedance Amplifier.  
I
P
is current flowing through photodiode proportional to  
intensity of light on photodiode sensor  
C is the junction input capacitance of the photodiode  
J
For a critically damped system the f  
=
-3dB  
R
R
is the internal shunt resistance of the photodiode  
is the internal series resistance of the photodiode  
SHUNT  
SERIES  
and the value of C1  
(GBW (2 x π x R1 x (C1 + CJ))  
/
=
.
(CJ 2 x π x R1 x GBW)  
/
where  
V
= I x R1  
OUT  
P
When using MAX40087 de-compensated Op-Amp, care  
where same equation still applies  
V
= I x R1  
P
OUT  
must be taken that the noise gain (1 + C /C1) at higher  
J
frequencies is higher than gain of 5V/V in order to stabilize  
the TIA.  
The input capacitance of the diode can destabilize the  
amplifier when choosing R1 in such a way that 1/(2 x π x  
R1 x C ) < GBW of the op amp. A feedback capacitance  
Noise Consideration: choosing lower R1 will provide lower  
transimpedance and higher BW, but this may result in  
higher noise as the signal reduces by a factor of R1 and  
noise reduces by factor of R1.  
J
C1  
The noise contribution of R1 can be reduced by increasing  
the C1 value, but this lowers the bandwidth. A careful  
trade-off must be done to improve the signal-to-noise  
ratio (SNR).  
R1  
5V  
Output Buffering of an Un-Buffered DAC:  
D1  
5V  
MAX40079  
The Figure 7 shows the single MAX40079 configured as  
an output buffer for the MAX5541 16-bit DAC. Because  
the MAX5541 has an unbuffered voltage output, the  
input bias current of the op amp used must be less than  
6nA to maintain 16-bit accuracy. This family of amplifiers  
have an input bias current of only 160pA (max) over  
temperature, virtuallyeliminatingthisasasourceoferror. In  
addition, the MAX40079 has excellent open loop gain and  
common-mode rejection, making this an excellent output  
buffer amplifier.  
R2  
R3  
Figure 5. Single-Supply Transimpedance Amplifier Configuration  
with Single-Channel Op Amp  
C1  
R1  
5V  
5V  
½
½
D1  
MAX40077  
MAX40077  
R2  
R3  
Figure 6. Single-Supply Transimpedance Amplifier Configuration with Dual-Channel Op Amp  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
V
=5V  
DD  
V
=2.5V  
REF  
DD  
V =5V  
DD  
V
CS  
REF  
IN+  
IN-  
MAX5541  
OUT  
AGND  
SERIAL  
INTERFACE  
0V TO +2.5V  
OUTPUT  
SCLK  
MAX40079  
DIN DGND  
SHDN =5V  
V
=0V  
SS  
Figure 7. DAC Output Buffering with Op Amp  
cleaning in bath is highly recommended. Once the bath is  
completed, it can be dried up either at room temperature  
for several hours or placing the cleaned up PCB in an  
oven at elevated temperature for quick usage.  
Capacitive Load Stability  
The MAX40079 family of op amps drive up to 50pF in  
all configurations without any oscillation. Driving higher  
capacitive loads than 50pF might lead to oscillation in  
certain configurations due to reduction in phase margin  
and it can be seen as overshoot and undershoot with a  
step response on oscilloscope. If the application demands  
for the op amp to drive more than 50pF capacitive loads,  
it is recommended to add a series isolation resistor of  
10-50Ω on the op amp output before capacitive load. Size  
of this resistor depends on the amount of capacitive load  
op amp is driving. Please refer to Isolation Resistance  
vs. Capacitive Stability graph in Typical Operating  
Characteristics for more information on resistance sizing.  
Power Supplies and Layout  
The  
MAX40079/MAX40087/MAX40077/MAX40089/  
MAX40078 op amps operate from a single +2.7V to  
+5.5V power supply or from dual supplies of ±1.35V to  
±2.75V. For single-supply operation, bypass the V  
power  
DD  
supply pin with a 0.1μF ceramic capacitor placed close to  
the V pin. If operating from dual supplies, bypass both  
DD  
V
and V  
supply pins with 0.1μF ceramic capacitor  
DD  
SS  
to ground. If additional decoupling is needed add another  
4.7μF or 10μF where supply voltage is applied on PCB.  
This series isolation resistance is very useful in unity gain  
buffer configuration when full scale signal output swing is  
used as the unity gain configuration is the worst case for  
stability while driving capacitive loads.  
Good layout improves performance by decreasing  
the amount of stray capacitance and noise at the op  
amp inputs and output. To decrease stray capacitance,  
minimize PC board trace lengths and resistor leads, and  
place external components close to the op amp’s pins.  
Flux and Solder Contaminant Removal  
Upon soldering process of the op amp on the PCB,  
remains of solder flux is a major performance degrading  
factor in measuring ultra-low input bias currents in the  
order of 50fA. Solvents like isopropyl alcohol (IPA) are  
effective in cleaning up solder flux contaminants. Upon  
clearly rubbing off the solder flux areas with IPA, ultrasonic  
Guard rings and Shielding is highly recommended to  
guard the high impedance input traces against input leak-  
age current. Refer to MAX40077 EV kit data sheet for  
more information on this. This is accomplished using a  
Triax connector and drving it's guard to the same potential  
as the signal on high impedance input.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Ordering Information  
NUMBER OF  
CHANNELS  
[GAIN BANDWIDTH  
PRODUCT IN MHZ]  
PART NUMBER  
TEMP RANGE  
PIN-PACKAGE  
[STABLE GAIN V/V]  
MAX40079ANT+T*  
MAX40079AUT+T  
MAX40087ANT+T*  
MAX40087AUT+T  
MAX40077ANT+T*  
MAX40077AUA+T*  
MAX40089ANT+T*  
MAX40089AUA+T  
MAX40078AUD+T*  
Single  
Single  
Single  
Single  
Dual  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
6-WLP  
6-SOT23  
6-WLP  
1
1
5
5
1
1
5
5
1
10  
10  
42  
42  
10  
10  
42  
42  
10  
6-SOT23  
8-WLP  
Dual  
μMAX-8  
8-WLP  
Dual  
Dual  
μMAX-8  
14 TSSOP  
Quad  
*Denotes Future Product-Contact Maxim for availability  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Denotes tape-and-reel.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX40079/MAX40087/  
MAX40077/MAX40089/  
MAX40078  
Single/Dual/Quad Ultra-Low  
Input Bias Current, Low Noise Amplifiers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
1/18  
Initial release  
Updated Electrical Characteristics and Ordering Information tables  
3/18  
3, 4, 6, 8, 16  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
17  

相关型号:

MAX4007EUT

PLASTIC ENCAPSULATED DEVICES
MAXIM

MAX4007EUT-T

High-Accuracy, 76V, High-Side Current Monitors in SOT23
MAXIM

MAX4008

High-Accuracy, 76V, High-Side Current Monitors in SOT23
MAXIM

MAX40080

Precision, Fast Sample-Rate, Digital Current-Sense Amplifier
MAXIM

MAX40080ANC+

Precision, Fast Sample-Rate, Digital Current-Sense Amplifier
MAXIM

MAX40080ANC+T

Precision, Fast Sample-Rate, Digital Current-Sense Amplifier
MAXIM

MAX40080ATC+T*

Precision, Fast Sample-Rate, Digital Current-Sense Amplifier
MAXIM

MAX40087AUT+

Operational Amplifier,
MAXIM

MAX40087AUT+T

Operational Amplifier,
MAXIM

MAX40088AUT+

Operational Amplifier,
MAXIM

MAX40089

2.7V to 5.5V Supply Voltage Range Across VDD and VSS
MAXIM

MAX40089EVKIT

2.7V to 5.5V Supply Voltage Range Across VDD and VSS
MAXIM