MAX4020EEE [MAXIM]

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs; 低成本,高速, SOT23封装,单电源运算放大器,满摆幅输出
MAX4020EEE
型号: MAX4020EEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
低成本,高速, SOT23封装,单电源运算放大器,满摆幅输出

运算放大器
文件: 总16页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1246; Rev 0; 7/97  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX4012 single, MAX4016 dual, MAX4018 triple,  
a nd MAX4020 q ua d op a mp s a re unity-g a in-sta ble  
devices that combine high-speed performance with  
Low-Cost  
High Speed:  
®
200MHz -3dB Bandwidth (MAX4012)  
150MHz -3dB Bandwidth (MAX4016/18/20)  
30MHz 0.1dB Gain Flatness  
600V/µs Slew Rate  
Rail-to-Rail outputs. The MAX4018 has a disable fea-  
ture that reduces power-supply current to 400µA and  
places its outputs into a high-impedance state. These  
devices operate from a +3.3V to +10V single supply or  
from ±1.65V to ±5V dual supplies. The common-mode  
inp ut volta g e ra ng e e xte nd s b e yond the ne g a tive  
power-supply rail (ground in single-supply applica-  
tions).  
Single 3.3V/5.0V Operation  
Rail-to-Rail Outputs  
Input Common-Mode Range Extends Beyond V  
Low Differential Gain/Phase: 0.02%/0.02°  
EE  
These devices require only 5.5mA of quiescent supply  
current while achieving a 200MHz -3dB bandwidth and  
a 600V/µs slew rate. These parts are an excellent solu-  
tion in low-power/low-voltage systems that require wide  
bandwidth, such as video, communications, and instru-  
mentation. In addition, when disabled, their high output  
impedance makes them ideal for multiplexing applica-  
tions.  
Low Distortion at 5MHz:  
-78dBc SFDR  
-75dB Total Harmonic Distortion  
High Output Drive: ±120mA  
400µA Shutdown Capability (MAX4018)  
High Output Impedance in Off State (MAX4018)  
The MAX4012 comes in a miniature 5-pin SOT23 pack-  
age, while the MAX4016 comes in 8-pin µMAX and SO  
packages. The MAX4018/MAX4020 are available in a  
space-saving 16-pin QSOP, as well as a 14-pin SO.  
Space-Saving SOT23-5, µMAX, or QSOP Packages  
________________________Ap p lic a t io n s  
Set-Top Boxes  
______________Ord e rin g In fo rm a t io n  
SOT  
TOP  
MARK  
TEMP.  
RANGE  
PIN-  
PACKAGE  
Surveillance Video Systems  
Battery-Powered Instruments  
Video Line Driver  
PART  
MAX4012EUK  
MAX4016ESA  
MAX4016EUA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
5 SOT23-5  
8 SO  
ABZP  
Analog-to-Digital Converter Interface  
CCD Imaging Systems  
8 µMAX  
Video Routing and Switching Systems  
Ordering Information continued at end of data sheet.  
__________Typ ic a l Op e ra t in g Circ u it  
_________________P in Co n fig u ra t io n s  
R
F
24  
TOP VIEW  
1
2
3
5
4
V
OUT  
CC  
R
50Ω  
TO  
V
OUT  
MAX4012  
Z = 50Ω  
O
V
EE  
MAX4012  
R
50Ω  
IN  
O
IN+  
IN-  
R
TIN  
50Ω  
SOT23-5  
UNITY-GAIN LINE DRIVER  
(R = R + R  
)
TO  
Pin Configurations continued at end of data sheet.  
L
O
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )................................................+12V  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW  
14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW  
16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
IN_-, IN_+, OUT_, EN_.....................(V - 0.3V) to (V + 0.3V)  
EE  
CC  
Output Short-Circuit Duration to V or V ............. Continuous  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW  
8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0V, EN_ = +5V, R  
=
to V / 2, V  
= V / 2, T = T  
to T , unless otherwise noted. Typical values  
MAX  
CC  
EE  
L
CC  
CC  
A
MIN  
OUT  
are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by CMRR test  
MIN  
TYP  
MAX  
UNITS  
V
Input Common-Mode  
Voltage Range  
V
EE  
-
V
CC  
-
V
CM  
0.20  
2.25  
Input Offset Voltage (Note 2)  
V
4
8
20  
mV  
OS  
Input Offset Voltage  
Temperature Coefficient  
TC  
µV/°C  
VOS  
Any channels for MAX4016/MAX4018/  
MAX4020  
Input Offset Voltage Matching  
±1  
mV  
Input Bias Current  
Input Offset Current  
I
(Note 2)  
(Note 2)  
5.4  
0.1  
20  
20  
µA  
µA  
k  
MΩ  
dB  
B
I
OS  
Differential mode (-1V V +1V)  
70  
IN  
Input Resistance  
R
IN  
Common mode (-0.2V V +2.75V)  
3
CM  
Common-Mode Rejection Ratio  
CMRR  
(V - 0.2V) V (V - 2.25V)  
EE  
70  
52  
100  
61  
CM  
CC  
0.25V V  
4.75V, R = 2kΩ  
L
OUT  
Open-Loop Gain (Note 2)  
A
0.5V V  
4.5V, R = 150Ω  
59  
dB  
VOL  
OUT  
L
1.0V V  
4V, R = 50Ω  
57  
OUT  
L
V
- V  
0.06  
0.06  
0.30  
0.30  
0.6  
CC  
OH  
R
R
= 2kΩ  
L
L
V
OL  
- V  
EE  
V
CC  
- V  
OH  
618/MAX420  
= 150Ω  
V
OL  
- V  
EE  
Output Voltage Swing  
(Note 2)  
V
OUT  
V
V
CC  
- V  
1.5  
1.5  
OH  
R
R
= 75Ω  
= 75Ω  
L
L
V
OL  
- V  
0.6  
EE  
V
CC  
- V  
1.1  
2.0  
OH  
to ground  
V
OL  
- V  
0.05  
±120  
±150  
8
0.50  
EE  
Output Current  
I
R
= 20to V or V  
±100  
mA  
mA  
EE  
OUT  
L
CC  
Output Short-Circuit Current  
Open-Loop Output Resistance  
I
Sinking or sourcing  
SC  
R
OUT  
2
_______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, V = 0V, EN_ = +5V, R  
=
to V / 2, V  
= V / 2, T = T  
to T , unless otherwise noted. Typical values  
MAX  
CC  
EE  
L
CC  
CC  
A
MIN  
OUT  
are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 5V, V = 0V, V = +2.0V  
MIN  
46  
TYP  
57  
MAX  
UNITS  
V
CC  
EE  
CM  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
V
CC  
= 5V, V = -5V, V = 0V  
54  
66  
dB  
EE  
CM  
V
CC  
= 3.3V, V = 0V, V = +0.90V  
45  
EE  
CM  
Operating Supply-Voltage  
Range  
V
V
to V  
EE  
3.15  
28  
11.0  
V
S
CC  
kΩ  
V
Disabled Output Resistance  
EN_ Logic-Low Threshold  
EN_ Logic-High Threshold  
R
EN_ = 0V, 0V V  
5V (Note 4)  
35  
OUT (OFF)  
OUT  
V
IL  
V
- 2.6  
CC  
V
IH  
V
- 1.6  
V
CC  
(V + 0.2V) EN_ V  
0.5  
200  
0.5  
EE  
CC  
EN_ Logic Input Low Current  
I
µA  
µA  
IL  
EN_ = 0V  
300  
EN_ Logic Input High Current  
I
IH  
EN_ = 5V  
10  
Enabled  
5.5  
7.0  
Quiescent Supply Current  
(per Amplifier)  
I
S
mA  
MAX4018, disabled (EN_ = 0V)  
0.40  
0.55  
_______________________________________________________________________________________  
3
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = 0V, V  
= 2.5V, EN_ = +5V, R = 24, R = 100to V / 2, V  
= V / 2, A  
= +1, T = +25°C, unless  
VCL A  
CC  
EE  
CM  
F
L
CC  
OUT  
CC  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX4012  
MIN  
TYP  
MAX  
UNITS  
200  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
V
= 20mVp-p  
= 2Vp-p  
OUT  
MHz  
SS  
OUT  
MAX4016/MAX4018/  
MAX4020  
150  
140  
30  
BW  
V
MHz  
MHz  
LS  
Bandwidth for 0.1dB Gain  
Flatness  
BW  
V
OUT  
= 20mVp-p (Note 5)  
6
0.1dB  
Slew Rate  
SR  
V
= 2V step  
600  
45  
1
V/µs  
ns  
OUT  
Settling Time to 0.1%  
Rise/Fall Time  
t
S
V
OUT  
= 2V step  
t , t  
R
V = 100mVp-p  
OUT  
ns  
F
Spurious-Free Dynamic  
Range  
SFDR  
HD  
f
= 5MHz, V  
= 2Vp-p  
-78  
dBc  
dBc  
dB  
C
OUT  
2nd harmonic  
-78  
-82  
3rd harmonic  
f
= 5MHz,  
C
Harmonic Distortion  
V
= 2Vp-p  
OUT  
Total harmonic  
distortion  
-75  
35  
Two-Tone, Third-Order  
Intermodulation Distortion  
IP3  
f1 = 10.0MHz, f2 = 10.1MHz, V  
= 1Vp-p  
dBc  
OUT  
Input 1dB Compression Point  
Differential Phase Error  
Differential Gain Error  
f
= 10MHz, A  
= +2  
11  
0.02  
0.02  
10  
6
dBm  
degrees  
%
C
VCL  
DP  
NTSC, R = 150Ω  
L
DG  
NTSC, R = 150Ω  
L
Input Noise-Voltage Density  
Input Noise-Current Density  
Input Capacitance  
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
pF  
i
n
C
1
IN  
OUT (OFF)  
Disabled Output Capacitance  
Output Impedance  
C
MAX4018, EN_ = 0V  
f = 10MHz  
2
pF  
Z
6
OUT  
Amplifier Enable Time  
t
MAX4018  
100  
1
ns  
ON  
Amplifier Disable Time  
t
MAX4018  
µs  
OFF  
618/MAX420  
MAX4016/MAX4018/MAX4020,  
Amplifier Gain Matching  
Amplifier Crosstalk  
0.1  
-95  
dB  
dB  
f = 10MHz, V  
= 20mVp-p  
OUT  
MAX4016/MAX4018/MAX4020,  
f = 10MHz, V = 2Vp-p, R = 50to ground  
X
TALK  
OU  
T
S
Note 1: The MAX4012EUT is 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by  
A
design.  
Note 2: Tested with V = +2.5V.  
CM  
Note 3: PSR for single +5V supply tested with V = 0V, V = +4.5V to +5.5V; for dual ±5V supply with V = -4.5V to -5.5V,  
EE  
CC  
EE  
V
CC  
= +4.5V to +5.5V; and for single +3.3V supply with V = 0V, V = +3.15V to +3.45V.  
EE CC  
Note 4: Does not include the external feedback networks impedance.  
Note 5: Guaranteed by design.  
4
_______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = 0V, A  
= +1, R = 24, R = 100to V / 2, T = +25°C, unless otherwise noted.)  
F L CC  
A
CC  
EE  
VCL  
MAX4012  
MAX4012  
MAX4016/18/20  
SMALL-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
(A = +1)  
VCL  
(A = +2)  
VCL  
(A = +1)  
VCL  
4
3
9
8
3
2
A
V
OUT  
= +2  
= 20mVp-p  
A
V
OUT  
= +1  
= 20mVp-p  
A
V
OUT  
= +1  
= 20mVp-p  
VCL  
VCL  
VCL  
2
1
0
7
6
5
4
3
2
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-7  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
MAX4016/18/20  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4012  
(A = +2)  
VCL  
LARGE-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
9
8
4
0.7  
0.6  
A
V
OUT  
= +2  
= 20mVp-p  
V
= 2Vp-p  
VCL  
OUT  
A
V
OUT  
= +1  
= 20mVp-p  
VCL  
3
V
= 1.75V  
OUT BIAS  
7
6
5
4
3
2
1
0
2
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
-1  
-6  
-0.3  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
MAX4016/18/20  
GAIN FLATNESS vs. FREQUENCY  
MAX4016/18/20  
CROSSTALK vs. FREQUENCY  
CLOSED-LOOP OUTPUT IMPEDANCE  
vs. FREQUENCY  
1000  
100  
10  
0.5  
0.4  
50  
30  
10  
A
V
OUT  
= +1  
= 20mVp-p  
R = 50  
S
VCL  
0.3  
0.2  
-10  
-30  
0.1  
0
-50  
-0.1  
-0.2  
-0.3  
-0.4  
-70  
-90  
1
-110  
-130  
-0.5  
-150  
0.1  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 0V, A  
= +1, R = 24, R = 100to V / 2, T = +25°C, unless otherwise noted.)  
F L  
A
CC  
EE  
VCL  
CC  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs. FREQUENCY (A = +1)  
VCL  
vs. FREQUENCY (A = +2)  
VCL  
vs. FREQUENCY (A = +5)  
VCL  
0
0
0
V
A
VCL  
= 2Vp-p  
= +1  
V
A
VCL  
= 2Vp-p  
= +2  
V
OUT  
A
VCL  
= 2Vp-p  
= +5  
OUT  
OUT  
-10  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2ND HARMONIC  
3RD  
2ND HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
HARMONIC  
3RD HARMONIC  
10M  
-100  
-100  
-100  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
HARMONIC DISTORTION  
vs. LOAD  
HARMONIC DISTORTION  
vs. OUTPUT SWING  
DIFFERENTIAL GAIN AND PHASE  
0
0
0.03  
f = 5MHz  
= 2Vp-p  
f = 5MHz  
V
= +1.35V  
CM  
O
-10  
-10  
0.02  
0.01  
V
OUT  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
0.00  
-0.01  
0
100  
IRE  
IRE  
0.03  
0.02  
0.01  
0.00  
-0.01  
V
= +1.35V  
CM  
-70  
-80  
-90  
-70  
-80  
-90  
2rd HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
3rd HARMONIC  
200  
-100  
-100  
0
100  
0
400  
600  
800  
1000  
0.5  
1.0  
1.5  
2.0  
LOAD ()  
OUTPUT SWING (Vp-p)  
COMMON-MODE REJECTION  
vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
OUTPUT SWING  
vs. LOAD RESISTANCE  
618/MAX420  
0
20  
10  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R to V /2  
L
CC  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
R to GROUND  
L
A
= +2  
VCL  
-100  
-80  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
25  
50  
75  
100  
125  
150  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
6
_______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 0V, A  
= +1, R = 24, R = 100to V / 2, T = +25°C, unless otherwise noted.)  
F L CC  
A
CC  
EE  
VCL  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
(C = 5pF, A = +1)  
SMALL-SIGNAL PULSE RESPONSE  
(A = +2)  
VCL  
(A = +1)  
VCL  
L
VCL  
MAX4012-20  
MAX4012-21  
MAX4012-19  
IN  
(25mV/  
div)  
IN  
(50mV/  
div)  
IN  
(50mV/  
div)  
OUT  
(25mV/  
div)  
OUT  
(25mV/  
div)  
OUT  
(25mV/  
div)  
TIME (20ns/div)  
TIME (20ns/div)  
TIME (20ns/div)  
V
CM  
= +1.25V, R = 100to GROUND  
V
CM  
= +1.75V, R = 100to GROUND  
L
V
CM  
= +2.5V, R = 100to GROUND  
L
L
LARGE-SIGNAL PULSE RESPONSE  
(C = 5pF, A = +2)  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(A = +2)  
VCL  
L
VCL  
(A = +1)  
VCL  
MAX4012-24  
MAX4012-22  
MAX4012-23  
IN  
(1V/  
div)  
IN  
(1V/div)  
IN  
(500mV/  
div)  
OUT  
(500mV/  
div)  
OUT  
(1V/div)  
OUT  
(500mV/  
div)  
TIME (20ns/div)  
TIME (20ns/div)  
TIME (20ns/div)  
V
CM  
= +1.75V, R = 100to GROUND  
L
V
CM  
= +1.75V, R = 100to GROUND  
V
CM  
= 0.9V, R = 100to GROUND  
L
L
CURRENT-NOISE DENSITY  
vs. FREQUENCY  
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
ENABLE RESPONSE TIME  
MAX4012-27  
10  
100  
10  
1
5.0V  
(ENABLE)  
EN_  
0V  
(DISABLE)  
OUT  
1V  
0V  
1
TIME (1µs/div)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
V
IN  
= +1.0V  
_______________________________________________________________________________________  
7
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 0V, A  
= +1, R = 24, R = 100to V / 2, T = +25°C, unless otherwise noted.)  
F L CC  
A
CC  
EE  
VCL  
OPEN-LOOP GAIN  
vs. LOAD RESISTANCE  
CLOSED-LOOP BANDWIDTH  
vs. LOAD RESISTANCE  
OFF ISOLATION vs. FREQUENCY  
70  
60  
50  
40  
30  
20  
400  
10  
0
350  
300  
250  
200  
150  
100  
50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
100k  
1M  
10M  
100M  
0
200  
400  
600  
800  
1k  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
SUPPLY CURRENT  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET CURRENT  
vs. TEMPERATURE  
7
6
5
4
3
6.0  
5.5  
5.0  
4.5  
4.0  
0.20  
0.16  
0.12  
0.08  
0.04  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
618/MAX420  
SUPPLY CURRENT  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
vs. SUPPLY VOLTAGE  
10  
8
5
4
3
2
1
0
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
R = 150TO V / 2  
L
CC  
6
4
2
0
3
4
5
6
7
8
9
10 11  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
______________________________________________________________P in De s c rip t io n  
PIN  
MAX4018  
MAX4020  
QSOP  
NAME  
FUNCTION  
MAX4012 MAX4016  
SOT23-5 SO/µMAX  
SO  
QSOP  
SO  
No Connect. Not internally connected.  
Tie to ground or leave open.  
1
4
8, 9  
8, 9  
N.C.  
OUT  
11  
11  
Amplifier Output  
Negative Power Supply or Ground (in  
single-supply operation)  
2
13  
13  
V
EE  
3
8
4
4
4
4
IN+  
IN-  
Noninverting Input  
4
Inverting Input  
5
V
CC  
Positive Power Supply  
Amplifier A Output  
1
7
7
1
1
OUTA  
INA-  
2
6
6
2
2
Amplifier A Inverting Input  
Amplifier A Noninverting Input  
Amplifier B Output  
3
5
5
3
3
INA+  
OUTB  
INB-  
7
8
10  
11  
12  
16  
15  
14  
1
7
7
6
9
6
6
Amplifier B Inverting Input  
Amplifier B Noninverting Input  
Amplifier C Output  
5
10  
14  
13  
12  
1
5
5
INB+  
OUTC  
INC-  
INC+  
OUTD  
IND-  
IND+  
EN  
8
10  
11  
12  
16  
15  
14  
9
Amplifier C Inverting Input  
Amplifier C Noninverting Input  
Amplifier D Output  
10  
14  
13  
12  
Amplifier D Inverting Input  
Amplifier D Noninverting Input  
Enable Amplifier  
ENA  
ENB  
Enable Amplifier A  
3
3
Enable Amplifier B  
2
2
ENC  
Enable Amplifier C  
_______________________________________________________________________________________  
9
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
cuit formed by the parasitic feedback capacitance and  
inductance.  
_______________De t a ile d De s c rip t io n  
The MAX4012/MAX4016/MAX4018/MAX4020 are sin-  
gle-supply, rail-to-rail, voltage-feedback amplifiers that  
e mp loy c urre nt-fe e d b a c k te c hniq ue s to a c hie ve  
600V/µs slew rates and 200MHz bandwidths. Excellent  
harmonic distortion and differential gain/phase perfor-  
mance make these amplifiers an ideal choice for a wide  
variety of video and RF signal-processing applications.  
Inverting and Noninverting Configurations  
Select the gain-setting feedback (R ) and input (R )  
F
G
resistor values to fit your application. Large resistor val-  
ues increase voltage noise and interact with the amplifi-  
e rs inp ut a nd PC b oa rd c a p a c ita nc e . This c a n  
generate undesirable poles and zeros and decrease  
bandwidth or cause oscillations. For example, a nonin-  
The output voltage swing comes to within 50mV of each  
supply rail. Local feedback around the output stage  
assures low open-loop output impedance to reduce  
gain sensitivity to load variations. This feedback also  
produces demand-driven current bias to the output  
transistors for ±120mA drive capability, while constrain-  
ing total supply current to less than 7mA. The input  
stage permits common-mode voltages beyond the nega-  
tive supply and to within 2.25V of the positive supply rail.  
verting gain-of-two configuration (R = R ) using 1k  
F
G
resistors, combined with 1pF of amplifier input capaci-  
tance and 1pF of PC board capacitance, causes a pole  
at 159MHz. Since this pole is within the amplifier band-  
width, it jeopardizes stability. Reducing the 1kresis-  
tors to 100extends the pole frequency to 1.59GHz,  
but could limit output swing by adding 200in parallel  
with the amplifiers load resistor. Table 1 shows sug -  
gested feedback, gain resistors, and bandwidth for  
s e ve ra l g a in va lue s in the c onfig ura tions s hown in  
Figures 1a and 1b.  
__________Ap p lic a t io n s In fo rm a t io n  
Ch o o s in g Re s is t o r Va lu e s  
La yo u t a n d P o w e r-S u p p ly Byp a s s in g  
These amplifiers operate from a single +3.3V to +11V  
power supply or from dual supplies to ±5.5V. For single-  
Unity-Gain Configuration  
The MAX4012/MAX4016/MAX4018/MAX4020 are inter-  
nally compensated for unity gain. When configured for  
supply operation, bypass V  
to ground with a 0.1µF  
CC  
unity gain, the devices require a 24resistor (R ) in  
F
capacitor as close to the pin as possible. If operating with  
dual supplies, bypass each supply with a 0.1µF capacitor.  
series with the feedback path. This resistor improves  
AC response by reducing the Q of the parallel LC cir-  
R
F
R
F
R
G
R
G
IN  
618/MAX420  
R
TIN  
R
TO  
R
TO  
V
OUT  
V
OUT  
MAX40_ _  
MAX40_ _  
V
IN  
R
O
R
O
V
= [1+ (R / R )] V  
F G IN  
= -(R / R ) V  
IN  
OUT  
OUT  
F
G
R
S
R
TIN  
Figure 1a. Noninverting Gain Configuration  
Figure 1b. Inverting Gain Configuration  
10 ______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
Maxim recommends using microstrip and stripline tech-  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the amplifiers performance,  
design it for a frequency greater than 1GHz. Pay care-  
ful attention to inputs and outputs to avoid large para-  
sitic capacitance. Whether or not you use a constant-  
impedance board, observe the following guidelines  
when designing the board:  
The outp ut s wing s to within 60mV of e ithe r p owe r-  
supply rail with a 2kload. The input ground-sensing  
and the rail-to-rail output substantially increase the  
dynamic range. With a symmetric input in a single +5V  
application, the input can swing 2.95Vp-p, and the out-  
put can swing 4.9Vp-p with minimal distortion.  
En a b le In p u t a n d Dis a b le d Ou t p u t  
The enable feature (EN_) allows the amplifier to be  
placed in a low-power, high-output-impedance state.  
• Dont use wire-wrap boards because they are too  
inductive.  
Typically, the EN_ logic low input current (I ) is small.  
IL  
• Dont use IC sockets because they increase parasitic  
capacitance and inductance.  
However, as the EN voltage (V ) approaches the nega-  
IL  
tive supply rail, I increases (Figure 2). A single resis-  
IL  
tor connected as shown in Figure 3 prevents the rise in  
the logic-low input current. This resistor provides a  
• Use surface-mount instead of through-hole compo-  
nents for better high-frequency performance.  
feedback mechanism that increases V as the logic  
IL  
• Use a PC board with at least two layers; it should be  
as free from voids as possible.  
input is brought to V . Figure 4 shows the resulting  
EE  
input current (I ).  
IL  
• Keep signal lines as short and as straight as possi-  
ble. Do not make 90° turns; round all corners.  
When the MAX4018 is disabled, the amplifiers output  
impedance is 35k. This high resistance and the low  
2p F outp ut c a p a c ita nc e ma ke this p a rt id e a l in  
RF/video multiplexer or switch applications. For larger  
arrays, pay careful attention to capacitive loading. See  
the Output Capacitive Loading and Stability section for  
more information.  
Ra il-t o -Ra il Ou t p u t s ,  
Gro u n d -S e n s in g In p u t  
The inp ut c ommon-mod e ra ng e e xte nd s from  
(V - 200mV) to (V - 2.25V) with excellent common-  
EE  
CC  
mode rejection. Beyond this range, the amplifier output  
is a nonlinear function of the input, but does not under-  
go phase reversal or latchup.  
Table 1. Recommended Component Values  
GAIN (V/V)  
COMPONENT  
+1  
24  
-1  
500  
500  
0
+2  
500  
500  
-2  
500  
250  
0
+5  
500  
124  
-5  
500  
100  
0
+10  
500  
56  
-10  
500  
50  
0
+25  
500  
20  
-25  
1200  
50  
R
R
R
R
R
()  
()  
()  
F
G
S
0
()  
()  
49.9  
49.9  
200  
56  
49.9  
49.9  
105  
62  
49.9  
49.9  
25  
100  
49.9  
33  
49.9  
49.9  
11  
49.9  
49.9  
6
TIN  
TO  
49.9  
90  
49.9  
60  
49.9  
25  
49.9  
10  
Small-Signal -3dB Bandwidth (MHz)  
Note: = R + R ; R and R  
R
are calculated for 50applications. For 75systems, R  
TO  
= 75; calculate R from the  
TIN  
L
O
TO  
TIN  
TO  
following equation:  
75  
R
=
TIN  
75  
1-  
R
G
______________________________________________________________________________________ 11  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
20  
0
ENABLE  
-20  
-40  
10k  
EN_  
IN-  
-60  
-80  
OUT  
MAX40_ _  
IN+  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500  
mV ABOVE V  
Figure 3. Circuit to Reduce Enable Logic-Low Input Current  
EE  
To implement the mux function, the outputs of multiple  
amplifiers can be tied together, and only the amplifier  
with the selected input will be enabled. All of the other  
amplifiers will be placed in the low-power shutdown  
mode, with their high output impedance presenting  
very little load to the active amplifier output. For gains  
of +2 or greater, the feedback network impedance of  
all the amplifiers used in a mux application must be  
c ons id e re d whe n c a lc ula ting the tota l loa d on the  
active amplifier output  
Figure 2. Enable Logic-Low Input Current vs. V  
IL  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
Ou t p u t Ca p a c it ive Lo a d in g a n d S t a b ilit y  
The MAX4012/MAX4016/MAX4018/MAX4020 are opti-  
mized for AC performance. They are not designed to  
drive highly reactive loads, which decreases phase  
margin and may produce excessive ringing and oscilla-  
tion. Figure 5 shows a circuit that eliminates this prob-  
lem. Figure 6 is a graph of the optimal isolation resistor  
(R ) vs. capacitive load. Figure 7 shows how a capaci-  
S
0
50 100 150 200 250 300 350 400 450 500  
tive load causes excessive peaking of the amplifiers  
frequency response if the capacitor is not isolated from  
the amplifier by a resistor. A small isolation resistor  
(usually 20to 30) placed before the reactive load  
prevents ringing and oscillation. At higher capacitive  
loads, AC performance is controlled by the interaction  
of the loa d c a p a c ita nc e a nd the is ola tion re s is tor.  
Figure 8 shows the effect of a 27isolation resistor on  
closed-loop response.  
mV ABOVE V  
EE  
618/MAX420  
Figure 4. Enable Logic-Low Input Current vs. V with 10kΩ  
IL  
Series Resistor  
Coaxial cable and other transmission lines are easily  
driven when properly terminated at both ends with their  
c ha ra c te ris tic imp e d a nc e . Driving b a c k-te rmina te d  
tra ns mis s ion line s e s s e ntia lly e limina te s the line s  
capacitance.  
12 ______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
30  
25  
R
F
R
G
20  
15  
10  
5
R
ISO  
V
OUT  
MAX40_ _  
V
C
IN  
L
50Ω  
R
TIN  
0
0
50  
100  
150  
200  
250  
CAPACITIVE LOAD (pF)  
Figure 5. Driving a Capacitive Load through an Isolation Resistor  
Figure 6. Capacitive Load vs. Isolation Resistance  
6
5
3
R
ISO  
= 27Ω  
2
1
C = 47pF  
L
C = 15pF  
L
4
3
0
C = 68pF  
L
C = 10pF  
L
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
1
C = 120pF  
L
0
C = 5pF  
L
-1  
-2  
-3  
-4  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Small-Signal Gain vs. Frequency with Load  
Capacitance and No Isolation Resistor  
Figure 8. Small-Signal Gain vs. Frequency with Load  
Capacitance and 27Isolation Resistor  
______________________________________________________________________________________ 13  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
_____________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
OUTC  
OUTD  
14  
ENA 1  
14  
OUTA 1  
2
3
4
5
6
2
3
4
5
6
7
ENC  
ENB  
13 INC-  
12 INC+  
INA-  
13 IND-  
12 IND+  
INA+  
V
CC  
11  
10  
9
V
V
CC  
11  
10  
9
V
EE  
MAX4018  
MAX4020  
EE  
INB+  
INB-  
INC+  
INC-  
INA+  
INA-  
INB+  
INB-  
OUTB  
OUTC  
OUTA 7  
8
OUTB  
8
SO  
SO  
OUTA  
INA-  
8
7
6
5
V
CC  
1
2
3
4
OUTB  
INB-  
MAX4016  
INA+  
V
EE  
INB+  
SO/µMAX  
1
2
3
4
5
6
7
8
16 OUTC  
ENA  
ENC  
ENB  
1
2
3
4
5
6
7
8
16 OUTD  
OUTA  
INA-  
INC-  
15  
14  
13  
IND-  
15  
14  
INC+  
IND+  
INA+  
V
EE  
V
CC  
MAX4018  
V
V
CC  
MAX4020  
13  
12  
EE  
12 INB+  
INA+  
INA-  
INC+  
INC-  
INB+  
INB-  
INB-  
11  
10  
9
11  
10  
9
OUTB  
N.C.  
OUTA  
N.C.  
OUTC  
N.C.  
OUTB  
N.C.  
618/MAX420  
QSOP  
QSOP  
14 ______________________________________________________________________________________  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
618/MAX420  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip In fo rm a t io n  
SOT  
TOP  
MARK  
TRANSISTOR  
TEMP.  
RANGE  
PIN-  
PACKAGE  
PART  
PART  
COUNT  
MAX4012  
MAX4016  
MAX4018  
MAX4020  
95  
MAX4018ESD  
MAX4018EEE  
MAX4020ESD  
MAX4020EEE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
14 SO  
190  
299  
362  
16 QSOP  
14 SO  
16 QSOP  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
Lo w -Co s t , Hig h -S p e e d , S OT2 3 , S in g le -S u p p ly  
Op Am p s w it h Ra il-t o -Ra il Ou t p u t s  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
618/MAX420  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4020EEE+

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020EEE+T

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020EEE-T

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020ESD

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4020ESD+

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4020ESD-T

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4022

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE+

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE+T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE-T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022ESD

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM