MAX4029EWP+T [MAXIM]

Video Multiplexer, 4 Func, 1 Channel, BIPolar, PDSO20, 0.300 INCH, MS-013, SOIC-20;
MAX4029EWP+T
型号: MAX4029EWP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Video Multiplexer, 4 Func, 1 Channel, BIPolar, PDSO20, 0.300 INCH, MS-013, SOIC-20

光电二极管
文件: 总12页 (文件大小:978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
General Description  
Features  
Single +5V Operation  
The MAX4028/MAX4029 are 5V, triple/quad, 2:1 voltage-  
feedback multiplexer-amplifiers with input clamps and a  
fixed gain of +2V/V (6dB). Channel 1 (IN1A and IN1B)  
inputs are clamped to the video sync tip of the input  
signal, while the remaining inputs can be clamped to  
either the video sync tip or the video sync of channel 1  
(IN1_). The latter is referred to as a key clamp and is pin  
selectable. Selectable clamp/key-clamp inputs and fixed-  
gain video output buffers make the MAX4028/MAX4029  
ideal for video-source switching applications such as  
entertainment systems, video projectors, and displays/  
TVs. Both devices have 20ns channel switching times  
and low ±10mVP-P switching transients, making them  
ideal for high-speed video switching applications such as  
on-screen display (OSD) insertion.  
Independently Selectable Sync-Tip or  
Key-Clamp Inputs  
Adjustable Key-Clamp Voltage  
130MHz Large-Signal -3dB Bandwidth  
210MHz Small-Signal -3dB Bandwidth  
300V/µs Slew Rate  
20ns Switching Time  
Ultra-Low ±10mV  
Switching Transient  
P-P  
0.2% Differential Gain/0.4° Phase Error  
Low-Power, High-Impedance Disable Mode  
Ordering Information  
The MAX4028/MAX4029 have a -3dB large-signal (2V  
)
P-P  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TSSOP  
bandwidth of 130MHz, a -3dB small-signal bandwidth of  
210MHz, and a 300V/µs slew rate. Low differential gain  
and phase errors of 0.2% and 0.4°, respectively, make  
these devices ideal for broadcast video applications.  
MAX4028EUE  
MAX4028EWE  
MAX4029EUP  
MAX4029EWP  
16 Wide SO  
20 TSSOP  
20 Wide SO  
The MAX4028/MAX4029 are specified over the -40°C to  
+85°C extended temperature range and are offered in  
16-pin and 20-pin TSSOP/SO packages.  
Typical Operating Circuit  
A/B  
+5V  
Applications  
Blade Servers  
Security Systems  
Video Projectors  
Displays and Digital Televisions  
Broadcast and Graphics Video  
Set-Top Boxes  
C
IN  
0.1µF  
V
CC  
75CABLE  
MAX4028  
MAX4029  
IN1A  
CLAMP  
0.1µF  
0.01µF  
75Ω  
75CABLE  
C
IN  
75Ω  
OUT1  
0.1µF  
75CABLE  
IN1B  
CLAMP  
1kΩ  
75Ω  
1kΩ  
C
0.1µF  
Notebook Computers  
Video Crosspoint Switching  
IN  
75CABLE  
IN2A  
CLAMP  
75Ω  
75CABLE  
75Ω  
OUT2  
C
IN  
0.1µF  
Selector Guide  
75CABLE  
IN2B  
CLAMP  
1kΩ  
NO. OF 2:1  
MUX-AMPS  
PART  
GAIN  
75Ω  
1kΩ  
DISABLE  
MAX4028  
MAX4029  
3
4
2V/V  
2V/V  
KEYREF  
R
KEYREF  
6kΩ  
KEY/CLAMP  
CONTROL  
CLAMP/KEY_2  
Pin Configurations appear at end of data sheet.  
19-3240; Rev 1; 4/15  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Absolute Maximum Ratings  
Supply Voltage (V  
to GND).................................-0.3V to +6V  
20-Pin TSSOP (derate 11mW/°C above +70°C).........879mW  
20-Pin Wide SO (derate 10mW/°C above +70°C) ......800mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
IN_A, IN_B, OUT_.................................... -0.3V to (V  
DISABLE, A/B, KEYREF, CLAMP/KEY_.. -0.3V to (V  
Current Into IN_A, IN_B ..................................................±0.5mA  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
Short-Circuit Duration (V  
Short-Circuit Duration (V  
to GND)......................Continuous  
OUT  
OUT  
to V ) ...........................(Note 1)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TSSOP (derate 9.4mW/°C above +70°C)........755mW  
16-Pin Wide SO (derate 9.5mW/°C above +70°C) .....762mW  
Note 1: Do not short V  
to V  
.
OUT  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics  
(V = +5V, GND = 0V, R = 150to GND, V  
= +5V, R  
= 6k, C = 0.1µF to GND, T = T  
to T  
, unless otherwise  
CC  
L
DISABLE  
KEYREF  
IN  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
40  
UNITS  
Operating Supply Voltage Range  
V
Guaranteed by PSRR  
MAX4028, R = ∞  
4.5  
V
CC  
29  
38  
9
L
Quiescent Supply Current  
Disable Supply Current  
Output Clamp Voltage  
I
mA  
mA  
V
CC  
MAX4029, R = ∞  
55  
L
MAX4028  
MAX4029  
15  
V
= 0V  
DISABLE  
11  
0.4  
1.1  
5
20  
Clamp (Note 3)  
0.32  
0.48  
V
CLAMP  
Key clamp (Note 4)  
Input Clamping Current  
Clamp Voltage Matching  
Clamp Voltage Drift  
I
Input voltage = input clamp + 0.5V  
Measured at output  
18  
µA  
mV  
µV/°C  
MΩ  
IN  
∆V  
10  
80  
7
CLAMP  
TC  
Measured at output  
VCLAMP  
Input Resistance  
R
IN  
Output Resistance  
R
0.7  
2
OUT  
OUT  
Disable Output Resistance  
Power-Supply Rejection Ratio  
Voltage Gain  
R
V
= 0V  
kΩ  
DISABLE  
4.5V < V  
PSRR  
< 5.5V (Note 5)  
48  
58  
2.0  
±1  
dB  
CC  
A
1.9  
2.1  
±2  
V/V  
%
VCL  
Channel-to-Channel Gain Matching  
∆A  
VCL  
V
CLAMP  
+ 2.4  
Output-Voltage High  
V
V
OH  
Output-Voltage Low  
Output Current  
V
V
V
OL  
CLAMP  
0.8  
I
30  
mA  
OUT  
LOGIC INPUT CHARACTERISTICS (DISABLE , A/B, CLAMP/KEY_)  
Logic-Low Threshold  
Logic-High Threshold  
Logic-Low Input Current  
Logic-High Input Current  
V
V
V
IL  
IH  
IL  
V
2.0  
I
V
V
= 0V  
6.6  
1.2  
25  
25  
µA  
µA  
IL  
I
= V  
CC  
IH  
IH  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
AC Electrical Characteristics  
(V  
= +5V, GND = 0V, R = 150to GND, V  
= +5V, R  
= 6k, C = 0.1µF, T = T  
to T  
, unless otherwise noted.  
CC  
L
DISABLE  
KEYREF  
IN  
A
MIN  
MAX  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
210  
130  
MAX  
UNITS  
MHz  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
BW  
V
V
= 100mV  
P-P  
SS  
OUT  
= 2V  
MHz  
LS  
OUT  
P-P  
Small-Signal 0.1dB Gain Flatness  
Bandwidth  
BW  
V
V
= 100mV  
P-P  
30  
30  
MHz  
MHz  
0.1dBSS  
OUT  
Large-Signal 0.1dB Gain Flatness  
Bandwidth  
BW  
= 2V  
= 2V  
0.1dBLS  
SR  
OUT  
P-P  
Slew Rate  
V
V
300  
20  
V/µs  
ns  
OUT  
P-P  
Settling Time to 0.1%  
Power-Supply Rejection Ratio  
Output Impedance  
Differential Gain Error  
Differential Phase Error  
Group Delay  
t
= 2V step  
S
OUT  
PSRR  
f = 100kHz  
55  
dB  
Z
f = 100kHz  
0.7  
0.2  
0.4  
1.0  
70  
O
DG  
DP  
5-step modulated staircase  
5-step modulated staircase  
f = 3.58MHz or 4.43MHz  
100kHz to 30MHz  
f = 100kHz  
%
degrees  
ns  
D/dT  
SNR  
Peak Signal to RMS Noise  
Channel-to-Channel Crosstalk  
A/B Crosstalk  
dB  
X
73  
dB  
TALK  
X
f = 100kHz  
91  
dB  
TALKAB  
Off-Isolation  
A
V
OUT_  
= 2V , f = 100kHz  
108  
dB  
ISO  
P-P  
Droop  
D
Guaranteed by input clamp current  
2
%
R
SWITCHING CHARACTERISTICS  
Channel Switching Time  
Enable Time  
t
20  
0.1  
0.1  
±10  
ns  
µs  
µs  
SW  
t
ON  
Disable Time  
t
OFF  
Switching Transient  
mV  
P-P  
Note 2: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 3: The clamp voltage at the input is V  
(measured at the output) divided by gain + V  
.
CLAMP  
BE  
Note 4: The key-clamp voltage is above the sync-tip clamp voltage by approximately 0.7V, and is adjusted by varying R  
.
KEYREF  
Note 5: Measured at f = 100Hz at thermal equilibrium.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Typical Operating Characteristics  
(V  
= +5V, GND = 0V, V  
= +5V, R = 150to GND, C = 0.1µF, R  
= 6.04k±1%, T = +25°C, unless otherwise  
CC  
DISABLE  
L
IN  
KEYREF  
A
noted.)  
SMALL-SIGNAL BANDWIDTH  
vs. FREQUENCY  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
LARGE-SIGNAL BANDWIDTH  
vs. FREQUENCY  
8
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
8
V
= 100mV  
V
= 100mV  
V
OUT  
= 2V  
P-P  
OUT  
P-P  
OUT  
P-P  
7
6
7
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-2  
-1  
-2  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1G  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
DIFFERENTIAL GAIN AND PHASE  
0.3  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
V
= 2V  
0.2  
0.1  
0
OUT  
P-P  
-0.1  
-0.2  
-0.3  
6th  
1st  
2nd  
3rd  
4th  
5th  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
6th  
1st  
2nd  
3rd  
4th  
5th  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1k  
10k 100k  
1M  
10M 100M 1G  
FREQUENCY (Hz)  
OFF-ISOLATION  
vs. FREQUENCY  
ALL-HOSTILE CROSSTALK (CHANNEL TO  
CHANNEL) vs. FREQUENCY  
ALL-HOSTILE CROSSTALK (A TO B ON ANY  
CHANNEL) vs. FREQUENCY  
0
0
-20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-40  
-60  
-80  
-100  
-120  
-140  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
4
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Typical Operating Characteristics (continued)  
(V  
= +5V, GND = 0V, V  
= +5V, R = 150to GND, C = 0.1µF, R  
= 6.04k±1%, T = +25°C, unless otherwise  
CC  
DISABLE  
L
IN  
KEYREF  
A
noted.)  
INPUT-VOLTAGE NOISE DENSITY  
vs. FREQUENCY  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
LARGE-SIGNAL TRANSIENT RESPONSE  
MAX4028 toc12  
100  
10  
1
1000  
100  
10  
V
IN  
1.6VDC  
500mV/div  
V
OUT  
1V/div  
0.1  
1
10ns/div  
10k  
100k  
1M  
10M  
100M  
1G  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CHANNEL-SWITCHING TIME  
(CHA = 1.5VDC, CHB = 1VDC)  
SMALL-SIGNAL TRANSIENT RESPONSE  
CHANNEL-SWITCHING TRANSIENT  
MAX4028 toc14  
MAX4028 toc15  
MAX4028 toc13  
5VDC  
0VDC  
5VD  
0VD  
A/B  
2.5V/div  
V
A/B  
2.5V/div  
IN  
1.6VDC  
25mV/div  
V
SIGNAL 2  
50mV/div  
V
OUT  
OUT  
500mV/div  
20mV/div  
20ns/div  
10ns/div  
20ns/div  
OPTIMAL ISOLATION RESISTANCE  
vs. CAPACITIVE LOAD  
SMALL-SIGNAL BANDWIDTH  
vs. FREQUENCY  
ENABLE RESPONSE TIME  
(V  
= 0.5V)  
OUT  
30  
25  
20  
15  
10  
5
11  
10  
9
MAX4028 toc16  
C
= 15pF  
LOAD  
5VDC  
0VDC  
0.5VDC  
0VDC  
ENABLE  
2.5V/div  
C
= 10pF  
LOAD  
8
7
6
5
4
C
= 5pF  
LOAD  
V
OUT  
3
250mV/div  
2
0
1
0
50  
100  
C
150  
(pF)  
200  
250  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
50ns/div  
LOAD  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Typical Operating Characteristics (continued)  
(V  
= +5V, GND = 0V, V  
= +5V, R = 150to GND, C = 0.1µF, R  
= 6.04k±1%, T = +25°C, unless otherwise  
CC  
DISABLE  
L
IN  
KEYREF  
A
noted.)  
KEY-CLAMP REFERENCE VOLTAGE  
CLAMP VOLTAGE  
vs. TEMPERATURE  
vs. R  
KEYREF  
0.43  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
-50  
-25  
0
25  
50  
75  
100  
1
3
5
7
9
11  
13  
TEMPERATURE (°C)  
R
(k)  
KEYREF  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4028  
MAX4029  
1
1
2
3
4
IN4A  
IN3A  
IN2A  
IN1A  
Amplifier Input 4A  
Amplifier Input 3A  
Amplifier Input 2A  
Amplifier Input 1A  
2
3
Channel-Select Input. Drive A/B high or leave unconnected to select channel A.  
Drive A/B low to select channel B.  
4
5
5
6
A/B  
Key-Clamp Reference Output. Connect an external resistor from KEYREF to GND to  
generate the key-clamp voltage.  
KEYREF  
6
7
7
8
IN1B  
IN2B  
IN3B  
IN4B  
OUT4  
Amplifier Input 1B  
Amplifier Input 2B  
Amplifier Input 3B  
Amplifier Input 4B  
Amplifier Output 4  
8
9
10  
11  
Output 3 Clamp or Key-Clamp Input. Drive CLAMP/KEY_3 high to clamp OUT3.  
Drive CLAMP/KEY_3 low to key clamp OUT3.  
9
12  
CLAMP/KEY_3  
10  
11  
13  
14  
GND  
Ground  
OUT3  
Amplifier Output 3  
Output 2 Clamp or Key-Clamp Input. Drive CLAMP/KEY_2 high to clamp OUT2.  
Drive CLAMP/KEY_2 low to key clamp OUT2.  
12  
13  
14  
15  
16  
17  
CLAMP/KEY_2  
OUT2  
Amplifier Output 2  
Power-Supply Voltage. Bypass VCC to GND with 0.1µF and 0.01µF capacitors as  
close as possible to the pin.  
VCC  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX4028  
MAX4029  
15  
18  
OUT1  
Amplifier Output 1  
Disable Input. Pull DISABLE high for normal operation. Drive DISABLE low to disable  
16  
19  
20  
DISABLE  
all outputs.  
Output 4 Clamp or Key-Clamp Input. Drive CLAMP/KEY_4 high to clamp OUT4.  
Drive CLAMP/KEY_4 low to key clamp OUT4.  
CLAMP/KEY_4  
Detailed Description  
V
CC  
The MAX4028/MAX4029 are 5V, triple/quad, 2:1  
voltage-feedback multiplexer-amplifiers with input clamps  
and a fixed gain of +2V/V (6dB). Channel 1 (IN1A and  
IN1A  
IN1B  
CLAMP  
CLAMP  
IN1B) inputs are clamped to the video sync tip of the  
OUT1  
input IN1_ channel, while the remaining inputs can be  
clamped to either the video sync tip of the respective input  
channel (IN_A and IN_B) or the video sync of channel 1  
(IN1_). The latter is referred to as a key clamp and is pin  
selectable. Selectable clamp/key-clamp inputs and fixed-  
gain video output buffers make the MAX4028/MAX4029  
ideal for video-source switching applications such as  
entertainment systems, video projectors, and displays/  
TVs. Both devices have 20ns channel switching times  
1k  
1kΩ  
IN2A  
IN2B  
CLAMP/  
KEY  
CLAMP  
OUT2  
1kΩ  
CLAMP/  
KEY  
CLAMP  
and low ±10mV  
ideal for both high-speed video switching applications  
such as OSD insertion.  
switching transients, making them  
1kΩ  
P-P  
CLAMP/KEY_2  
IN3A  
CLAMP/  
KEY  
CLAMP  
The MAX4028/MAX4029 have a -3dB large-signal (2V  
)
P-P  
OUT3  
bandwidth of 130MHz, a -3dB small-signal bandwidth of  
210MHz, and a 300V/µs slew rate. Low differential gain  
and phase errors of 0.2% and 0.4°, respectively, make  
these devices ideal for broadcast video applications.  
IN3B  
1kΩ  
CLAMP/  
KEY  
CLAMP  
1kΩ  
CLAMP/KEY_3  
A/B  
Sync Tip and Key Clamps  
IN4A  
The MAX4028/MAX4029 have AC-coupled inputs, with  
either a sync tip or key clamp to provide bias for the video  
signal. Channel 1 of the MAX4028/MAX4029 always has a  
sync tip clamp at the input, while the remaining channels  
are selectable as either sync tip or key clamps to accom-  
modate the various video waveforms (see the Clamp/  
Key-Clamp Settings for Video Formats section). The value  
of the sync-tip clamp voltage is set internally for the low-  
est value, consistent with linear operation, and cannot be  
adjusted. The key-clamp voltage is adjustable, to compen-  
sate for variations in the voltage between component video  
inputs such as Linear RGB, YPbPr, and Y-C, by varying  
CLAMP/  
KEY  
CLAMP  
OUT4  
IN4B  
1kΩ  
CLAMP/  
KEY  
CLAMP  
1kΩ  
CLAMP/KEY_4  
CLAMP  
VOLTAGE  
DISABLE  
KEYREF  
MAX4029  
GND  
Figure 1. MAX4029 Functional Diagram  
R . The key-clamp voltage can be computed from:  
KEYREF  
V
= 0.40 + 2000/[(5000 x R  
)/  
Key-Clamp  
KEYREF  
(5000 + R  
)]  
KEYREF  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Therefore, a 6kresistor will produce a 1.13V  
key-clamp voltage as shown in Figure 2. The clamp  
ground. The clamps used here are active devices with the  
coupling capacitor serving two functions; first, as a charge  
reservoir to maintain the clamp voltage, and second, as  
the compensation capacitor for the clamp itself. If an input  
is not used, it must be terminated to avoid causing oscilla-  
tions that could couple with another input.  
voltage (V  
) is measured at the output; the voltage  
CLAMP  
at the input is V  
the gain (+2V/V) + V  
(sync tip or key clamp) divided by  
.
CLAMP  
BE  
In order for these clamps (sync tip or key) to work  
properly, the input must be coupled with a 0.1µF capac-  
itor (typ) with low leakage (<1µA to 2µA, max). Without  
proper coupling, the clamp voltage will change during the  
horizontal line time causing the “black level” to vary, chang-  
ing the image brightness from left to right on the display. In  
addition to the capacitor, a low resistance (≤ 75) is  
required on the source side to return the capacitor to  
In general, a sync-tip clamp is used for composite video  
(Cvbs), gamma-corrected primaries (R’G’B’), and the  
luma signal (Y) in S-video. A key clamp is preferred for  
component color difference signals (Pb and Pr), linear  
primaries (RGB in PCs), and chroma (C) in S-video. The  
rule is to sync tip clamp a signal if sync is present and  
key clamp all others. Several examples are given in the  
Clamp/Key-Clamp Settings for Video Formats section.  
KEY-CLAMP REFERENCE VOLTAGE  
vs. R  
Clamp/Key-Clamp Settings for Video Formats  
KEYREF  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Tables 1 and 2 provide the clamp settings on the MAX4028/  
MAX4029 to interface with various video formats.  
Low-Power, High-Impedance Disable Mode  
All parts feature a low-power, high-impedance disable  
mode that is activated by driving the DISABLE input  
low. Placing the amplifier in disable mode reduces  
the quiescent supply current and places the output  
impedance at 2ktypically. Multiple devices can be  
paralleled to construct larger switch matrices by  
connecting the outputs of several devices together  
and disabling all but one of the paralleled amplifiers’  
outputs.  
1
3
5
7
9
11  
13  
R
(k)  
KEYREF  
Figure 2. Key-Clamp Reference Voltage vs. R  
KEYREF  
Table 1. MAX4028 Clamp Settings for Video Formats  
INPUT  
FORMAT  
CLAMP/KEY  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
1
2
3
Cvbs1  
Clamp  
1
2
3
Y
C
Cvbs2  
Clamp  
Key  
Cvbs3  
Clamp  
Cvbs  
Clamp  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
Key  
1
2
3
G’  
B’  
R’  
1
2
3
Y
Clamp  
Pb  
Pr  
Clamp  
Key  
R, G, B have sync on all.  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
Key  
1
2
3
Gs  
B
R
Key  
Gs, B, R have sync only on Green.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Table 2. MAX4029 Clamp Settings for Video Formats  
INPUT  
FORMAT  
Cvbs1  
CLAMP/KEY  
Clamp  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
Key  
1
2
3
4
1
2
3
4
Gs  
R
Cvbs2  
Clamp  
Cvbs3  
Clamp  
B
Key  
Cvbs4  
Clamp  
Cvbs  
Clamp  
Gs, B, R have sync only on Green.  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
Key  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
Key  
1
2
3
4
H-Sync  
1
2
3
4
Y
Pr  
G
B
R
Key  
Pb  
Key  
Key  
Cvbs  
Clamp  
R, G, B have sync on none.  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
INPUT  
FORMAT  
CLAMP/KEY  
Clamp  
1
2
3
4
Y
1
2
3
4
Cvbs  
G’  
C
Key  
Clamp  
Cvbs  
Cvbs  
Clamp  
B’  
Clamp  
Clamp  
R’  
Clamp  
R, G, B have sync on all.  
The MAX4028/MAX4029 have a fixed gain of +2V/V  
that is internally set with two 1kthin-film resistors. The  
impedance of the internal feedback resistors must be  
taken into account when operating multiple MAX4028/  
MAX4029s in large multiplexer applications.  
A/B  
DISABLE  
75CABLE  
0.1F  
0.1F  
R
75Ω  
T
IN_A  
OUT_  
R
T
75CABLE  
75Ω  
R
T
Applications Information  
75Ω  
75CABLE  
IN_B  
Video Line Driver  
R
T
75Ω  
The MAX4028/MAX4029 are well suited to drive coaxial  
transmission lines when the cable is terminated at both  
ends, as shown in Figure 3, where the fixed gain of +2V/V  
CLAMP  
compensates for the loss in the resistors, R .  
T
MAX4028  
MAX4029  
R
KEYREF  
Driving Capacitive Loads  
A correctly terminated transmission line is purely  
resistive and presents no capacitive load to the amplifier.  
Reactive loads decrease phase margin and may produce  
excessive ringing and oscillation.  
Figure 3. Video Line Driver  
Although the MAX4028/MAX4029 are optimized for AC  
performance and are not designed to drive highly capaci-  
tive loads, they are capable of driving up to 15pF without  
oscillations. However, some peaking may occur in the fre-  
quency domain (Figure 4). To drive larger capacitive loads  
or to reduce ringing, add an isolation resistor between the  
Another concern when driving capacitive loads is the  
amplifier’s output impedance, which appears inductive  
at high frequencies. This inductance forms an L-C  
resonant circuit with the capacitive load, which causes  
peaking in the frequency response and degrades the  
amplifier’s phase margin.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
OPTIMAL ISOLATION RESISTANCE  
SMALL-SIGNAL BANDWIDTH  
vs. FREQUENCY  
vs. CAPACITIVE LOAD  
30  
11  
10  
9
C
= 15pF  
LOAD  
25  
20  
15  
10  
5
C
= 10pF  
LOAD  
8
7
6
5
4
C
= 5pF  
LOAD  
3
2
0
1
0
50  
100  
C
150  
(pF)  
200  
250  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
LOAD  
Figure 4. Small-Signal Gain vs. Frequency with Capacitive  
Load and No Isolation Resistor  
Figure 6. Optimal Isolation Resistance vs. Capacitive Load  
two layers: a signal and power layer on one side, and a  
large, low-impedance ground plane on the other side.  
The ground plane should be as free of voids as possible.  
Whether or not a constant-impedance board is used, it is  
best to observe the following guidelines when designing  
the board:  
A/B  
DISABLE  
75CABLE  
0.1F  
IN_A  
R
ISO  
OUT_  
R
T
75Ω  
C
L
R
L
75CABLE  
0.1µF  
1) Do not use wire-wrapped boards or breadboards.  
IN_B  
2) Do not use IC sockets; they increase parasitic capaci-  
tance and inductance.  
R
75Ω  
T
CLAMP  
3) Keep signal lines as short and straight as possible. Do  
not make 90° turns; round all corners.  
MAX4028  
MAX4029  
R
KEYREF  
4) Observe high-frequency bypassing techniques to  
maintain the amplifier’s accuracy and stability.  
5) Use surface-mount components. They generally have  
shorter bodies and lower parasitic reactance, yielding  
better high-frequency performance than through-hole  
components.  
Figure 5. Using an Isolation Resistor (RISO) for a High-  
Capacitive Load  
amplifier’soutputandtheload(Figure5).ThevalueofR  
ISO  
depends on the circuit’s gain (+2V/V) and the capacitive  
load (Figure 6). Also note that the isolation resistor forms a  
divider that decreases the voltage delivered to the load.  
The bypass capacitors should include a 0.1µF, ceramic  
surface-mount capacitor between  
V
and the  
CC  
ground plane, located as close to the package as  
possible. Optionally, place a 10µF capacitor at the power  
supply’s point-of-entry to the PCB to ensure the integrity of  
incoming supplies. The power-supply traces should lead  
Layout and Power-Supply Bypassing  
The MAX4028/MAX4029 have high bandwidths and  
consequently require careful board layout, including the  
possible use of constant-impedance microstrip or stripline  
techniques.  
directly from the capacitor to the V  
pin. To minimize  
CC  
parasitic inductance, keep PC traces short and use  
surface-mount components.  
To realize the full AC performance of these high-speed  
amplifiers, pay careful attention to power-supply bypass-  
ing and board layout. The PC board should have at least  
If input termination resistors and output back-termination  
resistors are used, they should be surface-mount types,  
and should be placed as close as possible to the IC pins.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Pin Configurations  
TOP VIEW  
IN4A  
IN3A  
1
2
3
4
5
6
7
8
9
20 CLAMP/KEY_4  
19 DISABLE  
18 OUT1  
IN3A  
1
2
3
4
5
6
7
8
16 DISABLE  
IN2A  
IN2A  
IN1A  
A/B  
15 OUT1  
IN1A  
17 V  
CC  
14  
V
CC  
MAX4029  
MAX4028  
A/B  
16 OUT2  
13 OUT2  
KEYREF  
IN1B  
15 CLAMP/KEY_2  
KEYREF  
IN1B  
12 CLAMP/KEY_2  
11 OUT3  
14  
OUT3  
IN2B  
13 GND  
IN2B  
10 GND  
IN3B  
12 CLAMP/KEY_3  
11 OUT4  
IN3B  
9
CLAMP/KEY_3  
IN4B 10  
TSSOP/SO  
TSSOP/SO  
Chip Information  
TRANSISTOR COUNT: 1032  
PROCESS: Bipolar  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
16 TSSOP  
PACKAGE CODE  
U16+1  
OUTLINE NO.  
21-0066  
LAND PATTERN NO.  
90-0117  
16 Wide SO  
20 TSSOP  
W16+3  
21-0042  
90-0107  
U20+2  
21-0066  
90-0116  
20 Wide SO  
W20+3  
21-0042  
90-0108  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX4028/MAX4029  
Triple/Quad, 2:1 Video  
Multiplexer-Amplifiers with Input Clamps  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/04  
Initial release  
No /V OPNs; deleted “In Car Navigation/Entertainment” from Applications section  
and automotive reference in General Description and Detailed Description sections;  
updated Package Information and added Revision History table  
1
4/15  
1, 7, 12, 13  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
12  

相关型号:

MAX4029EWP-T

Video Multiplexer, 4 Func, 1 Channel, BIPolar, PDSO20, 0.300 INCH, MS-013, SOIC-20
MAXIM

MAX402C/D

Voltage-Feedback Operational Amplifier
MAXIM

MAX402CPA

Voltage-Feedback Operational Amplifier
MAXIM

MAX402CSA

OP-AMP|SINGLE|BIPOLAR|SOP|8PIN|PLASTIC
MAXIM

MAX402EPA

Voltage-Feedback Operational Amplifier
MAXIM

MAX402ESA

Voltage-Feedback Operational Amplifier
MAXIM

MAX4030E

Low-Cost, 144MHz, Dual/Triple Op Amps with ±15kV ESD Protection
MAXIM

MAX4030EESA

Low-Cost, 144MHz, Dual/Triple Op Amps with ±15kV ESD Protection
MAXIM

MAX4030EESA+

Video Amplifier, 1 Channel(s), 2 Func, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX4030EESA+T

Video Amplifier, 1 Channel(s), 2 Func, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX4030EEUA

Low-Cost, 144MHz, Dual/Triple Op Amps with ±15kV ESD Protection
MAXIM

MAX4030EEUA+

Video Amplifier, 1 Channel(s), 2 Func, BICMOS, PDSO8, MO-187CAA, UMAX-8
MAXIM