MAX4030EESA [MAXIM]

Low-Cost, 144MHz, Dual/Triple Op Amps with ±15kV ESD Protection;
MAX4030EESA
型号: MAX4030EESA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, 144MHz, Dual/Triple Op Amps with ±15kV ESD Protection

文件: 总12页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3570; Rev 1; 6/05  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
General Description  
Features  
The MAX4030E/MAX4031E unity-gain stable op amps  
combine high-speed performance, rail-to-rail outputs,  
and ±1ꢀ5k EꢁS protectionꢂ Targeted for applications  
where an input or an output is exposed to the outside  
world, such as video and communications, these  
devices are compliant with International EꢁS  
ꢁtandards: ±1ꢀ5k IEꢃ 1000-4-ꢄ Air-ꢅap Sischarge,  
±±5k IEꢃ 1000-4-ꢄ ꢃontact Sischarge, and the ±1ꢀ5k  
Human Body Modelꢂ  
ESD-Protected Video Inputs and Outputs  
±±15V ꢀ ꢁuꢂan ꢃodꢄ ꢅodeꢆ  
±ꢇ5V ꢀ IEꢈ ±ꢉꢉꢉ-ꢊ-ꢋ ꢈontact Discꢌarꢍe  
±±15V ꢀ IEꢈ ±ꢉꢉꢉ-ꢊ-ꢋ ꢎir-ꢏap Discꢌarꢍe  
1V Sinꢍꢆe-Suppꢆꢄ Operation  
ꢉ.±µꢎ Low-Power Sꢌutdown ꢅode (ꢅꢎXꢊꢉ3±E)  
Input ꢈoꢂꢂon-ꢅode Ranꢍe Extends to ꢏround  
The MAX4030E/MAX4031E operate from a single ꢀk  
supply and consume only 1ꢄmA of quiescent supply  
current per amplifier while achieving a 144MHz -3dB  
bandwidth, ꢄ0MHz 0ꢂ1dB gain flatness, and a 11ꢀk/µs  
slew rateꢂ The MAX4031E provides individual shutdown  
control for each of the amplifiersꢂ  
ꢋV  
Larꢍe-Siꢍnaꢆ -3dꢃ ꢃW > 1ꢉꢅꢁz  
P-P  
Directꢆꢄ Drives ±1ꢉ Loads  
Low Differentiaꢆ ꢏain/Pꢌase: ꢉ.ꢋ%/ꢉ.ꢋ°  
-ꢊꢉ°ꢈ to +ꢇ1°ꢈ Extended Teꢂperature Ranꢍe  
®
ꢈoꢂpact ꢇ-Pin µꢅꢎX and ±ꢊ-Pin TSSOP  
The dual MAX4030E is available in ±-pin µMAX and ꢁO  
pac5ages, and the triple MAX4031E is available in 14-pin  
TꢁꢁOP and ꢁO pac5agesꢂ All devices are specified over  
the -40°ꢃ to +±ꢀ°ꢃ extended temperature rangeꢂ  
Pac5aꢍes  
Applications  
Noteboo5s  
Ordering Information  
ꢁet-Top Boxes  
PꢎRT  
TEꢅP RꢎNꢏE  
-40°ꢃ to +±ꢀ°ꢃ  
-40°ꢃ to +±ꢀ°ꢃ  
-40°ꢃ to +±ꢀ°ꢃ  
-40°ꢃ to +±ꢀ°ꢃ  
PIN-PꢎꢈKꢎꢏE  
± µMAX  
ꢁtandard Sefinition  
Television (ꢁSTk)  
Projectors  
ꢅꢎXꢊꢉ3ꢉEEUA  
MAX4030EEꢁA  
ꢅꢎXꢊꢉ3±EEUS  
MAX4031EEꢁS  
ꢁecurity kideo ꢁystems  
ꢃamcorders  
± ꢁO  
Enhanced Television  
(ETk)  
14 TꢁꢁOP  
14 ꢁO  
Sigital ꢁtill ꢃameras  
Portable SkS Players  
High-Sefinition  
Television (HSTk)  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
ꢂin Configurations  
Typical Operating Circuit  
5V  
TOP VIEW  
0.1 F  
MAX4030E  
MAX4031E  
IN_+  
75  
SHDNA  
SHDNC  
SHDNB  
1
2
3
4
5
6
7
14 OUTC  
13 INC-  
12 INC+  
11 GND  
10 INB+  
OUTA  
INA-  
INA+  
GND  
1
2
3
4
8
7
6
5
V
CC  
75  
OUT  
OUTB  
INB-  
Z = 75  
o
MAX4030E  
V
MAX4031E  
CC  
75  
INB+  
INA+  
INA-  
9
8
INB-  
ꢅꢎX/SO  
200  
OUTA  
OUTB  
200  
TSSOP/SO  
VIDEO LINE DRIVER  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
ꢎꢃSOLUTE ꢅꢎXIꢅUꢅ RꢎTINꢏS  
(All voltages referenced to ꢅNS, unless otherwise notedꢂ)  
14-Pin TꢁꢁOP (derate 9ꢂ1mW/°ꢃ above +70°ꢃ) ꢂꢂꢂꢂꢂꢂꢂꢂꢂ7ꢄ7mW  
k
ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ-0ꢂ3k to +6k  
14-Pin ꢁO (derate ±ꢂ3mW/°ꢃ above +70°ꢃ)ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ667mW  
Operating Temperature Range ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ-40°ꢃ to +±ꢀ°ꢃ  
Junction Temperature ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ+1ꢀ0°ꢃ  
ꢁtorage Temperature Rangeꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ-6ꢀ°ꢃ to +1ꢀ0°ꢃ  
Lead Temperature (soldering, 10s) ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ+300°ꢃ  
ꢃꢃ  
IN_-, IN_+, OUT_, SHDN_ ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ-0ꢂ3k to (k  
ꢃurrent into IN_-, IN_+, SHDNꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ±0mA  
Output ꢁhort-ꢃircuit Suration to k or ꢅNSꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢃontinuous  
+ 0ꢂ3k)  
ꢃꢃ  
ꢃꢃ  
A
ꢃontinuous Power Sissipation (T = +70°ꢃ)  
±-Pin µMAX (derate 4ꢂꢀmW/°ꢃ above +70°ꢃ)ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ36ꢄmW  
±-Pin ꢁO (derate ꢀꢂ9mW/°ꢃ above +70°ꢃ)ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂ471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Dꢈ ELEꢈTRIꢈꢎL ꢈꢁꢎRꢎꢈTERISTIꢈS  
(k  
= ꢀk, k  
= 0k, k  
= k /ꢄ, SHDN_ = k , R = to k /ꢄ, T = T  
to T  
, unless otherwise notedꢂ Typical values are  
MAX  
ꢃꢃ  
ꢃM  
OUT_  
ꢃꢃ  
ꢃꢃ  
L
ꢃꢃ  
A
MIN  
at T = +ꢄꢀ°ꢃꢂ) (Note 1)  
A
PꢎRꢎꢅETER  
SYꢅꢃOL  
ꢈONDITIONS  
ꢅIN  
TYP  
ꢅꢎX UNITS  
Operating ꢁupply koltage Range  
Quiescent ꢃurrent (per Amplifier)  
ꢁhutdown ꢃurrent (per Amplifier)  
k
ꢅuaranteed by PꢁRR  
4ꢂꢀ  
ꢀꢂꢀ  
ꢄꢄ  
10  
k
ꢃꢃ  
ꢃꢃ  
I
1ꢄ  
mA  
µA  
I
SHDN_ = ꢅNS (MAX4031E)  
0ꢂ1  
ꢁHSN  
k
ꢄꢂꢄꢀ  
-
ꢃꢃ  
Input ꢃommon-Mode koltage  
Input Offset koltage  
k
ꢅuaranteed by ꢃMRR  
0
k
ꢃM  
T
T
= +ꢄꢀ°ꢃ  
13  
A
A
k
mk  
Oꢁ  
= -40°ꢃ to +±ꢀ°ꢃ  
ꢄ6  
Input Offset koltage Matching  
Input Offset koltage Tempco  
Input Bias ꢃurrent  
k
ꢄꢂ6  
31  
mk  
µk/°ꢃ  
µA  
Oꢁ  
Tꢃ  
kOꢁ  
I
0ꢂ01  
0ꢂ01  
1
1
B
Input Offset ꢃurrent  
I
µA  
Oꢁ  
Input Resistance  
R
IN  
ꢃommon-Mode Rejection Ratio  
Power-ꢁupply Rejection Ratio  
ꢃMRR  
PꢁRR  
ꢅNS  
4ꢂꢀk  
0ꢂꢀk  
0ꢂ6k  
0ꢂ4k  
k
k
- ꢄꢂꢄꢀk  
ꢃꢃ  
ꢀ0  
40  
70  
dB  
ꢃM  
k
k
k
k
ꢀꢂꢀk  
4ꢂꢀk, R = ꢄ5 to k /ꢄ  
60  
dB  
ꢃꢃ  
±0  
OUT_  
OUT_  
OUT_  
L
ꢃꢃ  
Open-Loop ꢅain  
A
4ꢂ4k, R = 1ꢀ0 to k /ꢄ  
ꢀ0  
ꢀ0  
70  
dB  
k
kOL  
L
ꢃꢃ  
3ꢂꢀk, R = 1ꢀ0 to ꢅNS  
70  
L
k
k
k
k
k
k
- k  
0ꢂ0ꢀ  
0ꢂ0ꢀ  
0ꢂ1ꢀ  
0ꢂ1ꢀ  
0ꢂ3  
ꢃꢃ  
OL  
ꢃꢃ  
OL  
ꢃꢃ  
OL  
OH  
R = ꢄ5 to k /ꢄ  
L
ꢃꢃ  
- ꢅNS  
- k  
0ꢂ4  
0ꢂ4  
OH  
Output koltage ꢁwing  
k
R = 1ꢀ0 to k /ꢄ  
L ꢃꢃ  
OUT_  
- ꢅNS  
- k  
0ꢂ±  
OH  
R = 1ꢀ0 to ꢅNS  
L
- ꢅNS  
0ꢂ01  
±100  
0ꢂ0ꢀ  
Output ꢁhort-ꢃircuit ꢃurrent  
I
ꢁin5ing or sourcing  
MAX4031E  
mA  
k
ꢁꢃ  
k
0ꢂ±  
IL  
IH  
IL  
SHDN_ Logic Threshold  
k
MAX4031E  
ꢄꢂ0  
I
SHDN_ = ꢅNS (MAX4031E)  
SHDN_ = k (MAX4031E)  
0ꢂ10  
0ꢂ10  
10  
10  
SHDN_ Logic Input ꢃurrent  
µA  
I
IH  
ꢃꢃ  
_______________________________________________________________________________________  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
Dꢈ ELEꢈTRIꢈꢎL ꢈꢁꢎRꢎꢈTERISTIꢈS (continued)  
(k  
= ꢀk, k  
= 0k, k  
= k /ꢄ, SHDN_ = k , R = to k /ꢄ, T = T  
to T  
, unless otherwise notedꢂ Typical values are  
MAX  
ꢃꢃ  
ꢃM  
OUT_  
ꢃꢃ  
ꢃꢃ  
L
ꢃꢃ  
A
MIN  
at T = +ꢄꢀ°ꢃꢂ) (Note 1)  
A
PꢎRꢎꢅETER  
SYꢅꢃOL  
ꢈONDITIONS  
ꢅIN  
TYP  
0ꢂ1  
ꢅꢎX UNITS  
Sisabled Output Lea5age ꢃurrent  
I
SHDN_ = ꢅNS (MAX4031E)  
Human Body Model  
10  
µA  
OUT_ꢁH  
±1ꢀ  
±±  
EꢁS Protection koltage (Note ꢄ)  
IEꢃ 1000-4-ꢄ ꢃontact Sischarge  
IEꢃ 1000-4-ꢄ Air-ꢅap Sischarge  
5k  
±1ꢀ  
ꢎꢈ ELEꢈTRIꢈꢎL ꢈꢁꢎRꢎꢈTERISTIꢈS  
(k  
= ꢀk, k  
= 1ꢂꢀk, R = 1ꢀ0 to ꢅNS, SHDN_ = k , A  
= +ꢄk/k, T = +ꢄꢀ°ꢃ, unless otherwise notedꢂ)  
ꢃꢃ  
ꢃM  
L
ꢃꢃ kꢃL_ A  
PꢎRꢎꢅETER  
SYꢅꢃOL  
ꢈONDITIONS  
= 100mk , A = +1k/k  
ꢅIN  
TYP  
144  
ꢀ3  
ꢀꢄ  
40  
ꢄ0  
10  
ꢄ0  
9
ꢅꢎX  
UNITS  
k
k
k
k
k
k
k
k
k
k
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
OUT_  
P-P kꢃL  
ꢁmall-ꢁignal -3dB Bandwidth  
Large-ꢁignal -3dB Bandwidth  
ꢁmall-ꢁignal 0ꢂ1dB ꢅain Flatness  
Large-ꢁignal 0ꢂ1dB ꢅain Flatness  
BW  
MHz  
ꢁꢁ  
Lꢁ  
= 100mk , A  
= +ꢄk/k  
P-P kꢃL  
= ꢄk , A  
= +1k/k  
P-P kꢃL  
BW  
MHz  
MHz  
MHz  
= ꢄk , A  
= +ꢄk/k  
P-P kꢃL  
= 100mk , A  
= +1k/k  
= +ꢄk/k  
P-P kꢃL  
BW  
BW  
0ꢂ1dBꢁꢁ  
= 100mk , A  
P-P kꢃL  
= ꢄk , A  
= +1k/k  
P-P kꢃL  
0ꢂ1dBLꢁ  
ꢁR  
= ꢄk , A  
= +ꢄk/k  
P-P kꢃL  
ꢁlew Rate  
= ꢄk step  
= ꢄk step  
11ꢀ  
40  
6ꢀ  
0ꢂꢄ  
0ꢂꢄ  
±
k/µs  
ns  
ꢁettling Time to 0ꢂ1%  
ꢃhannel-to-ꢃhannel Isolation  
Sifferential Phase Error  
Sifferential ꢅain Error  
Input ꢃapacitance  
ꢃapacitive-Load ꢁtability  
Output Impedance  
Enable Time  
t
ꢃH  
f = 4ꢂ43MHz  
NTꢁꢃ, R = 1ꢀ0 to ꢅNS, A  
dB  
IꢁO  
SP  
Sꢅ  
= +ꢄk/k  
= +ꢄk/k  
Segrees  
%
L
kꢃL  
kꢃL  
NTꢁꢃ, R = 1ꢀ0 to ꢅNS, A  
L
pF  
IN  
No sustained oscillations  
f = 4ꢂ43MHz  
ꢄ00  
pF  
Z
OUT  
t
k
k
= 1k (MAX4031E)  
= 1k (MAX4031E)  
µs  
µs  
ON  
IN_  
IN_  
Sisable Time  
t
0ꢂ1ꢀ  
OFF  
Note ±: All devices are 100% production tested at T = +ꢄꢀ°ꢃꢂ ꢁpecifications over temperature limits are guaranteed by designꢂ  
A
Note ꢋ: EꢁS protection is specified for test point A and test point B only (Figure 7)ꢂ  
_______________________________________________________________________________________  
3
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
Typical Operating Characteristics  
(k  
ꢃꢃ  
= ꢀk, k  
= 1ꢂꢀk, A  
= +ꢄk/k, R = 1ꢀ0 to k /ꢄ, T = +ꢄꢀ°ꢃ, unless otherwise notedꢂ)  
ꢃM  
kꢃL  
L
ꢃꢃ  
A
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
0.5  
0.4  
5
4
4
3
V
OUT  
= 2V  
P-P  
V
OUT  
= 100mV  
P-P  
V
= 100mV  
P-P  
OUT  
0.3  
3
2
0.2  
2
1
0.1  
1
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
OUTPUT IMPEDANCE vs. FREQUENCY  
DISTORTION vs. FREQUENCY  
1000  
100  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.5  
0.4  
V
= 2V  
V
A
= 2V  
OUT  
P-P  
OUT  
P-P  
= 2V/V  
VCL  
0.3  
0.2  
0.1  
2ND HARMONIC  
0
1
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
3RD HARMONIC  
0.1  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
COMMON-MODE REJECTION  
vs. FREQUENCY  
DIFFERENTIAL GAIN  
0
-20  
0.2  
0.1  
0
0
-20  
-0.1  
-0.2  
-40  
-40  
1st  
2nd  
3rd  
4th  
5th  
6th  
DIFFERENTIAL PHASE  
-60  
-60  
0.2  
0.1  
0
-80  
-80  
-0.1  
-0.2  
-100  
-100  
0.1  
1
10  
100  
1st  
2nd  
3rd  
4th  
5th  
6th  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
Typical Operating Characteristics (continued)  
(k  
ꢃꢃ  
= ꢀk, k  
= 1ꢂꢀk, A  
= +ꢄk/k, R = 1ꢀ0 to k /ꢄ, T = +ꢄꢀ°ꢃ, unless otherwise notedꢂ)  
kꢃL L ꢃꢃ A  
ꢃM  
OUTPUT VOLTAGE SWING  
vs. RESISTIVE LOAD  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
MAX4030 toc12  
MAX4030 toc11  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
IN  
V
IN  
20mV/div  
500mV/div  
V
OL  
V
OUT  
V
OUT  
1V/div  
50mV/div  
V
- V  
OH  
CC  
0
50 100 150 200 250 300 350 400  
20ns/div  
20ns/div  
RESISTIVE LOAD (  
)
ISOLATION RESISTANCE  
vs. CAPACITIVE LOAD  
CROSSTALK vs. FREQUENCY  
20  
18  
16  
14  
12  
10  
8
0
-20  
-40  
-60  
6
4
-80  
2
0
0
-100  
100  
200  
300  
400  
500  
0.1  
1
10  
100  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
1
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
ꢂin Description  
PIN  
NꢎꢅE  
FUNꢈTION  
ꢅꢎXꢊꢉ3ꢉE  
ꢅꢎXꢊꢉ3±E  
1
7
6
OUTA  
INA-  
Amplifier A Output  
Amplifier A Inverting Input  
Amplifier A Noninverting Input  
ꢅround  
3
INA+  
ꢅNS  
INB+  
INB-  
4
11  
10  
9
Amplifier B Noninverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
6
7
±
OUTB  
±
4
k
Positive Power ꢁupplyꢂ Bypass k  
to ꢅNS with a 0ꢂ1µF capacitorꢂ  
ꢃꢃ  
ꢃꢃ  
1
SHDNA  
SHDNC  
SHDNB  
INꢃ+  
Amplifier A ꢁhutdown Inputꢂ ꢃonnect SHDNA high to enable amplifier Aꢂ  
Amplifier ꢃ ꢁhutdown Inputꢂ ꢃonnect SHDNC high to enable amplifier ꢃꢂ  
Amplifier B ꢁhutdown Inputꢂ ꢃonnect SHDNB high to enable amplifier Bꢂ  
Amplifier ꢃ Noninverting Input  
3
1ꢄ  
13  
14  
INꢃ-  
Amplifier ꢃ Inverting Input  
OUTꢃ  
Amplifier ꢃ Output  
Detailed Description  
Applications Information  
The MAX4030E/MAX4031E dual/triple, ꢀk operational  
amplifiers achieve 11ꢀk/µs slew rates and 144MHz  
bandwidthsꢂ High ±1ꢀ5k EꢁS protection at video inputs  
and outputs guards against unexpected dischargeꢂ  
Excellent harmonic distortion and differential gain/  
phase performance ma5e these amplifiers an ideal  
choice for a wide variety of video and RF signal-pro-  
cessing applicationsꢂ  
Choosing Resistor kalues  
Unity-Gain Configuration  
The MAX4030E/MAX4031E are internally compensated  
for unity gainꢂ When configured for unity gain, a ꢄ4  
resistor (R ) in series with the feedbac5 path optimizes  
F
Aꢃ performanceꢂ This resistor improves Aꢃ response by  
reducing the Q of the parallel Lꢃ circuit formed by the  
parasitic feedbac5 capacitance and lead inductanceꢂ  
Ground-ꢁensing Inputs  
The MAX4030E/MAX4031E input stage can sense com-  
mon-mode voltages from ground to within ꢄꢂꢄꢀk of the  
positive supplyꢂ  
Video Line Driver  
The MAX4030E/MAX4031E are low-power, voltage-  
feedbac5 amplifiers featuring bandwidths up to 40MHz  
and 0ꢂ1dB gain flatness to 9MHzꢂ They are designed to  
minimize differential-gain error and differential-phase  
error to 0ꢂꢄ% and 0ꢂꢄ°, respectivelyꢂ They have a 40ns  
settling time to 0ꢂ1%, 110k/µs slew rates, and output-  
current-drive capability of up to ꢀ0mA, ma5ing them  
ideal for driving video loadsꢂ  
Rail-to-Rail Outputs  
The MAX4030E/MAX4031E rail-to-rail outputs can  
swing to within 100mk of each supply because local  
feedbac5 around the output stage ensures low open-  
loop output impedance, reducing gain sensitivity to  
load variationsꢂ  
Inverting and Noninverting Configurations  
ꢁhutdown (MAX4031E Only)  
The MAX4031E offers individual shutdown control for  
each amplifierꢂ Srive SHDN_ low to shut down the  
amplifierꢂ In shutdown, the amplifier output impedance  
is high impedanceꢂ  
ꢁelect the feedbac5 (R ) and input (R ) resistor values  
F
to fit the gain requirements of the applicationꢂ Large  
resistor values increase voltage noise and interact with  
the amplifier’s input and Pꢃ board capacitanceꢂ This  
can generate undesirable poles and zeros and  
6
_______________________________________________________________________________________  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
Use a Pꢃ board with at least two layersꢂ The Pꢃ  
board should be as free from voids as possibleꢂ  
R
R
F
G
Keep signal lines as short and as straight as possi-  
bleꢂ So not ma5e 90° turns; round all cornersꢂ  
V
OUT_  
MAX403_E  
Output Capacitive Loading and ꢁtability  
IN_+  
R
150  
L
V
= [1+ (R / R )] V  
OUT  
F
G
IN_+  
The MAX4030E/MAX4031E are optimized for Aꢃ perfor-  
mance and do not drive highly reactive loads, which  
decreases phase margin and can produce excessive  
ringing and oscillationꢂ Figure 3 shows a circuit modifi-  
Figure 1. Noninverting Gain Configuration  
cation that uses an isolation resistor (R ) to eliminate  
IꢁO  
this problemꢂ Figure 4 shows a graph of the Optimal  
Isolation Resistor (R ) vsꢂ ꢃapacitive Loadꢂ Figure ꢀ  
IꢁO  
shows how a capacitive load causes excessive pea5-  
ing of the amplifier’s frequency response if the capaci-  
tor is not isolated from the amplifier by a resistorꢂ A  
small isolation resistor (usually 10 to 1ꢀ ) placed  
before the reactive load prevents ringing and oscilla-  
tionꢂ At higher capacitive loads, the interaction of the  
load capacitance and the isolation resistor controls the  
Aꢃ performanceꢂ Figure 6 shows the effect of a 10  
isolation resistor on closed-loop responseꢂ  
R
R
G
F
IN  
V
OUT_  
MAX403_E  
R
150  
L
V
= -(R / R ) V  
F G IN  
OUT  
EꢁD ꢂrotection  
As with all Maxim devices, EꢁS protection structures  
are incorporated on all pins to protect against EꢁS  
encountered during handling and assemblyꢂ Input and  
output pins of the MAX4030E/MAX4031E have extra  
protection against static electricityꢂ Maxim’s engineers  
have developed state-of-the-art structures enabling  
these pins to withstand EꢁS up to ±1ꢀ5k without dam-  
age when placed in the test circuit (Figure 7)ꢂ The  
MAX4030E/MAX4031E are characterized for protection  
to the following limits:  
Figure 2. Inverting Gain Configuration  
decrease bandwidth or cause oscillationsꢂ For exam-  
ple, a noninverting gain-of-two configuration (R = R )  
F
using ꢄ5 resistors, combined with 4pF of amplifier  
input capacitance and 1pF of Pꢃ board capacitance,  
cause a pole at 79ꢂ6MHzꢂ ꢁince this pole is within the  
amplifier bandwidth, it jeopardizes stabilityꢂ Reducing  
the ꢄ5 resistors to 100 extends the pole frequency  
to 1ꢂꢀ9ꢅHz, but could limit output swing by adding  
ꢄ00 in parallel with the amplifier’s load resistor  
(Figures 1 and ꢄ)ꢂ  
±1ꢀ5k using the Human Body Model  
±±5k using the ꢃontact Sischarge method speci-  
fied in IEꢃ 1000-4-ꢄ  
Layout and ꢂower-ꢁupply Bypassing  
These amplifiers operate from a single ꢀk power sup-  
±1ꢀ5k using the Air-ꢅap Sischarge method speci-  
fied in IEꢃ 1000-4-ꢄ  
plyꢂ Bypass k  
to ground with a 0ꢂ1µF capacitor as  
ꢃꢃ  
close to k  
as possibleꢂ Maxim recommends using  
ꢃꢃ  
microstrip and stripline techniques to obtain full band-  
widthꢂ To ensure that the Pꢃ board does not degrade  
the amplifier’s performance, design it for a frequency  
greater than 1ꢅHzꢂ Pay careful attention to inputs and  
outputs to avoid large parasitic capacitanceꢂ Under all  
conditions observe the following design guidelines:  
R
24  
F
R
ISO  
V
OUT_  
So not use wire-wrap boardsꢂ Wire-wrap boards are  
too inductiveꢂ  
MAX403_E  
V
IN_+  
C
L
So not use Iꢃ soc5etsꢂ ꢁoc5ets increase parasitic  
capacitance and inductanceꢂ  
Use surface mount instead of through-hole compo-  
nents for better high-frequency performanceꢂ  
Figure 3. Driving a Capacitive Load Through an Isolation Resistor  
_______________________________________________________________________________________  
7
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
SMALL-SIGNAL GAIN vs. FREQUENCY WITH LOAD  
CAPACITANCE AND 10 ISOLATION RESISTOR  
ISOLATION RESISTANCE  
vs. CAPACITIVE LOAD  
6
5
4
20  
18  
16  
14  
12  
10  
8
C = 20pF  
L
3
2
1
0
C = 10pF  
L
-1  
-2  
C = 5pF  
L
6
-3  
-4  
-5  
-6  
4
2
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0
100  
200  
300  
400  
500  
CAPACITIVE LOAD (pF)  
Figure 4. Isolation Resistance vs. Capacitive Load  
Figure 6. Small-Signal Gain vs. Frequency with Load  
Capacitance and 10 Isolation Resistor  
IEC 1000-4-2  
SMALL-SIGNAL GAIN vs. FREQUENCY WITH LOAD  
The IEꢃ 1000-4-ꢄ standard covers EꢁS testing and per-  
formance of finished equipment; it does not specifically  
refer to Iꢃsꢂ The MAX4030E/MAX4031E enable the  
design of equipment that meets the highest level (level  
4) of IEꢃ 1000-4-ꢄ without the need for additional EꢁS  
protection componentsꢂ The major difference between  
tests done using the Human Body Model and IEꢃ 1000-  
4-ꢄ is higher pea5 current in IEꢃ 1000-4-ꢄꢂ Because  
series resistance is lower in the IEꢃ 1000-4-ꢄ model, the  
EꢁS-withstand voltage measured to this standard is gen-  
erally lower than that measured using the Human Bodyꢂ  
Figure 10 shows the IEꢃ 1000-4-ꢄ model and Figure 11  
shows the current waveform for the ±±5k IEꢃ 1000-4-ꢄ  
level 4 EꢁS ꢃontact Sischarge testꢂ The Air-ꢅap test  
involves approaching the device with a charged probeꢂ  
The ꢃontact Sischarge method connects the probe to  
the device before the probe is energizedꢂ  
CAPACITANCE AND NO ISOLATION RESISTOR  
6
5
C = 20pF  
L
4
3
2
1
0
C = 10pF  
L
C = 5pF  
L
-1  
-2  
-3  
-4  
-5  
-6  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 5. Small-Signal Gain vs. Frequency with Load  
Capacitance and No Isolation Resistor  
Chip Information  
MAX4030E TRANꢁIꢁTOR ꢃOUNT: ꢄ71  
MAX4031E TRANꢁIꢁTOR ꢃOUNT: 3±7  
PROꢃEꢁꢁ: BiꢃMOꢁ  
Human Body Model  
Figure ± shows the Human Body Model and Figure 9  
shows the current waveform it generates when dis-  
charged into low impedanceꢂ This model consists of a  
1ꢀ0pF capacitor charged to the EꢁS voltage of interest,  
and then discharged into the test device through a  
1ꢂꢀ5 resistorꢂ  
_______________________________________________________________________________________  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
R
5V  
C
R
330  
50M TO  
100M  
D
C
BYPASS  
0.1 F  
DISCHARGE  
RESISTANCE  
CHARGE CURRENT  
LIMIT RESISTOR  
TEST  
POINT A  
75  
75  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
TEST  
POINT B  
C
S
150pF  
STORAGE  
CAPACITOR  
MAX403_E  
SOURCE  
V
EE  
200  
200  
Figure 10. IEC 1000-4-2 ESD Test Model  
Figure 7. ESD Test Circuit  
I
100%  
90%  
R
= 1.5k  
R
= 1M  
D
C
CHARGE CURRENT  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
STORAGE  
CAPACITOR  
C
= 150pF  
S
SOURCE  
10%  
t
t = 0.7ns TO 1ns  
r
30ns  
Figure 8. Human Body ESD Model  
60ns  
Figure 11. IEC 1000-4-2 ESD Generator Current Waveform  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
P
r
AMPERES  
36.8%  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9. Human Body Current Waveform  
_______________________________________________________________________________________  
9
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
ꢂac5age Information  
(The pac5age drawing(s) in this data sheet may not reflect the most current specificationsꢂ For the latest pac5age outline information,  
go to www.ꢂaxiꢂ-ic.coꢂ/pac5aꢍesꢂ)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
0.6 0.1  
S
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
±ꢉ ______________________________________________________________________________________  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
ꢂac5age Information (continued)  
(The pac5age drawing(s) in this data sheet may not reflect the most current specificationsꢂ For the latest pac5age outline information,  
go to www.ꢂaxiꢂ-ic.coꢂ/pac5aꢍesꢂ)  
PACKAGE OUTLINE, TSSOP 4.40mm BODY  
1
21-0066  
G
1
______________________________________________________________________________________ ±±  
Low-Cost, 144MHz, Dual/Triple Op Amps  
with 1ꢀ5k EꢁD ꢂrotection  
ꢂac5age Information (continued)  
(The pac5age drawing(s) in this data sheet may not reflect the most current specificationsꢂ For the latest pac5age outline information,  
go to www.ꢂaxiꢂ-ic.coꢂ/pac5aꢍesꢂ)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
±ꢋ ____________________Maxim Integrated ꢂroducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408-737-7600  
© ꢄ00ꢀ Maxim Integrated Products  
Printed UꢁA  
is a registered trademar5 of Maxim Integrated Products, Incꢂ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY