MAX4092AUA [MAXIM]

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps; 单/双/四路,微功耗,单电源,轨至轨运算放大器
MAX4092AUA
型号: MAX4092AUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps
单/双/四路,微功耗,单电源,轨至轨运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2272; Rev 0; 1/02  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
General Description  
Features  
o Low-Voltage, Single-Supply Operation (2.7V to 6V)  
o Beyond-the-Rails™ Inputs  
The single MAX4091, dual MAX4092, and quad  
MAX4094 operational amplifiers combine excellent DC  
®
accuracy with Rail-to-Rail operation at the input and  
output. Since the common-mode voltage extends from  
o No Phase Reversal for Overdriven Inputs  
o 30µV Offset Voltage  
V
CC  
to V , the devices can operate from either a sin-  
EE  
gle supply (2.7V to 6V) or split supplies ( 1.ꢀ3V to  
ꢀV). Each op amp requires less than 1ꢀ0ꢁA of supply  
current. Even with this low current, the op amps are  
capable of driving a 1kload, and the input-referred  
voltage noise is only 12nV/Hz. In addition, these op  
amps can drive loads in excess of 2000pF.  
o Rail-to-Rail Output Swing with 1kLoad  
o Unity-Gain Stable with 2000pF Load  
o 165µA (max) Quiescent Current Per Op Amp  
o 500kHz Gain-Bandwidth Product  
The precision performance of the MAX4091/MAX4092/  
MAX4094 combined with their wide input and output  
dynamic range, low-voltage, single-supply operation,  
and very low supply current, make them an ideal  
choice for battery-operated equipment, industrial, and  
data acquisition and control applications. In addition,  
the MAX4091 is available in space-saving 3-pin SOT2ꢀ,  
8-pin ꢁMAX, and 8-pin SO packages. The MAX4092 is  
available in 8-pin ꢁMAX and SO packages, and the  
MAX4094 is available in 14-pin TSSOP and 14-pin SO  
packages.  
o High Voltage Gain (115dB)  
o High Common-Mode Rejection Ratio (90dB) and  
Power-Supply Rejection Ratio (100dB)  
o Temperature Range (-40°C to +125°C)  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
5 SOT23-5  
8 SO  
________________________Applications  
MAX4091AUK-T  
MAX4091ASA  
MAX4091AUA  
MAX4092ASA  
MAX4092AUA  
MAX4094AUD  
MAX4094ASD  
Portable Equipment  
8 µMAX  
8 SO  
Battery-Powered Instruments  
Data Acquisition and Control  
Low-Voltage Signal Conditioning  
8 µMAX  
14 TSSOP  
14 SO  
Pin Configurations/Functional Diagrams  
TOP VIEW  
OUT1  
IN1-  
OUT4  
IN4-  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
OUT  
OUT1  
IN1-  
N.C.  
IN-  
V
V
CC  
N.C.  
1
2
3
4
8
7
6
5
1
2
3
5
1
2
3
4
8
7
6
5
CC  
MAX4091  
MAX4092  
MAX4091  
IN1+  
IN4+  
OUT2  
IN2-  
V
CC  
V
CC  
V
V
EE  
EE  
MAX4094  
OUT  
N.C.  
IN1+  
IN+  
IN2+  
IN2-  
IN3+  
IN3-  
4
IN-  
IN2+  
IN+  
V
V
EE  
EE  
OUT2  
OUT3  
8
SOT23  
µMAX/SO  
µMAX/SO  
TSSOP/SO  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )....................................................7V  
8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C)............330mW  
14-Pin SO (derate 8.33mW/°C above +70°C).............667mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) ........727mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EE  
Common-Mode Input Voltage..........(V  
+ 0.3V) to (V - 0.3V)  
CC  
EE  
Differential Input Voltage ......................................... (V  
Input Current (IN+, IN-) .................................................... 10mA  
Output Short-Circuit Duration  
- V  
)
EE  
CC  
OUT shorted to GND or V .................................Continuous  
CC  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.7V to 6V, V = GND, V  
= 0, V  
= V /2, T = +25°C.)  
CC  
EE  
CM  
OUT  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
Supply Voltage Range  
V
Inferred from PSRR test  
2.7  
6.0  
165  
185  
1.4  
180  
7
V
CC  
V
V
= 2.7V  
= 5V  
115  
130  
0.03  
20  
CC  
CC  
Supply Current  
I
V
= V /2  
µA  
CC  
CM  
CC  
Input Offset Voltage  
Input Bias Current  
V
V
V
V
= V to V  
mV  
nA  
nA  
V
OS  
CM  
CM  
CM  
EE  
CC  
CC  
CC  
I
= V to V  
EE  
B
Input Offset Current  
Input Common-Mode Range  
I
= V to V  
0.2  
OS  
EE  
V
Inferred from CMRR test  
V
- 0.05  
V
+ 0.05  
CC  
CM  
EE  
Common-Mode Rejection  
Ratio  
CMRR  
PSRR  
(V - 0.05V) V (V + 0.05V)  
71  
86  
90  
dB  
dB  
EE  
CM  
CC  
Power-Supply Rejection  
Ratio  
2.7V V  
6V  
100  
CC  
Sourcing  
Sinking  
83  
81  
91  
78  
87  
83  
97  
84  
105  
105  
105  
90  
V
= 2.7V, R = 100kΩ  
L
CC  
0.25V V  
2.45V  
OUT  
Sourcing  
Sinking  
V
= 2.7V, R = 1kΩ  
L
CC  
0.5V V  
2.2V  
OUT  
Large-Signal Voltage Gain  
(Note 1)  
A
dB  
VOL  
Sourcing  
Sinking  
115  
115  
110  
100  
15  
V
= 5.0V, R = 100kΩ  
L
CC  
0.25V V  
4.75V  
OUT  
Sourcing  
Sinking  
V
= 5.0V, R = 1kΩ  
L
CC  
0.5V V  
4.5V  
OUT  
R = 100kΩ  
L
69  
210  
70  
Output Voltage Swing High  
(Note 1)  
V
|V - V |  
OUT  
mV  
mV  
OH  
CC  
R = 1kΩ  
L
130  
15  
R = 100kΩ  
L
Output Voltage Swing Low  
(Note 1)  
V
|V  
- V |  
OUT EE  
OL  
R = 1kΩ  
L
80  
220  
AC CHARACTERISTICS  
Gain-Bandwidth Product  
Phase Margin  
GBWP  
R = 100k, C = 100pF  
500  
60  
kHz  
degrees  
dB  
L
L
φ
R = 100k, C = 100pF  
L L  
M
Gain Margin  
R = 100k, C = 100pF  
10  
L
L
Slew Rate  
SR  
R = 100k, C = 15pF  
0.20  
V/µs  
L
L
2
_______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.7V to 6V, V = GND, V  
= 0, V  
= V /2, T = +25°C.)  
OUT CC A  
CC  
EE  
CM  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
12  
MAX  
UNITS  
nV/√Hz  
pA/√Hz  
Input-Noise Voltage Density  
Input-Noise Current Density  
e
f = 10kHz  
f = 10kHz  
N
1.5  
Noise Voltage  
(0.1Hz to 10Hz)  
16  
µV  
RMS  
Total Harmonic Distortion  
Plus Noise  
f = 1kHz, R = 10k, C = 15pF,  
L
L
THD + N  
0.003  
%
A = 1, V  
= 2V  
V
OUT  
P-P  
Capacitive-Load Stability  
Settling Time  
C
A = 1  
2000  
12  
pF  
µs  
LOAD  
V
t
To 0.1%, 2V step  
S
V
= 0 to 3V step, V = V /2,  
CC  
IN  
CC  
Power-On Time  
t
2
µs  
ON  
A = 1  
V
Op-Amp Isolation  
f = 1kHz (MAX4092/MAX4094)  
125  
dB  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.7V to 6V, V = GND, V  
= 0, V  
= V /2, T = T  
to T  
, unless otherwise noted. Typical values specified at  
MAX  
CC  
EE  
CM  
OUT  
CC  
A
MIN  
T
A
= +25°C.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
Supply Voltage Range  
V
Inferred from PSRR test  
2.7  
6.0  
200  
225  
3.5  
V
CC  
V
V
= 2.7V  
= 5V  
CC  
CC  
Supply Current  
I
V
V
= V /2  
µA  
CC  
CM  
CM  
CC  
Input Offset Voltage  
V
= V to V  
mV  
µV/°C  
nA  
OS  
EE  
CC  
Input Offset Voltage Tempco  
Input Bias Current  
V /T  
2
OS  
I
V
V
= V to V  
200  
20  
B
CM  
CM  
EE  
CC  
CC  
Input Offset Current  
I
= V to V  
nA  
OS  
EE  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
V
Inferred from CMRR test  
(V - 0.05V) V (V + 0.05V)  
V
EE  
- 0.05  
V + 0.05  
CC  
V
CM  
CMRR  
PSRR  
62  
80  
82  
80  
90  
76  
86  
82  
94  
80  
dB  
EE  
CM  
CC  
2.7V V 6V  
dB  
CC  
Sourcing  
Sinking  
V
= 2.7V, R = 100kΩ  
L
CC  
0.25V V  
2.45V  
OUT  
Sourcing  
Sinking  
V
= 2.7V, R = 1kΩ  
L
CC  
0.5V V  
2.2V  
OUT  
Large-Signal Voltage Gain  
(Note 1)  
A
dB  
VOL  
Sourcing  
Sinking  
V
= 5V, R = 100kΩ  
L
CC  
0.25V V  
4.75V  
OUT  
Sourcing  
Sinking  
V
= 5V, R = 1kΩ  
L
CC  
0.5V V  
4.5V  
OUT  
R = 100kΩ  
75  
250  
75  
L
Output Voltage Swing High  
(Note 1)  
V
V - VOUT  
mV  
mV  
OH  
CC  
R = 1kΩ  
L
R = 100kΩ  
L
Output Voltage Swing Low  
(Note 1)  
V
V - V   
OUT EE  
OL  
R = 1kΩ  
L
250  
Note 1: R is connected to V for A  
sourcing and V  
tests. R is connected to V  
for A  
sinking and V tests.  
VOL OL  
L
EE  
VOL  
OH  
L
CC  
Note 2: All specifications are 100% tested at T = +25°C. Specification limits over temperature (T = T  
to T  
) are guaranteed  
A
A
MIN  
MAX  
by design, not production tested.  
_______________________________________________________________________________________  
3
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Typical Operating Characteristics  
(V  
= 5V, V = 0, T = +25°C, unless otherwise noted.)  
EE A  
CC  
GAIN AND PHASE  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
GAIN AND PHASE  
vs. FREQUENCY  
MAX4091 toc02  
MAX4091 toc01  
80  
60  
40  
20  
0
180  
120  
60  
80  
180  
120  
60  
140  
120  
C
A
= 470pF  
= 1000  
=  
A
= 1000  
L
V
L
V
V
IN  
= 2.5V  
NO LOAD  
60  
40  
20  
0
R
V
CC  
GAIN  
100  
80  
GAIN  
0
60  
40  
20  
0
0
PHASE  
PHASE  
V
EE  
-60  
-120  
-60  
-120  
-20  
-40  
-20  
-40  
-180  
-180  
-20  
0.01  
0.01 0.1  
1
10  
100 1000 10,000  
0.1  
1
10  
100  
1000  
0.01 0.1  
1
10  
100 1000 10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OFFSET VOLTAGE  
vs. TEMPERATURE  
CHANNEL ISOLATION  
vs. FREQUENCY  
OFFSET VOLTAGE vs.  
COMMON-MODE VOLTAGE  
140  
120  
160  
140  
120  
100  
80  
100  
80  
V
= 0  
CM  
V
= 2.5V  
IN  
60  
100  
80  
60  
40  
20  
0
40  
V
= 2.7V  
CC  
20  
0
-20  
-40  
-60  
-80  
-100  
60  
V
CC  
= 6V  
40  
20  
0
0.01 0.1  
1
10  
100 1000 10,000  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-1  
0
1
2
3
4
5
6
7
FREQUENCY (kHz)  
TEMPERATURE ( C)  
COMMON-MODE VOLTAGE (V)  
INPUT BIAS CURRENT vs.  
TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE  
110  
100  
25  
20  
15  
10  
5
40  
30  
V
= 6V  
CC  
V
V
= 0 TO 5V  
= -0.1V TO +5.1V  
CM  
V
= 6V  
CC  
V
= V  
CC  
CM  
CM  
V
= 2.7V  
20  
CC  
90  
80  
70  
60  
50  
10  
V
= 2.7V  
CC  
0
0
-5  
-10  
-20  
-30  
-40  
V
= -0.2V TO +5.2V  
CM  
CM  
-10  
-15  
-20  
-25  
V
= -0.3V TO +5.3V  
= -0.4V TO +5.4V  
V
= 0  
CM  
V
CM  
V
= 6V  
50  
CC  
0
1
2
3
4
5
6
-50 -25  
0
25  
75 100 125  
-60 -40 -20  
0
20 40 60 80 100 120 140  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE ( C)  
4
_______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0, T = +25°C, unless otherwise noted.)  
EE A  
CC  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
SUPPLY CURRENT PER AMPLIFIER  
vs. SUPPLY VOLTAGE  
120  
110  
220  
200  
180  
160  
140  
120  
100  
80  
R
= 10k  
L
V
= V = V /2  
CM CC  
OUT  
200  
180  
160  
140  
120  
100  
80  
V
= 5V  
V
CC  
100  
90  
R
= 1M  
L
R
L
= 100k  
= 2.7V  
CC  
R
L
= 1k  
80  
70  
60  
50  
60  
40  
V
= 6V  
CC  
60  
R
TO V  
20  
L
EE  
0
40  
-50 -25  
0
25  
50  
75 100 125  
1
2
3
4
5
6
0
100  
200 300  
- V  
400  
(mV)  
OUT  
500 600  
V
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
CC  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
LARGE-SIGNAL GAIN  
vs. TEMPERATURE  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
120  
120  
110  
100  
90  
120  
R
= 1k , 0.5V < V < (V - 0.5V)  
OUT CC  
R
L
= 1M  
L
R
L
= 1M  
115  
110  
105  
100  
110  
100  
90  
R
TO V  
CC  
L
R
L
= 100k  
R
L
= 100k  
R
= 1k  
L
R
= 10k  
L
80  
70  
60  
50  
R
L
= 10k  
80  
R
L
= 1k  
V
= 2.7V  
CC  
95  
90  
85  
80  
V
= 6V  
CC  
70  
60  
50  
R
TO V  
L
EE  
V
= 2.7V  
V
= 6V  
TO V  
CC  
CC  
R
TO V  
R
L
EE  
L
CC  
0
100  
200  
300 400  
500 600  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
100  
200 300  
- V  
400  
(mV)  
500 600  
V
(mV)  
OUT  
V
TEMPERATURE ( C)  
CC  
OUT  
LARGE-SIGNAL GAIN  
vs. TEMPERATURE  
MINIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
120  
220  
120  
110  
100  
90  
R
TO V  
CC  
R
= 100k , 0.3V < V < (V - 0.3V)  
OUT CC  
L
L
200  
180  
160  
140  
120  
100  
80  
R
= 1M  
115  
110  
105  
100  
L
R
TO V  
CC  
L
V
= 6V, R = 1k  
L
CC  
R
L
= 100k  
V
CC  
= 6V  
V
= 2.7V, R = 1k  
L
CC  
80  
70  
60  
50  
R
= 1k  
L
95  
90  
85  
80  
R
L
= 10k  
R
TO V  
EE  
L
60  
V
= 6V, R = 100k  
L
CC  
V
= 2.7V  
CC  
40  
V
= 2.7V  
CC  
CC  
20  
V
CC  
= 2.7V, R = 100k  
L
R
TO V  
L
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
100  
200  
300 400  
(mV)  
500 600  
V
TEMPERATURE ( C)  
TEMPERATURE ( C)  
OUT  
_______________________________________________________________________________________  
5
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0, T = +25°C, unless otherwise noted.)  
EE A  
CC  
MAXIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
100  
200  
1000  
100  
V
= V  
= 2.5V  
OUT  
CM  
R
TO V  
EE  
L
180  
160  
140  
120  
100  
80  
V
= 6V, R = 1k  
L
CC  
V
= 2.7V, R = 1k  
L
CC  
10  
10  
V
= 6V, R = 100k  
L
60  
CC  
1
V
CC  
= 2.7V, R = 100k  
L
40  
INPUT REFERRED  
20  
0
1
0.1  
0.01 0.1  
1
10  
100 1,000 10,000  
0.01  
0.1  
1
10  
-60 -40 -20  
0
20 40 60 80 100 120 140  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TEMPERATURE ( C)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. PEAK-TO-PEAK SIGNAL AMPLITUDE  
CURRENT-NOISE DENSITY  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
0.1  
0.1  
5.0  
4.5  
4.0  
A
= 1  
A
= 1  
V
V
1kHz SINE  
2V SIGNAL  
P-P  
22kHz FILTER  
L
80kHz LOWPASS FILTER  
R
= 1k  
R
TO GND  
L
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 2k  
L
0.01  
0.01  
R
= 10k TO GND  
L
R
= 100k  
L
R
= 10k  
L
INPUT REFERRED  
NO LOAD  
1000 10,000  
0.001  
0.001  
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0  
PEAK-TO-PEAK SIGNAL AMPLITUDE (V)  
0.01  
0.1  
1
10  
10  
100  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
LARGE-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
MAX4091 toc26  
MAX4091 toc27  
MAX4091 toc25  
V
= 5V, A = 1, R = 10kΩ  
V
= 5V, A = 1, R = 10kΩ  
V
= 5V, A = -1, R = 10kΩ  
CC  
V
L
CC  
V
L
CC  
V
L
V
V
V
IN  
50mV/div  
IN  
2V/div  
IN  
50mV/div  
V
V
V
OUT  
2V/div  
OUT  
50mV/div  
OUT  
50mV/div  
20µs/div  
2µs/div  
2µs/div  
6
_______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0, T = +25°C, unless otherwise noted.)  
EE A  
CC  
SINK CURRENT vs.  
OUTPUT VOLTAGE  
SOURCE CURRENT vs.  
SUPPLY VOLTAGE  
LARGE-SIGNAL TRANSIENT RESPONSE  
MAX4091 toc28  
0
-2  
30  
25  
20  
15  
10  
5
V
= 100mV  
DIFF  
V
= 5V, A = -1, R = 10kΩ  
V
= 100mV  
CC  
V
L
DIFF  
-4  
V
IN  
-6  
2V/div  
V
= 6V  
CC  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
V
= 2.7V  
= 6V  
CC  
V
= 2.7V  
CC  
V
OUT  
2V/div  
V
CC  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
20µs/div  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4091  
SOT23  
1
MAX4091  
SO/µMAX  
6
MAX4092  
MAX4094  
4
11  
4
OUT  
Amplifier Output  
Negative Supply  
Noninverting Input  
Inverting Input  
2
4
3
V
EE  
3
8
IN+  
IN-  
4
2
5
7
V
Positive Supply  
CC  
1, 5, 8  
1
1
N.C.  
OUT1  
IN1-  
No Connection. Not internally connected.  
Amplifier 1 Output  
2
2
Amplifier 1 Inverting Input  
Amplifier 1 Noninverting Input  
Amplifier 2 Noninverting Input  
Amplifier 2 Inverting Input  
Amplifier 2 Output  
3
3
IN1+  
IN2+  
IN2-  
5
5
6
6
7
7
OUT2  
OUT3  
IN3-  
8
Amplifier 3 Output  
9
Amplifier 3 Inverting Input  
Amplifier 3 Noninverting Input  
Amplifier 4 Noninverting Input  
Amplifier 4 Inverting Input  
Amplifier 4 Output  
10  
12  
13  
14  
IN3+  
IN4+  
IN4-  
OUT4  
_______________________________________________________________________________________  
7
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
match the effective resistance seen at each input.  
Detailed Description  
Connect resistor R3 between the noninverting input and  
The single MAX4091, dual MAX4092 and quad  
ground when using the op amp in an inverting configu-  
MAX4094 op amps combine excellent DC accuracy  
ration (Figure 2a); connect resistor R3 between the  
with rail-to-rail operation at both input and output. With  
noninverting input and the input signal when using the  
their precision performance, wide dynamic range at low  
op amp in a noninverting configuration (Figure 2b).  
supply voltages, and very low supply current, these op  
Select R3 to equal the parallel combination of R1 and  
amps are ideal for battery-operated equipment, indus-  
R2. High source resistances will degrade noise perfor-  
trial, and data acquisition and control applications.  
mance, due to the the input current noise (which is mul-  
tiplied by the source resistance).  
Applications Information  
Input Stage Protection Circuitry  
The MAX4091/MAX4092/MAX4094 include internal pro-  
tection circuitry that prevents damage to the precision  
input stage from large differential input voltages. This  
protection circuitry consists of back-to-back diodes  
between IN+ and IN- with two 1.7kresistors in series  
(Figure 3). The diodes limit the differential voltage  
applied to the amplifiersinternal circuitry to no more  
Rail-to-Rail Inputs and Outputs  
The MAX4091/MAX4092/MAX4094s input common-  
mode range extends 50mV beyond the positive and  
negative supply rails, with excellent common-mode  
rejection. Beyond the specified common-mode range,  
the outputs are guaranteed not to undergo phase  
reversal or latchup. Therefore, the MAX4091/MAX4092/  
MAX4094 can be used in applications with common-  
mode signals, at or even beyond the supplies, without  
the problems associated with typical op amps.  
than V , where V is the diodesforward-voltage drop  
F
F
(about 0.7V at +25°C).  
Input bias current for the ICs ( 20nA) is specified for  
small differential input voltages. For large differential  
The MAX4091/MAX4092/MAX4094s output voltage  
swings to within 15mV of the supplies with a 100kΩ  
load. This rail-to-rail swing at the input and the output  
substantially increases the dynamic range, especially  
in low-supply-voltage applications. Figure 1 shows the  
input and output waveforms for the MAX4092, config-  
ured as a unity-gain noninverting buffer operating from  
input voltages (exceeding V ), this protection circuitry  
F
increases the input current at IN+ and IN-:  
[(V ) (V )] V  
F
IN+  
IN−  
INPUTCURRENT =  
2
1.7kΩ  
a single 3V supply. The input signal is 3.0V , a 1kHz  
P-P  
sinusoid centered at 1.5V. The output amplitude is  
Output Loading and Stability  
Even with their low quiescent current of less than  
130µA per op amp, the MAX4091/MAX4092/MAX4094  
are well suited for driving loads up to 1kwhile main-  
taining DC accuracy. Stability while driving heavy  
capacitive loads is another key advantage over compa-  
rable CMOS rail-to-rail op amps.  
approximately 2.98V  
.
P-P  
Input Offset Voltage  
Rail-to-rail common-mode swing at the input is obtained  
by two complementary input stages in parallel, which  
feed a folded cascaded stage. The PNP stage is active  
for input voltages close to the negative rail, and the NPN  
stage is active for input voltages close to the positive rail.  
In op amp circuits, driving large capacitive loads  
increases the likelihood of oscillation. This is especially  
true for circuits with high-loop gains, such as a unity-  
gain voltage follower. The output impedance and a  
capacitive load form an RC network that adds a pole to  
the loop response and induces phase lag. If the pole  
frequency is low enoughas when driving a large  
capacitive load––the circuit phase margin is degraded,  
leading to either an under-damped pulse response or  
oscillation.  
The offsets of the two pairs are trimmed. However,  
there is some residual mismatch between them. This  
mismatch results in a two-level input offset characteris-  
tic, with a transition region between the levels occurring  
at a common-mode voltage of approximately 1.3V  
above V . Unlike other rail-to-rail op amps, the transi-  
EE  
tion region has been widened to approximately 600mV  
in order to minimize the slight degradation in CMRR  
caused by this mismatch.  
The input bias currents of the MAX4091/MAX4092/  
MAX4094 are typically less than 20nA. The bias current  
flows into the device when the NPN input stage is  
active, and it flows out when the PNP input stage is  
active. To reduce the offset error caused by input bias  
current flowing through external source resistances,  
The MAX4091/MAX4092/MAX4094 can drive capacitive  
loads in excess of 2000pF under certain conditions  
(Figure 4). When driving capacitive loads, the greatest  
potential for instability occurs when the op amp is  
sourcing approximately 200µA. Even in this case, sta-  
bility is maintained with up to 400pF of output capaci-  
8
_______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
tance. If the output sources either more or less current,  
stability is increased. These devices perform well with a  
1000pF pure capacitive load (Figure 5). Figures 6a, 6b,  
and 6c show the performance with a 500pF load in par-  
allel with various load resistors.  
MAX4094, it takes some time for the voltages on the  
supply pin and the output pin of the op amp to settle.  
Supply settling time depends on the supply voltage, the  
value of the bypass capacitor, the output impedance of  
the incoming supply, and any lead resistance or induc-  
tance between components. Op amp settling time  
depends primarily on the output voltage and is slew-  
rate limited. With the noninverting input to a voltage fol-  
lower held at midsupply (Figure 9), when the supply  
To increase stability while driving large-capacitive  
loads, connect a pullup resistor to V  
at the output to  
CC  
decrease the current the amplifier must source. If the  
amplifier is made to sink current rather than source,  
stability is further increased.  
steps from 0 to V , the output settles in approximately  
CC  
Frequency stability can be improved by adding an out-  
put isolation resistor (R ) to the voltage-follower circuit  
S
2µs for V  
(Figure 10b).  
= 3V (Figure 10a) and 8µs for V  
= 5V  
CC  
CC  
(Figure 7). This resistor improves the phase margin of  
the circuit by isolating the load capacitor from the op  
amps output. Figure 8a shows the MAX4092 driving  
Power Supplies and Layout  
The MAX4091/MAX4092/MAX4094 operate from a sin-  
gle 2.7V to 6V power supply, or from dual supplies of  
1.35V to 3V. For single-supply operation, bypass the  
power supply with a 0.1µF capacitor. If operating from  
dual supplies, bypass each supply to ground.  
5000pF (R 100k), while Figure 8b adds a 47iso-  
L
lation resistor.  
Because the MAX4091/MAX4092/MAX4094 have excel-  
lent stability, no isolation resistor is required, except in  
the most demanding applications. This is beneficial  
because an isolation resistor would degrade the low-  
frequency performance of the circuit.  
Good layout improves performance by decreasing the  
amount of stray capacitance at the op amps inputs  
and output. To decrease stray capacitance, minimize  
both trace lengths and resistor leads and place exter-  
nal components close to the op amps pins.  
Power-Up Settling Time  
The MAX4091/MAX4092/MAX4094 have a typical sup-  
ply current of 130µA per op amp. Although supply cur-  
rent is already low, it is sometimes desirable to reduce  
it further by powering down the op amp and associated  
ICs for periods of time. For example, when using a  
MAX4092 to buffer the inputs of a multi-channel analog-  
to-digital converter (ADC), much of the circuitry could  
be powered down between data samples to increase  
battery life. If samples are taken infrequently, the op  
amps, along with the ADC, may be powered down  
most of the time.  
Chip Information  
MAX4091 TRANSISTOR COUNT: 168  
MAX4092 TRANSISTOR COUNT: 336  
MAX4094 TRANSISTOR COUNT: 670  
PROCESS: Bipolar  
When power is reapplied to the MAX4091/MAX4092/  
_______________________________________________________________________________________  
9
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Test Circuits/Timing Diagrams  
V
V
= 3V  
= 0  
CC  
EE  
R2  
V
IN  
R1  
1V/div  
V
IN  
V
OUT  
MAX409_  
V
OUT  
1V/div  
R3  
R3 = R2 R1  
II  
200µs/div  
Figure 1. Rail-to-Rail Input and Output Operation  
Figure 2a. Reducing Offset Error Due to Bias Current: Inverting  
Configuration  
MAX4091  
MAX4092  
MAX4094  
TO INTERNAL  
CIRCUITRY  
R3  
1.7kΩ  
V
IN  
IN+  
V
OUT  
MAX409_  
R2  
R3 = R2 R1  
II  
R1  
IN–  
TO INTERNAL  
CIRCUITRY  
1.7kΩ  
Figure 2b. Reducing Offset Error Due to Bias Current:  
Noninverting Configuration  
Figure 3. Input Stage Protection Circuitry  
10 ______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Test Circuits/Timing Diagrams (continued)  
10,000  
R = ∞  
L
UNSTABLE REGION  
V
IN  
50mV/div  
1000  
100  
V
V
V
= 5V  
OUT  
50mV/div  
CC  
= V /2  
OUT  
CC  
R TO V  
L
V
EE  
A = 1  
1
10  
RESISTIVE LOAD (k)  
100  
10µs/div  
Figure 4. Capacitive-Load Stable Region Sourcing Current  
Figure 5. MAX4092 Voltage Follower with 1000pF Load  
R = 5kΩ  
L
R = 20kΩ  
L
V
V
IN  
IN  
50mV/div  
50mV/div  
V
V
OUT  
50mV/div  
OUT  
50mV/div  
10µs/div  
10µs/div  
Figure 6a. MAX4092 Voltage Follower with 500pF Load  
(R = 5k)  
L
Figure 6b. MAX4092 Voltage Follower with 500pF Load  
(R = 20k)  
L
______________________________________________________________________________________ 11  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Test Circuits/Timing Diagrams (continued)  
R = ∞  
L
V
IN  
50mV/div  
R
S
V
OUT  
MAX409_  
C
L
V
IN  
V
OUT  
50mV/div  
10µs/div  
Figure 6c. MAX4092 Voltage Follower with 500pF Load  
(R = )  
Figure 7. Capacitive-Load Driving Circuit  
L
V
V
IN  
IN  
50mV/div  
50mV/div  
V
V
OUT  
50mV/div  
OUT  
50mV/div  
10µs/div  
10µs/div  
Figure 8a. Driving a 5000pF Capacitive Load  
Figure 8b. Driving a 5000pF Capacitive Load with a 47Ω  
Isolation Resistor  
12 ______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Test Circuits/Timing Diagrams (continued)  
5V  
V
7
CC  
V
IN  
1V/div  
2
3
1k  
1kΩ  
6
V
OUT  
MAX409_  
4
V
OUT  
500mV/div  
5µs/div  
Figure 9. Power-Up Test Configuration  
Figure 10a. Power-Up Settling Time (V  
= +3V)  
CC  
V
IN  
2V/div  
V
OUT  
1V/div  
5µs/div  
Figure 10b. Power-Up Settling Time (V  
= +5V)  
CC  
______________________________________________________________________________________ 13  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Package Information  
14 ______________________________________________________________________________________  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Package Information (continued)  
______________________________________________________________________________________ 15  
Single/Dual/Quad, Micropower, Single-Supply,  
Rail-to-Rail Op Amps  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY