MAX4104EUK-T [MAXIM]

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5; 740MHz ,低噪声,低失真运算放大器SOT23-5
MAX4104EUK-T
型号: MAX4104EUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5
740MHz ,低噪声,低失真运算放大器SOT23-5

运算放大器
文件: 总12页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4757; Rev 3; 10/98  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX4104/MAX4105/MAX4304/MAX4305 op amps  
feature ultra-high speed, low noise, and low distortion in  
a SOT23 p a c ka g e . The unity-g a in-s ta b le MAX4104  
requires only 20mA of supply current while delivering  
625MHz b a nd wid th a nd 400V/µs s le w ra te . The  
MAX4304, compensated for gains of +2V/V or greater,  
delivers a 730MHz bandwidth and a 1000V/µs slew  
rate. The MAX4105 is compensated for a minimum gain  
of +5V/V a nd d e live rs a 410MHz b a nd wid th a nd a  
1400V/sec slew rate. The MAX4305 has +10V/V mini-  
mum gain compensation and delivers a 340MHz band-  
width and a 1400V/µs slew rate.  
Low 2.1nV/Hz Voltage Noise Density  
Ultra-High 740MHz -3dB Bandwidth (MAX4304,  
= 2V/V)  
A
VCL  
100MHz 0.1dB Gain Flatness (MAX4104/4105)  
1400V/µs Slew Rate (MAX4105/4305)  
-88dBc SFDR (5MHz, R = 100) (MAX4104/4304)  
L
High Output Current Drive: ±70mA  
Low Differential Gain/Phase Error: 0.01%/0.01°  
(MAX4104/4304)  
Low voltage noise density of 2.1nV/Hz and -88dBc  
spurious-free dynamic range make these devices ideal  
for low-noise/low-distortion video and telecommunica-  
tions applications. These op amps also feature a wide  
output voltage swing of ±3.7V and ±70mA output current-  
drive capability. For space-critical applications, they  
are available in a miniature 5-pin SOT23 package.  
Low ±1mV Input Offset Voltage  
Available in Space-Saving 5-Pin SOT23 Package  
S e le c t o r Gu id e  
MINIMUM  
STABLE  
GAIN (V/V)  
BANDWIDTH  
PART  
PIN-PACKAGE  
(MHz)  
________________________Ap p lic a t io n s  
MAX4104  
MAX4304  
MAX4105  
MAX4305  
1
2
625  
740  
410  
340  
5-pin SOT23, 8-pin SO  
5-pin SOT23, 8-pin SO  
5-pin SOT23, 8-pin SO  
5-pin SOT23, 8-pin SO  
Video ADC Preamp  
Pulse/RF Telecom Applications  
Video Buffers and Cable Drivers  
Ultrasound  
5
10  
Ord e rin g In fo rm a t io n  
Active Filters  
PIN-  
SOT  
ADC Input Buffers  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
MAX4104ESA  
-40°C to +85°C 8 SO  
MAX4104EUK-T -40°C to +85°C 5 SOT23-5  
ACCO  
Typ ic a l Ap p lic a t io n Circ u it  
Ordering Information continued at end of data sheet.  
P in Co n fig u ra t io n s  
INPUT  
TOP VIEW  
8 to 16-BIT  
HIGH-SPEED  
MAX4304  
ADC  
OUT  
1
2
3
5
V
CC  
MAX4104  
MAX4105  
MAX4304  
MAX4305  
V
EE  
330Ω  
IN+  
4
IN-  
330Ω  
SOT23-5  
Pin Configurations continued at end of data sheet.  
ADC BUFFER WITH GAIN (A = 2V/V)  
VCL  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )................................................+12V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
Voltage on Any Pin to Ground..........(V - 0.3V) to (V + 0.3V)  
EE  
CC  
Short-Circuit Duration (V  
to GND)........................Continuous  
OUT  
Continuous Power Dissipation (T = +70°C)  
A
5-pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW  
8-pin SO (derate 5.9mW/°C above +70°C).................471mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V = 0, R = 100k, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
CM  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage  
Range  
V
/V  
Guaranteed by PSRR test  
±3.5  
±5  
±5.5  
V
CC EE  
MAX4_0_ESA  
MAX4_0_EUK  
1
1
6
8
Input Offset Voltage  
V
OS  
V
OUT  
= 0  
mV  
Input Offset-Voltage Drift  
Input Bias Current  
TCV  
2.5  
32  
0.5  
6
µV/°C  
µA  
OS  
I
B
70  
Input Offset Current  
I
OS  
5.0  
µA  
Differential Input Resistance  
R
-0.8V V 0.8V  
kΩ  
IN  
IN  
Common-Mode Input  
Resistance  
R
Either input  
1.5  
MΩ  
IN  
Input Common-Mode Voltage  
Range  
V
Guaranteed by CMRR test  
-2.8  
80  
+4.1  
V
CM  
Common-Mode Rejection Ratio  
CMRR  
-2.8V V  
4.1V  
95  
85  
dB  
dB  
CM  
Positive Power-Supply Rejection  
Ratio  
PSSR+  
PSRR-  
V
CC  
= 3.5V to 5.5V  
75  
Negative Power-Supply  
Rejection Ratio  
V
= -3.5V to -5.5V  
55  
65  
dB  
EE  
Quiescent Supply Current  
Open-Loop Gain  
I
V
= 0  
20  
65  
27  
mA  
dB  
S
OUT  
1/MAX4305  
A
-2.8V V  
2.8V, R = 100Ω  
55  
VOL  
OUT L  
R
R
R
R
= 100kΩ  
= 100Ω  
= 30Ω  
±3.5 -3.7 to +3.8  
±3.0 -3.5 to +3.4  
L
L
L
L
Output Voltage Swing  
V
V
OUT  
Output Current Drive  
I
±53  
±70  
80  
9
mA  
mA  
OUT  
Short-Circuit Output Current  
Open-Loop Output Impedance  
I
= short to ground  
SC  
Z
OUT  
2
_______________________________________________________________________________________  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V = 0, R = 100; A = +1V/V for MAX4104, +2V/V for MAX4304, +5V/V for MAX4105, +10V/V for MAX4305;  
CC  
EE  
CM  
L
V
T
A
= +25°C; unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
625  
740  
410  
340  
100  
60  
MAX  
UNITS  
MAX4104  
MAX4304  
MAX4105  
MAX4305  
MAX4104  
MAX4304  
MAX4105  
MAX4305  
MAX4104  
MAX4304  
MAX4105  
MAX4305  
MAX4104  
MAX4304  
MAX4105  
MAX4305  
to 0.1%  
-3dB Bandwidth  
BW  
V
= 100mVp-p  
MHz  
(-3dB)  
OUT  
0.1dB Bandwidth  
Full-Power Bandwidth  
BW  
V
OUT  
= 100mVp-p  
= 2Vp-p  
MHz  
MHz  
(0.1)  
80  
70  
115  
285  
370  
320  
400  
1000  
1400  
1400  
20  
FPBW  
SR  
V
OUT  
Slew Rate  
V
OUT  
= 2Vp-p  
= 2Vp-p  
V/µs  
ns  
Settling Time to 0.1%  
t
S
V
OUT  
to 0.01%  
25  
f
= 5MHz  
= 20MHz  
= 5MHz  
= 20MHz  
-88  
C
MAX4104/  
MAX4304  
f
C
-67  
Spurious-Free  
Dynamic Range  
SFDR  
V
OUT  
= 2Vp-p  
dBc  
f
C
-74  
MAX4105/  
MAX4305  
f
C
-61  
MAX4104/MAX4304  
MAX4105/MAX4305  
MAX4104/MAX4304  
MAX4105/MAX4305  
0.01  
0.02  
0.01  
0.02  
2.1  
Differential Gain Error  
Differential Phase Error  
DG  
DP  
NTSC, R = 150Ω  
%
L
NTSC, R = 150Ω  
degrees  
L
Input Voltage Noise Density  
Input Current Noise Density  
Output Impedance  
e
n
f = 1MHz  
f = 1MHz  
f = 10MHz  
nV/Hz  
pA/Hz  
i
n
3.1  
Z
OUT  
1
_______________________________________________________________________________________  
3
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = -5V, R = 330, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
F
L
A
MAX4104  
MAX4304  
MAX4105  
SMALL-SIGNAL GAIN  
vs. FREQUENCY (A = +1)  
SMALL-SIGNAL GAIN  
vs. FREQUENCY (A = +2)  
VCL  
SMALL-SIGNAL GAIN  
vs. FREQUENCY (A = +5)  
VCL  
VCL  
5
4
3
5
5
4
3
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
4
3
2
1
0
2
1
0
2
1
0
-1  
-2  
-1  
-2  
-1  
-2  
-3  
-4  
-3  
-4  
-3  
-4  
-5  
-5  
-5  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
1G  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4305  
MAX4104  
GAIN FLATNESS  
MAX4304  
SMALL-SIGNAL GAIN  
vs. FREQUENCY (A = +10)  
VCL  
GAIN FLATNESS  
vs. FREQUENCY (A = +2)  
VCL  
vs. FREQUENCY (A = +1)  
VCL  
5
4
3
0.5  
0.4  
0.3  
0.5  
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
0.4  
0.3  
2
1
0
0.2  
0.1  
0
0.2  
0.1  
0
-1  
-2  
-0.1  
-0.2  
-0.1  
-0.2  
-3  
-4  
-0.3  
-0.4  
-0.3  
-0.4  
-5  
-0.5  
-0.5  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1/MAX4305  
MAX4305  
GAIN FLATNESS  
MAX4105  
GAIN FLATNESS  
MAX4104  
LARGE-SIGNAL GAIN  
vs. FREQUENCY (A = +1)  
VCL  
vs. FREQUENCY (A = +10)  
VCL  
vs. FREQUENCY (A = +5)  
VCL  
0.5  
0.4  
0.3  
0.5  
5
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
OUT  
= 2Vp-p  
0.4  
0.3  
4
3
0.2  
0.1  
0
0.2  
0.1  
0
2
1
0
-0.1  
-0.2  
-0.1  
-0.2  
-1  
-2  
-0.3  
-0.4  
-0.3  
-0.4  
-3  
-4  
-0.5  
-0.5  
-5  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 330, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
F
L
A
MAX4304  
LARGE-SIGNAL GAIN  
vs. FREQUENCY (A = +2)  
VCL  
MAX4105  
LARGE-SIGNAL GAIN  
vs. FREQUENCY (A = +5)  
VCL  
MAX4305  
LARGE-SIGNAL GAIN  
vs. FREQUENCY (A = +10)  
VCL  
5
4
3
5
4
3
5
4
3
V
OUT  
= 2Vp-p  
V
OUT  
= 2Vp-p  
V
OUT  
= 2Vp-p  
2
1
0
2
1
0
2
1
0
-1  
-2  
-1  
-2  
-1  
-2  
-3  
-4  
-3  
-4  
-3  
-4  
-5  
-5  
-5  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
POSITIVE POWER-SUPPLY REJECTION  
vs. FREQUENCY  
COMMON-MODE REJECTION  
vs. FREQUENCY  
NEGATIVE POWER-SUPPLY REJECTION  
vs. FREQUENCY  
0
0
20  
10  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CLOSED-LOOP OUTPUT IMPEDANCE  
vs. FREQUENCY  
VOLTAGE NOISE DENSITY vs. FREQUENCY  
(INPUT REFERRED)  
CURRENT NOISE DENSITY vs. FREQUENCY  
(INPUT REFERRED)  
1000  
100  
10  
1
100  
10  
1
100  
10  
1
0.1  
0.01  
100k  
1M  
10M  
100M  
1G  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 330, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
F
L
A
MAX4104/MAX4304  
MAX4105/MAX4305  
MAX4104/MAX4304  
DIFFERENTIAL GAIN AND PHASE  
DIFFERENTIAL GAIN AND PHASE  
HARMONIC DISTORTION vs. FREQUENCY  
0.005  
0.03  
0
V
= 2Vp-p  
OUT  
0.000  
-0.005  
-0.010  
-0.015  
0.02  
0.01  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.00  
R = 150Ω  
R = 150Ω  
L
L
-0.01  
0
100  
0
100  
0.015  
0.010  
0.005  
0.000  
-0.005  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
-0.005  
R = 150Ω  
L
R = 150Ω  
L
2ND HARMONIC  
1M  
3RD HARMONIC  
10M  
-100  
0
100  
0
100  
100k  
100M  
IRE  
IRE  
FREQUENCY (Hz)  
MAX4105/MAX4305  
HARMONIC DISTORTION vs. LOAD  
MAX4105/MAX4305  
HARMONIC DISTORTION vs. FREQUENCY  
MAX4104/MAX4304  
HARMONIC DISTORTION vs. LOAD  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
V
OUT  
= 2Vp-p  
f = 5MHz  
= 2Vp-p  
f = 5MHz  
V
OUT  
-10  
V
= 2Vp-p  
OUT  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2ND HARMONIC  
2ND HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
3RD HARMONIC  
3RD HARMONIC  
-100  
0
100 200 300 400 500 600 700 800 900 1k  
0
100 200 300 400 500 600 700 800 900 1k  
100k  
1M  
10M  
100M  
LOAD ()  
LOAD ()  
FREQUENCY (Hz)  
1/MAX4305  
MAX4104/MAX4304  
HARMONIC DISTORTION  
vs. OUTPUT SWING  
MAX4105/MAX4305  
HARMONIC DISTORTION  
vs. OUTPUT SWING  
OUTPUT SWING vs. LOAD RESISTANCE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
8
7
6
5
4
3
2
1
f = 5MHz  
f = 5MHz  
2ND HARMONIC  
3RD HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT SWING (Vp-p)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT SWING (Vp-p)  
0
50 100 150 200 250 300 350 400  
LOAD RESISTANCE ()  
6
_______________________________________________________________________________________  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 330, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
F
L
A
INPUT OFFSET CURRENT  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
4
3
2
1
0
3.0  
35  
34  
33  
32  
31  
30  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-1  
-2  
-3  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
POSITIVE OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
25  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
4.0  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
R = 100kΩ  
L
R = 100kΩ  
L
9.0  
9.5  
10.0  
10.5  
11.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX4304  
MAX4104  
MAX4105  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
(A = +2)  
V
(A = +1)  
V
(A = +5)  
V
MAX4104 TOCII  
MAX4104 TOCHH  
MAX4104 TOCJJ  
IN  
+50mV  
IN  
+25mV  
IN  
GND +10mV  
-10mV  
GND  
GND  
GND  
GND  
-50mV  
-25mV  
+50mV  
+50mV  
+50mV  
OUT  
OUT  
GND  
OUT  
-50mV  
-50mV  
-50mV  
10ns/div  
10ns/div  
10ns/div  
_______________________________________________________________________________________  
7
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 330, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
F
L
A
MAX4305  
MAX4104  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(A = +10)  
V
(A = +1)  
V
MAX4104 TOCKK  
MAX4104 TOCLL  
IN  
+5mV  
-5mV  
+1V  
IN  
GND  
GND  
GND  
-1V  
+50mV  
OUT  
+1V  
OUT  
GND  
-1V  
-50mV  
10ns/div  
10ns/div  
MAX4105  
MAX4305  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(A = +5)  
V
(A = +2)  
V
MAX4104 TOCNN  
MAX4104 TOCMM  
IN  
+200mV  
IN  
+500mV  
GND  
GND  
GND  
GND  
-200mV  
-500mV  
+1V  
+1V  
OUT  
-1V  
OUT  
-1V  
10ns/div  
10ns/div  
1/MAX4305  
MAX4305  
LARGE-SIGNAL PULSE RESPONSE  
(A = +10)  
V
MAX4104 TOCOO  
IN  
+100mV  
GND  
GND  
-100mV  
+1V  
OUT  
-1V  
10ns/div  
8
_______________________________________________________________________________________  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
Regardless of whether or not a constant-impedance  
board is used, it is best to observe the following guide-  
lines when designing the board:  
_____________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1) Do not use wire-wrapped boards (they are much too  
ind uc tive ) or b re a d b oa rd s (the y a re muc h too  
capacitive).  
SOT23-5  
SO  
1, 5, 8  
2
N.C.  
IN-  
Not internally connected.  
Amplifier Inverting Input  
4
2) Do not use IC sockets. IC sockets increase reac-  
tances.  
Amplifier Noninverting  
Input  
3
3
IN+  
3) Keep signal lines as short and straight as possible.  
Do not make 90° turns; round all corners.  
2
1
5
4
6
7
V
Negative Power Supply  
Amplifier Output  
EE  
4) Observe high-frequency bypassing techniques to  
maintain the amplifiers accuracy and stability.  
OUT  
V
CC  
Positive Power Supply  
5) Bear in mind that, in general, surface-mount compo-  
nents have shorter bodies and lower parasitic reac-  
tance, resulting in greatly improved high-frequency  
performance over through-hole components.  
_______________De t a ile d De s c rip t io n  
The MAX4104/MAX4105/MAX4304/MAX4305 are ultra-  
high-speed, low-noise amplifiers featuring -3dB band-  
wid ths up to 880MHz, 0.1d B g a in fla tne s s up to  
100MHz, and low differential gain and phase errors of  
0.01% and 0.01°, respectively. These devices operate  
on dual power supplies ranging from ±3.5V to ±5.5V  
and require only 20mA of supply current.  
The bypass capacitors should include 1nF and 0.1µF  
ceramic surface-mount capacitors between each sup-  
ply pin and the ground plane, located as close to the  
package as possible. Optionally, place a 10µF tantalum  
capacitor at the power supply pins’ point of entry to the  
PC board to ensure the integrity of incoming supplies.  
The power-supply trace should lead directly from the  
The MAX4104/MAX4304/MAX4105/MAX4305 are opti-  
mized for minimum closed-loop gains of +1V/V, +2V/V,  
+5V/V and +10V/V (respectively) with corresponding  
-3dB bandwidths of 880MHz, 730MHz, 430MHz, and  
350MHz. Each device in this family features a low input  
voltage noise density of only 2.1nV/Hz (at 1MHz), an  
outp ut c urre nt d rive of ± 70mA, a nd s p urious -fre e  
tantalum capacitor to the V  
mize parasitic inductance, keep PC traces short and  
use surface-mount components.  
and V pins. To mini-  
CC  
EE  
Input termination resistors and output back-termination  
resistors, if used, should be surface-mount types, and  
should be placed as close to the IC pins as possible.  
dynamic range as low as -88dBc (5MHz, R = 100).  
L
DC a n d No is e Erro rs  
The MAX4104/MAX4105/MAX4304/MAX4305 output  
___________Ap p lic a t io n s In fo rm a t io n  
offset voltage, V  
(Figure 1), can be calculated with  
OUT  
the following equation:  
La yo u t a n d P o w e r-S u p p ly Byp a s s in g  
V
= [V + (I x R ) + (I x (R R ))] [1 + R / R ]  
OUT  
OS  
B+  
S
B-  
F
G
F
G
||  
The MAX4104/MAX4105/MAX4304/MAX4305 have an  
extremely high bandwidth, and consequently require  
careful board layout, including the possible use of  
constant-impedance microstrip or stripline techniques.  
where:  
= input offset voltage (in volts)  
V
OS  
1 + R /R = amplifier closed-loop gain (dimensionless)  
F
G
To realize the full AC performance of these high-speed  
a mp lifie rs , p a y c a re ful a tte ntion to p owe r-s up p ly  
bypassing and board layout. The PC board should  
have at least two layers: a signal and power layer on  
one side, and a large, low-impedance ground plane on  
the other side. The ground plane should be as free of  
voids as possible. With multilayer boards, locate the  
ground plane on a layer that incorporates no signal or  
power traces.  
I
= noninverting input bias current (in amps)  
= inverting input bias current (in amps)  
= gain-setting resistor (in ohms)  
B+  
I
B-  
R
G
R = feedback resistor (in ohms)  
R = source resistor at noninverting input (in ohms)  
S
F
The following equation represents output noise density:  
2
2
2
R
F
e
=
1+  
i x R  
+
i x R ||R  
+ e  
n
n(OUT)  
n
S
n
F
G
(
)
(
)
R
G
_______________________________________________________________________________________  
9
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
R
G
R
F
R
G
R
F
IN-  
FB  
IN  
R
75Ω  
T
I
B-  
75CABLE  
OUT  
OUT  
V
OUT  
75CABLE  
I
B+  
IN+  
R
L
75Ω  
MAX4104  
MAX4105  
MAX4304  
MAX4305  
MAX4104  
MAX4105  
MAX4304  
MAX4305  
R
75Ω  
T
R
S
Figure 1. Output Offset Voltage  
where:  
Figure 2. Video Line Driver  
very rapidly during the conversion cyclea condition  
that demands an amplifier with very low output imped-  
ance at high frequencies to maintain measurement  
accuracy. The combination of high-speed, fast slew  
ra te , low nois e , a nd low-d is tortion a va ila b le in the  
MAX4104/MAX4105/MAX4304/MAX4305 makes them  
ideally suited for use as buffer amplifiers in high-speed  
ADC applications.  
i = input current noise density (in pA/Hz)  
n
e
= input voltage noise density (in nV/Hz)  
n
The MAX4104/MAX4105/MAX4304/MAX4305 have a  
very low, 2.1nV/Hz input voltage noise density and  
3.1pA/Hz input current noise density.  
An e xa mp le of DC-e rror c a lc ula tions , us ing the  
MAX4304 typical data and the typical operating circuit  
Vid e o Lin e Drive r  
The MAX4104/MAX4105/MAX4304/MAX4305 are opti-  
mize d to d rive c oa xia l tra nsmission line s whe n the  
cable is terminated at both ends, as shown in Figure 2.  
To minimize reflections and maximize power transfer,  
select the termination resistors to match the character-  
istic impedance of the transmission line. Cable frequen-  
cy response can cause variations in the flatness of the  
signal.  
with R = R = 330(R || R = 165) and R = 50Ω  
F
G
F
G
S
gives:  
6  
6  
3  
V
=
32 x 10  
50 + 32 x 10  
)
165Ω +1 x 10  
1 + 1  
[
(
(
)
]
OUT  
V
= 15.8mV  
OUT  
Calculating total output noise in a similar manner yields  
the following:  
1/MAX4305  
Drivin g Ca p a c it ive Lo a d s  
The MAX4104/MAX4105/MAX4304/MAX4305 provide  
maximum AC performance when driving no output load  
capacitance. This is the case when driving a correctly  
terminated transmission line (i.e., a back-terminated  
cable).  
e
=
n(OUT)  
2
2
2
12  
12  
9  
1+1  
[
3.1 x 10  
x 50  
+
3.1 x 10  
x 165 + 2.1 x 10  
]
e
= 4.3nV Hz  
n(OUT)  
With a 200MHz system bandwidth, this calculates to  
60.8µV (approximately 365µVp-p, using the six-  
sigma calculation).  
In most amplifier circuits, driving a large load capaci-  
tance increases the chance of oscillations occurring.  
The amplifiers output impedance and the load capaci-  
tor combine to add a pole and excess phase to the  
loop response. If the poles frequency is low enough  
and phase margin is degraded sufficiently, oscillations  
may result.  
RMS  
ADC In p u t Bu ffe rs  
Input buffer amplifiers can be a source of significant  
error in high-speed ADC applications. The input buffer  
is usually required to rapidly charge and discharge the  
ADCs input, which is often capacitive. In addition, the  
input impedance of a high-speed ADC often changes  
A second concern when driving capacitive loads origi-  
nates from the amplifiers output impedance, which  
10 ______________________________________________________________________________________  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
1/MAX4305  
30  
25  
30  
25  
20  
C = 15pF  
L
C = 15pF  
L
20  
15  
10  
5
15  
10  
5
C = 10pF  
L
C = 10pF  
L
0
0
-5  
-5  
C = 5pF  
L
-10  
-15  
-10  
-15  
C = 5pF  
L
-20  
-20  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 3a. MAX4104 Frequency Response with Capacitive  
Load and No Isolation Resistor  
Figure 3b. MAX4304 Frequency Response with Capacitive  
Load and No Isolation Resistor  
25  
20  
15  
25  
20  
C = 15pF  
L
15  
C = 15pF  
L
10  
5
10  
5
C = 10pF  
L
C = 10pF  
L
0
0
-5  
-5  
C = 5pF  
L
-10  
-10  
C = 5pF  
L
-15  
-20  
-15  
-20  
-25  
-25  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 3c. MAX4105 Frequency Response with Capacitive  
Load and No Isolation Resistor  
Figure 3d. MAX4305 Frequency Response with Capacitive  
Load and No Isolation Resistor  
appears inductive at high frequencies. This inductance  
forms an L-C resonant circuit with the capacitive load,  
which causes peaking in the frequency response and  
degrades the amplifiers phase margin.  
load. With higher capacitive values, bandwidth is domi-  
nated by the RC network formed by R  
and C ; the  
ISO  
L
bandwidth of the amplifier itself is much higher. Also  
note tha t the is ola tion re s is tor forms a d ivid e r tha t  
decreases the voltage delivered to the load.  
The MAX4104/MAX4105/MAX4304/MAX4305 d rive  
c a p a c itive loa d s up to 10p F without os c illa tion.  
However, some peaking may occur in the frequency  
domain (Figure 3). To drive larger capacitance loads or  
to reduce ringing, add an isolation resistor between the  
amplifiers output and the load (Figure 4).  
Ma x im s Hig h -S p e e d Eva lu a t io n Bo a rd s  
The MAX4104 evaluation kit manual shows a suggest-  
ed layout for Maxims high-speed, single-amplifier eval-  
uation boards. This board was developed using the  
te c hniq ue s d e s c rib e d p re vious ly (s e e La yout a nd  
Power-Supply Bypassing section). The smallest avail-  
able surface-mount resistors were used for the feed -  
back and back-termination resistors to minimize the  
The value of R  
depends on the circuit’s gain and the  
ISO  
c a p a c itive loa d (Fig ure 5). Fig ure 6 s hows the  
MAX4104/MAX4105/MAX4304/MAX4305 fre q ue nc y  
response with the isolation resistor and a capacitive  
______________________________________________________________________________________ 11  
7 4 0 MHz, Lo w -No is e , Lo w -Dis t o rt io n  
Op Am p s in S OT2 3 -5  
4
R
G
R
F
3
2
C = 47pF  
L
1
0
MAX4104  
MAX4105  
MAX4304  
MAX4305  
C = 68pF  
L
-1  
IN-  
-2  
-3  
C = 83pF  
L
R
ISO  
OUT  
-4  
-5  
MAX4104/MAX4304  
C
L
R
L
IN+  
R
= 15Ω  
ISO  
-6  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 6. Frequency Responses vs. Capacitive Load with 15Ω  
Isolation Resistor  
Figure 4. Using an Isolation Resistor (R ) for High Capacitive  
ISO  
Loads  
distance from the IC to these resistors, thus reducing  
the capacitance associated with longer lead lengths.  
30  
25  
SMA connectors were used for best high-frequency  
performance. Because distances are extremely short,  
performance is unaffected by the fact that inputs and  
outputs do not match a 50line. However, in applica-  
tions that require lead lengths greater than 1/4 of the  
wa ve le ng th of the hig he s t fre q ue nc y of inte re s t,  
constant-impedance traces should be used.  
MAX4105/MAX4305  
20  
15  
10  
Fully assembled evaluation boards are available for the  
MAX4104 in an 8-pin SO package.  
MAX4104/MAX4304  
5
0
0
50  
100  
150  
200  
250  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
CAPACITIVE LOAD (pF)  
PIN-  
SOT  
Figure 5. Optimal Isolation Resistor (R ) vs. Capacitive  
ISO  
Load  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
MAX4105ESA  
-40°C to +85°C 8 SO  
ACCP  
1/MAX4305  
MAX4105EUK-T -40°C to +85°C 5 SOT23-5  
MAX4304ESA -40°C to +85°C 8 SO  
P in Co n fig u ra t io n s (c o n t in u e d )  
MAX4304EUK-T -40°C to +85°C 5 SOT23-5  
MAX4305ESA* -40°C to +85°C 8 SO  
ACCQ  
TOP VIEW  
MAX4305EUK-T -40°C to +85°C 5 SOT23-5  
*Future product—contact factory for availability.  
ACCR  
1
2
3
4
8
7
6
5
N.C.  
N.C.  
IN-  
MAX4104  
MAX4105  
V
CC  
OUT  
N.C.  
IN+  
Ch ip In fo rm a t io n  
MAX4304  
MAX4305  
V
EE  
TRANSISTOR COUNT: 44  
SUBSTRATE CONNECTED TO V  
EE  
SO  
12 ______________________________________________________________________________________  

相关型号:

MAX4104EVKIT

Dual.High-Efficiency.PFM.Step-Up DC-DC Controller[MAX863/MAX863C/D/MAX863EEE/MAX863EEE-T/MAX863EVKIT ]
MAXIM

MAX4104S

Operational Amplifier, 1 Func, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX4105

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5
MAXIM

MAX4105ESA

Voltage-Feedback Operational Amplifier
MAXIM

MAX4105ESA+

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, SOP-8
MAXIM

MAX4105ESA+T

暂无描述
MAXIM

MAX4105EUK-T

Voltage-Feedback Operational Amplifier
MAXIM

MAX4106

350MHz, Ultra-Low-Noise Op Amps
MAXIM

MAX4106-MAX4107

350MHz, Ultra-Low-Noise Op Amps
MAXIM

MAX4106C/D

Operational Amplifier, 1 Func, 3000000uV Offset-Max, CMOS, DIE
MAXIM

MAX4106ESA

350MHz, Ultra-Low-Noise Op Amps
MAXIM

MAX4106ESA+

Operational Amplifier, 1 Func, 3000uV Offset-Max, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM