MAX4200_V01 [MAXIM]

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers;
MAX4200_V01
型号: MAX4200_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers

文件: 总13页 (文件大小:2356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
General Description  
Features  
● 2.2mA Supply Current  
The MAX4200–MAX4205 are ultra-high-speed, open-  
loop buffers featuring high slew rate, high output current,  
low noise, and excellent capacitive-load-driving capability.  
The MAX4200/MAX4201/MAX4202 are single buffers,  
while the MAX4203/MAX4204/MAX4205 are dual buffers.  
The MAX4201/MAX4204 have integrated 50Ω termination  
resistors, making them ideal for driving 50Ω transmission  
lines. The MAX4202/MAX4205 include 75Ω back-  
termination resistors for driving 75Ω transmission lines.  
The MAX4200/MAX4203 have no internal termination  
resistors.  
● High Speed  
• 780MHz -3dB Bandwidth (MAX4201/MAX4202)  
• 280MHz 0.1dB Gain Flatness (MAX4201/MAX4202)  
4200V/μs Slew Rate  
● Low 2.1nV/√Hz Voltage-Noise Density  
● Low 0.8pA/√Hz Current-Noise Density  
● High ±90mA Output Drive (MAX4200/MAX4203)  
Excellent Capacitive-Load-Driving Capability  
®
● Available in Space-Saving SOT23 or μMAX  
The MAX4200–MAX4205 use a proprietary architecture  
to achieve up to 780MHz -3dB bandwidth, 280MHz 0.1dB  
gain flatness, 4200V/μs slew rate, and ±90mA output current  
drive capability. They operate from ±5V supplies and draw  
only 2.2mA of quiescent current. These features, along  
with low-noise performance, make these buffers suitable  
for driving high-speed analog-to-digital converter (ADC)  
inputs or for data-communications applications.  
Packages  
Applications  
● High-Speed DAC Buffers  
Wireless LANs  
● Digital-Transmission Line Drivers  
● High-Speed ADC Input Buffers  
● IF/Communications Systems  
Typical Application Circuit  
R
50  
*
T
50CABLE  
IN  
OUT  
R
50Ω  
*
EXT  
MAX4201  
COAXIAL CABLE DRIVER  
*
R = R + R  
L T EXT  
μMAX is a registered trademark of Maxim Integrated Products, Inc.  
19-1338; Rev 4; 12/17  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Absolute Maximum Ratings  
Supply Voltage (V  
to V )..............................................+12V  
Operating Temperature Range........................... -40°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow)........................................+260°C  
Junction Temperature......................................................+150°C  
CC  
EE  
Voltage on Any Pin to GND...........(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
Output Short-Circuit Duration to GND.......................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ..........571mW  
8-Pin μMAX (derate 4.1mW/°C above +70°C)............330mW  
8-Pin SO (derate 5.9mW/°C above +70°C).................471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics  
(V  
= +5V, V = -5V, R = , T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSR test  
Per buffer, V = 0V  
MIN  
TYP  
MAX  
±5.5  
4
UNITS  
V
Operating Supply Voltage  
Quiescent Supply Current  
Input Offset Voltage  
V
±4  
S
I
2.2  
1
mA  
S
IN  
V
V
V
= 0V  
= 0V  
15  
mV  
OS  
IN  
Input Offset Voltage Drift  
TCV  
20  
μV/°C  
OS  
IN  
Input Offset Voltage  
Matching  
MAX4203/MAX4204/MAX4205  
0.4  
mV  
Input Bias Current  
Input Resistance  
I
0.8  
500  
0.96  
0.50  
0.50  
72  
10  
μA  
kΩ  
B
R
(Note 1)  
IN  
MAX4200/MAX4203, R  
-3.0V ≤  
= 150Ω  
= 50Ω  
= 75Ω  
0.9  
0.42  
0.41  
55  
1.1  
EXT  
EXT  
EXT  
Voltage Gain  
A
V
MAX4201/MAX4204, R  
0.58  
0.59  
V/V  
dB  
Ω
V
OUT  
3.0V  
MAX4202/MAX4205, R  
Power-Supply Rejection  
Output Resistance  
PSR  
V = ±4V to ±5.5V  
S
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
8
R
f = DC  
50  
OUT  
75  
±90  
±52  
±44  
150  
90  
Output Current  
I
R = 30Ω  
mA  
mA  
OUT  
L
Short-Circuit Output Current  
I
Sinking or sourcing  
SC  
75  
R = 150Ω  
±3.3  
±3.2  
±3.8  
±3.7  
±3.3  
±2.1  
±2.3  
L
MAX4200/MAX4203  
R = 100Ω  
L
Output-Voltage Swing  
V
R = 37.5Ω  
V
OUT  
L
MAX4201/MAX4204  
MAX4202/MAX4205  
R = 50Ω  
±1.9  
±2.0  
L
R = 75Ω  
L
Maxim Integrated  
2  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
AC Electrical Characteristics (continued)  
(V  
= +5V, V  
= -5V, R = 100Ω for MAX4200/MAX4201/MAX4203/MAX4204, R = 150Ω for MAX4202/MAX4205, T = T  
to  
MIN  
CC  
EE  
L
L
A
T
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX4200  
MIN  
TYP  
660  
780  
530  
720  
220  
280  
130  
230  
490  
310  
4200  
405  
12  
MAX  
UNITS  
MAX4201/MAX4202  
MAX4203  
-3dB Bandwidth  
BW  
V
V
≤ 100mV  
MHz  
(-3dB)  
OUT  
RMS  
MAX4204/MAX4205  
MAX4200  
MAX4201/MAX4202  
MAX4203  
0.1dB Bandwidth  
BW  
≤ 100mV  
MHz  
MHz  
(0.1dB)  
OUT  
RMS  
MAX4204/MAX4205  
MAX4200/MAX4201/MAX4202  
MAX4203/MAX4204/MAX4205  
Full-Power Bandwidth  
FPBW  
SR  
V
V
≤ 2V  
P-P  
OUT  
Slew Rate  
= 2V step  
= 2V step  
V/μs  
ps  
OUT  
Group Delay Time  
Settling Time to 0.1%  
t
V
ns  
S
OUT  
f = 5MHz  
-48  
-45  
-34  
-47  
-44  
-32  
-72  
-48  
-48  
-83  
-47  
-47  
1.3  
0.15  
2.1  
0.8  
2
MAX4200/MAX4201/  
MAX4202  
f = 20MHz  
f = 100MHz  
f = 5MHz  
V
2V  
=
Spurious-Free Dynamic  
Range  
OUT  
SFDR  
dBc  
P-P  
MAX4203/MAX4204/  
MAX4205  
f = 20MHz  
f = 100MHz  
Second harmonic  
MAX4200/MAX4201/  
MAX4202, f = 500kHz,  
Third harmonic  
Total harmonic  
Second harmonic  
Third harmonic  
Total harmonic  
V
= 2V  
P-P  
OUT  
Harmonic Distortion  
HD  
dBc  
MAX4203/MAX4204/  
MAX4205, f = 500kHz,  
V
= 2V  
P-P  
OUT  
Differential Gain Error  
Differential Phase Error  
Input Voltage-Noise Density  
Input Current-Noise Density  
Input Capacitance  
DG  
DP  
NTSC, R = 150Ω  
%
L
NTSC, R = 150Ω  
degrees  
nV/√Hz  
pA/√Hz  
pF  
L
e
n
f = 1MHz  
f = 1MHz  
i
n
C
IN  
Output Impedance  
Z
f = 10MHz  
6
Ω
OUT  
f = 10MHz  
-87  
-65  
Amplifier Crosstalk  
X
V
= 2V  
P-P  
dB  
TALK  
OUT  
f = 100MHz  
Note 1: Tested with no load; increasing load will decrease input impedance.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Typical Operating Characteristics  
(V  
= +5V, V = -5V, R = 100Ω for MAX4200/MAX4201/MAX4203/MAX4204, R = 150Ω for MAX4202/MAX4205, unless otherwise  
CC  
EE  
L
L
noted.)  
MAX4200  
MAX4201/MAX4202  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4200/MAX4201/MAX4202  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
4
3
4
3
4
3
V
OUT  
= 100mV  
V
OUT  
= 100mV  
V = 2V  
P-P  
OUT  
P-P  
P-P  
2
1
2
1
2
1
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
-6  
-5  
-6  
-5  
-6  
1M  
1M  
100k  
1M  
10M  
100M  
1G  
100k  
10M  
100M  
1G  
100k  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4203  
MAX4204/MAX4205  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4203/MAX4204/MAX4205  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
4
3
4
3
4
3
V
OUT  
= 100mV  
V
OUT  
= 100mV  
V = 2V  
P-P  
OUT  
P-P  
P-P  
2
1
2
1
2
1
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
-6  
-5  
-6  
-5  
-6  
100M  
FREQUENCY (Hz)  
100k  
1M  
10M  
1G  
100k  
1M  
10M  
100M  
1G  
10G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
GROUP DELAY vs. FREQUENCY  
SLEW RATE vs. OUTPUT VOLTAGE  
5
4
0
9000  
8000  
7000  
6000  
5000  
4000  
-10  
3
2
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1
0
-1  
-2  
-3  
3000  
2000  
1000  
0
-4  
-5  
-90  
-100  
100k  
1M  
10M  
100M  
1G  
10G  
100k  
1M  
10M  
100M  
1G  
10G  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT VOLTAGE (Vp-p)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = -5V, R = 100Ω for MAX4200/MAX4201/MAX4203/MAX4204, R = 150Ω for MAX4202/MAX4205, unless otherwise  
CC  
EE L L  
noted.)  
MAX4200/MAX4201/MAX4202  
HARMONIC DISTORTION vs. FREQUENCY  
MAX4203/MAX4204/MAX4205  
HARMONIC DISTORTION vs. FREQUENCY  
MAX4200/MAX4203  
OUTPUT IMPEDANCE vs. FREQUENCY  
0
0
100  
V
IN  
= 2Vp-p  
V
OUT  
= 2Vp-p  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
THIRD HARMONIC  
THIRD HARMONIC  
10  
SECOND HARMONIC  
SECOND HARMONIC  
1M  
-100  
-100  
1
100k  
1M  
10M  
100M  
100k  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4201/MAX4204  
OUTPUT IMPEDANCE vs. FREQUENCY  
MAX4202/MAX4205  
OUTPUT IMPEDANCE vs. FREQUENCY  
MAX4203/MAX4204/MAX4205  
CROSSTALK vs. FREQUENCY  
100  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
10  
-100  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
10G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DIFFERENTIAL GAIN AND PHASE  
INPUT VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
INPUT CURRENT-NOISE DENSITY  
vs. FREQUENCY  
(R = 150)  
L
100  
10  
1.5  
1.0  
0.5  
0
-0.5  
0
100  
10  
1.0  
0.1  
0.20  
0.15  
0.10  
0.05  
0
1
-0.05  
1
10 100  
1k 10k 100k 1M 10M  
1
10 100  
1k 10k 100k 1M 10M  
0
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
IRE  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = -5V, R = 100Ω for MAX4200/MAX4201/MAX4203/MAX4204, R = 150Ω for MAX4202/MAX4205, unless otherwise  
CC  
EE L L  
noted.)  
OUTPUT VOLTAGE SWING vs.  
GAIN ERROR vs. INPUT VOLTAGE  
EXTERNAL LOAD RESISTANCE  
SMALL-SIGNAL PULSE RESPONSE  
MAX4200-21  
14  
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
MAX4200/4203  
MAX4201/4204  
IN  
GND  
GND  
VOLTAGE  
50mV/div  
6
R = 100  
L
OUT  
4
MAX4202/4205  
R = 150Ω  
L
2
0
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
50 100 150 200 250 300 350 400  
TIME (5ns/div)  
INPUT VOLTAGE (V)  
EXTERNAL LOAD RESISTANCE ()  
MAX4201/MAX4202/MAX4204/MAX4205  
MAX4200/MAX4203  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
MAX4200-22  
MAX4200-23  
MAX4200-24  
IN  
GND  
IN  
GND  
IN  
GND  
GND  
VOLTAGE  
50mV/div  
VOLTAGE  
50mV/div  
VOLTAGE  
1V/div  
OUT  
GND  
OUT  
GND  
OUT  
C
LOAD  
= 15pF  
C
LOAD  
= 22pF  
TIME (5ns/div)  
TIME (5ns/div)  
TIME (5ns/div)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = -5V, R = 100Ω for MAX4200/MAX4201/MAX4203/MAX4204, R = 150Ω for MAX4202/MAX4205, unless otherwise  
CC  
EE  
L
L
noted.)  
SUPPLY CURRENT (PER BUFFER)  
vs. TEMPERATURE  
MAX4200/MAX4203  
LARGE-SIGNAL PULSE RESPONSE  
MAX4201/MAX4202/MAX4204/MAX4205  
LARGE-SIGNAL PULSE RESPONSE  
MAX4200-25  
MAX4200-26  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
IN  
GND  
IN  
GND  
GND  
VOLTAGE  
1V/div  
VOLTAGE  
1V/div  
OUT  
GND  
OUT  
C
LOAD  
= 15pF  
C
LOAD  
= 22pF  
TIME (5ns/div)  
TIME (5ns/div)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
MAX4200/MAX4203  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
5
4
5
4
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
3
3
R
= 150  
L
2
2
R
L
= 100Ω  
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Pin Configurations  
TOP VIEW  
MAX4203  
MAX4204  
MAX4205  
MAX4200  
MAX420ꢀ  
MAX4202  
MAX4200  
MAX420ꢀ  
MAX4202  
1
2
3
4
8
7
6
5
1
2
3
5
1
2
3
4
8
7
6
5
OUT  
N.C.  
V
V
N.C.  
IN1  
N.C.  
N.C.  
IN  
CC1  
CC2  
OUT1  
V
CC  
*R  
T
*R  
T
*R  
T
V
*R  
T
EE  
OUT  
N.C.  
V
OUT2  
IN2  
EE1  
V
V
EE2  
EE  
IN  
4
V
CC  
SOꢁꢂMAX  
SO  
SOT23-5  
* R = 0Ω (MAX4200/MAX4203)  
T
R
R
= 50Ω (MAX4201/MAX4204)  
= 75Ω (MAX4202/MAX4205)  
T
T
N.C. = NOT INTERNALLY CONNECTED  
Pin Description  
PIN  
MAX4203  
MAX4204  
MAX4205  
MAX4200/MAX4201/MAX4202  
NAME  
FUNCTION  
SOT23-5  
SO  
SO/µMAX  
1
3
1, 2, 5, 8  
1
N.C.  
IN  
No Connection. Not Internally Connected  
Buffer Input  
3
2
4
IN1  
Buffer 1 Input  
2
OUT1  
Buffer 1 Output  
3
V
Negative Power Supply  
Negative Power Supply for Buffer 1  
Negative Power Supply for Buffer 2  
Buffer 2 Input  
EE  
5
6
V
V
EE1  
4
EE2  
5
IN2  
OUT2  
OUT  
6
Buffer 2 Output  
7
Buffer Output  
4
7
V
Positive Power Supply  
Positive Power Supply for Buffer 2  
Positive Power Supply for Buffer 1  
CC  
V
CC2  
CC1  
8
V
Maxim Integrated  
8  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Use a PC board with at least two layers; it should be  
as free from voids as possible.  
Detailed Description  
The MAX4200–MAX4205 wide-band, open-loop buffers  
feature high slew rates, high output current, low 2.1nV√Hz  
voltage-noise density, and excellent capacitive-load-driv-  
ing capability. The MAX4200/MAX4203 are single/dual  
buffers with up to 660MHz bandwidth, 230MHz 0.1dB  
gain flatness, and a 4200V/μs slew rate. The MAX4201/  
MAX4204 single/dual buffers with integrated 50Ω output  
termination resistors, up to 780MHz bandwidth, 280MHz  
gain flatness, and a 4200V/μs slew rate, are ideally suited  
for driving high-speed signals over 50Ω cables. The  
MAX4202/MAX4205 provide bandwidths up to 720MHz,  
230MHz gain flatness, 4200V/μs slew rate, and integrated  
75Ω output termination resistors for driving 75Ω cables.  
Keep signal lines as short and as straight as pos-  
sible. Do not make 90° turns; round all corners.  
Input Impedance  
The MAX4200–MAX4205 input impedance looks like  
a 500kΩ resistor in parallel with a 2pF capacitor. Since  
these devices operate without negative feedback, there  
is no loop gain to transform the input impedance upward,  
as in closed-loop buffers. As a consequence, the input  
impedance is directly related to the output impedance. If  
the output load impedance decreases, the input imped-  
ance also decreases. Inductive input sources (such as an  
unterminated cable) may react with the input capacitance  
and produce some peaking in the buffer’s frequency  
response. This effect can usually be minimized by using  
a properly terminated transmission line at the buffer input,  
as shown in Figure 1.  
With an open-loop gain that is slightly less than +1V/V,  
these devices do not have to be compensated with the  
internal dominant pole (and its associated phase shift)  
that is present in voltage-feedback devices. This feature  
allows the MAX4200–MAX4205 to achieve a nearly con-  
stant group delay time of 405ps over their full frequency  
range, making them well suited for a variety of RF and IF  
signal-processing applications.  
50COAX  
R *  
T
These buffers operate with ±5V supplies and consume  
only 2.2mA of quiescent supply current per buffer while  
providing up to ±90mA of output current drive capability.  
SOURCE  
R
50Ω  
L
MAX42_ _  
Applications Information  
Power Supplies  
The MAX4200–MAX4205 operate with dual supplies from  
*MAX4201/4202/4204/4205 ONLY  
±4V to ±5.5V. Both V  
and V  
should be bypassed to  
CC  
EE  
the ground plane with a 0.1μF capacitor located as close  
to the device pin as possible.  
Figure 1. Using a Properly Terminated Input Source  
Layout Techniques  
Output Current and Gain Sensitivity  
Maxim recommends using microstrip and stripline tech-  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the amplifier’s performance,  
design it for a frequency greater than 6GHz. Pay care-  
ful attention to inputs and outputs to avoid large para-  
sitic capacitance. Whether or not you use a constant-  
impedance board, observe the following guidelines when  
designing the board:  
The absence of negative feedback means that open-loop  
buffers have no loop gain to reduce their effective output  
impedance. As a result, open-loop devices usually suffer  
from decreasing gain as the output current is decreased.  
The MAX4200–MAX4205 include local feedback around  
the buffer’s class-AB output stage to ensure low output  
impedance and reduce gain sensitivity to load variations.  
This feedback also produces demand-driven current bias  
to the output transistors for ±90mA (MAX4200/MAX4203)  
drive capability that is relatively independent of the output  
voltage (see Typical Operating Characteristics).  
Do not use wire-wrap boards, because they are too  
inductive.  
Do not use IC sockets, because they increase para-  
sitic capacitance and inductance.  
Use surface-mount instead of through-hole compo-  
nents for better high-frequency performance.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Figure 2 shows the frequency response of the MAX4200/  
MAX4203 under different capacitive loads. To settle  
out some of the peaking, the output requires an isola-  
tion resistor like the one shown in Figure 3. Figure 4 is  
a plot of the MAX4200/MAX4203 frequency response  
with capacitive loading and a 10Ω isolation resistor.  
In many applications, the output termination resistors  
included in the MAX4201/MAX4202/ MAX4204/MAX4205  
will serve this purpose, reducing component count and  
board space. Figure 5 shows the MAX4201/MAX4202/  
MAX4204/MAX4205 frequency response with capacitive  
loads of 47pF, 68pF, and 120pF.  
Output Capacitive Loading and Stability  
The MAX4200–MAX4205 provide maximum AC per-  
formance with no load capacitance. This is the case  
when the load is a properly terminated transmission line.  
However, these devices are designed to drive any load  
capacitance without oscillating, but with reduced AC per-  
formance.  
Since the MAX4200–MAX4205 operate in an open-  
loop configuration, there is no negative feedback to be  
transformed into positive feedback through phase shift  
introduced by a capacitive load. Therefore, these devices  
will not oscillate with capacitive loading, unlike similar  
buffers operating in a closed-loop configuration. However,  
a capacitive load reacting with the buffer’s output imped-  
ance can still affect circuit performance. A capacitive load  
will form a lowpass filter with the buffer’s output resistance,  
thereby limiting system bandwidth. With higher capacitive  
loads, bandwidth is dominated by the RC network formed  
Coaxial Cable Drivers  
Coaxial cable and other transmission lines are easily  
driven when properly terminated at both ends with their  
characteristic impedance. Driving back-terminated trans-  
mission lines essentially eliminates the line’s capacitance.  
The MAX4201/MAX4204, with their integrated 50Ω output  
termination resistors, are ideal for driving 50Ω cables.  
The MAX4202/MAX4205 include integrated 75Ω termina-  
tion resistors for driving 75Ω cables. Note that the output  
termination resistor forms a voltage divider with the load  
resistance, thereby decreasing the amplitude of the sig-  
nal at the receiving end of the cable by one half (see the  
Typical Application Circuit).  
by R and C ; the bandwidth of the buffer itself is much  
T
L
higher. Also note that the isolation resistor forms a divider  
that decreases the voltage delivered to the load.  
Another concern when driving capacitive loads results  
from the amplifier’s output impedance, which looks induc-  
tive at high frequency. This inductance forms an L-C reso-  
nant circuit with the capacitive load and causes peaking in  
the buffer’s frequency response.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
5
V
OUT  
= 100mV  
P-P  
C = 47pF  
L
4
C = 68pF  
L
3
2
C = 120pF  
L
1
R
ISO  
V
IN  
V
OUT  
0
C
L
-1  
-2  
-3  
MAX4200  
MAX4203  
C = 220pF  
L
-4  
-5  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 2. MAX4200/MAX4203 Small-Signal Gain vs.  
Frequency with Load Capacitance and No Isolation Resistor  
Figure 3. Driving a Capacitive Load Through an Isolation  
Resistor  
5
5
R
V
= 10  
= 100mV  
V = 100mV  
P-P  
OUT  
ISO  
4
4
P-P  
OUT  
3
2
3
2
C = 47pF  
L
C = 47pF  
L
1
1
C = 68pF  
L
C = 68pF  
L
0
0
-1  
-2  
-3  
-1  
-2  
-3  
C = 120pF  
L
C = 120pF  
L
-4  
-5  
-4  
-5  
10M  
FREQUENCY (Hz)  
100k  
1M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 4. MAX4200/MAX4203 Small-Signal Gain vs.  
Frequency with Load Capacitance and 10Ω Isolation Resistor  
Figure 5. MAX4201/MAX4202/MAX4204/MAX4205 Small-  
Signal Gain vs. Frequency with Capacitive Load and No  
External Isolation Resistor  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Ordering Information  
Selector Guide  
TOP  
MARK  
PKG  
CODE  
INTERNAL  
OUTPUT  
BUFFERS TERMINATION  
PART  
PIN-PACKAGE  
NO. OF  
PART  
PIN-PACKAGE  
MAX4200ESA  
MAX4200EUK-T  
MAX4201ESA  
MAX4201EUK-T  
MAX4202ESA  
MAX4202EUK-T  
MAX4203ESA  
MAX4203EUA-T  
MAX4204ESA  
MAX4204EUA-T  
MAX4205ESA  
MAX4205EUA-T  
8 SO  
AABZ  
S8-2  
U5-1  
S8-2  
U5-1  
S8-2  
U5-1  
S8-2  
U8-1  
S8-2  
U8-1  
S8-2  
U8-1  
(Ω)  
5 SOT23-5  
8 SO  
MAX4200  
MAX4201  
MAX4202  
MAX4203  
MAX4204  
MAX4205  
1
1
1
2
2
2
50  
70  
50  
75  
8 SO, 5 SOT23  
8 SO, 5 SOT23  
8 SO, 5 SOT23  
8 SO/μMAX  
5 SOT23-5  
8 SO  
ABAA  
5 SOT23-5  
8 SO  
ABAB  
8 SO/μMAX  
8 SO/μMAX  
8 µMAX-8  
8 SO  
8 µMAX-8  
8 SO  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character,  
but the drawing pertains to the package regardless of RoHS  
status.  
8 µMAX-8  
Note: All devices are specified over the -40°C to +85°C operat-  
ing temperature range.  
PACKAGE PACKAGE  
LAND PATTERN  
NO.  
OUTLINE NO.  
TYPE  
8-SOIC  
5-SOT23  
8-µMAX  
CODE  
Chip Information  
TRANSISTOR COUNTS:  
S8-2  
21-0041  
21-0052  
21-0036  
90-0096  
90-0174  
90-0092  
U5-1  
U8-1  
MAX4200/MAX4201/MAX4202: 33  
MAX4203/MAX4204/MAX4205: 67  
SUBSTRATE CONNECTED TO V  
EE  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX4200–MAX4205  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
Revision History  
REVISION  
NUMBER  
REVISION  
DATES  
PAGES  
DESCRIPTION  
CHANGED  
4
12/17  
Updated Absolute Maximum Ratings section  
2
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY