MAX4205ESA [MAXIM]

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers; 超高速,低噪声,低功耗, SOT23封装的开环缓冲器
MAX4205ESA
型号: MAX4205ESA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers
超高速,低噪声,低功耗, SOT23封装的开环缓冲器

文件: 总12页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1±-1338; Rev 2; 4/±±  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
________________General Description  
____________________________Features  
The MAX4200–MAX4205 are ultra-high-speed, open-  
loop buffers featuring high slew rate, high output cur-  
rent, low noise, and excellent capacitive-load-driving  
capability. The MAX4200/MAX4201/MAX4202 are sin-  
gle buffers, while the MAX4203/MAX4204/MAX4205 are  
dual buffers. The MAX4201/MAX4204 have integrated  
50termination resistors, making them ideal for driv-  
ing 50transmission lines. The MAX4202/MAX4205  
include 75back-termination resistors for driv-  
ing 75transmission lines. The MAX4200/MAX4203  
have no internal termination resistors.  
2.2mA Supply Current  
High Speed  
780MHz -3dB Bandwidth (MAX4201/MAX4202)  
280MHz 0.1dB Gain Flatness (MAX4201/MAX4202)  
4200V/µs Slew Rate  
Low 2.1nV/Hz Voltage-Noise Density  
Low 0.8pA/Hz Current-Noise Density  
High ±90mA Output Drive (MAX4200/MAX4203)  
Excellent Capacitive-Load-Driving Capability  
The MAX4200–MAX4205 use a proprietary architecture  
to achieve up to 780MHz -3dB bandwidth, 280MHz  
0.1dB gain flatness, 4200V/µs slew rate, and ±±0mA  
output current drive capability. They operate from ±5V  
supplies and draw only 2.2mA of quiescent current.  
These features, along with low-noise performance, make  
these buffers suitable for driving high-speed analog-to-  
digital converter (ADC) inputs or for data-communica-  
tions applications.  
Available in Space-Saving SOT23 or µMAX  
Packages  
_______________Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP. RANGE  
MAX4200ESA  
-40°C to +85°C 8 SO  
AABZ  
________________________Applications  
High-Speed DAC Buffers  
MAX4200EUK-T -40°C to +85°C 5 SOT23-5  
MAX4201ESA -40°C to +85°C 8 SO  
MAX4201EUK-T -40°C to +85°C 5 SOT23-5  
MAX4202ESA -40°C to +85°C 8 SO  
MAX4202EUK-T -40°C to +85°C 5 SOT23-5  
ABAA  
Wireless LANs  
Digital-Transmission Line Drivers  
High-Speed ADC Input Buffers  
IF/Communications Systems  
ABAB  
MAX4203ESA  
MAX4203EUA  
MAX4204ESA  
MAX4204EUA  
MAX4205ESA  
MAX4205EUA  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
___________________________Selector Guide  
INTERNAL  
NO. OF  
BUFFERS TERMINATION  
OUTPUT  
PART  
PIN-PACKAGE  
___________Typical Application Circuit  
()  
MAX4200  
MAX4201  
MAX4202  
MAX4203  
MAX4204  
MAX4205  
1
1
1
2
2
2
50  
75  
50  
75  
8 SO, 5 SOT23  
8 SO, 5 SOT23  
8 SO, 5 SOT23  
8 SO/µMAX  
R *  
T
50CABLE  
50Ω  
IN  
OUT  
R
*
EXT  
50Ω  
MAX4201  
8 SO/µMAX  
8 SO/µMAX  
COAXIAL CABLE DRIVER  
*R = R + R  
EXT  
L
T
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
Voltage on Any Pin to GND..............(V - 0.3V) to (V  
Output Short-Circuit Duration to GND........................Continuous  
to V )................................................+12V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
+ 0.3V)  
EE  
CC  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C)..............330mW  
8-Pin SO (derate 5.±mW/°C above +70°C)...................471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +5V, V = -5V, R = , T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
EE  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSR test  
Per buffer, V = 0V  
MIN  
TYP  
MAX  
±5.5  
4
UNITS  
V
Operating Supply Voltage  
Quiescent Supply Current  
Input Offset Voltage  
V
S
±4  
–MAX4205  
I
S
2.2  
1
mA  
IN  
V
OS  
V
IN  
IN  
= 0V  
= 0V  
15  
mV  
Input Offset Voltage Drift  
TCV  
V
20  
µV/°C  
OS  
Input Offset Voltage  
Matching  
MAX4203/MAX4204/MAX4205  
0.4  
mV  
Input Bias Current  
Input Resistance  
I
0.8  
500  
0.±6  
0.50  
0.50  
72  
10  
µA  
B
R
kΩ  
IN  
MAX4200/MAX4203, R  
= 150Ω  
= 50Ω  
= 75Ω  
0.±  
0.42  
0.41  
55  
1.1  
EXT  
EXT  
EXT  
-3.0V ≤  
Voltage Gain  
A
V
OUT  
MAX4201/MAX4204, R  
MAX4202/MAX4205, R  
0.58  
0.5±  
V/V  
dB  
V
3.0V  
Power-Supply Rejection  
Output Resistance  
PSR  
V = ±4V to ±5.5V  
S
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
MAX4200/MAX4203  
MAX4201/MAX4204  
MAX4202/MAX4205  
8
R
f = DC  
50  
OUT  
75  
±±0  
±52  
±44  
150  
±0  
Output Current  
I
R = 30Ω  
L
mA  
mA  
OUT  
Short-Circuit Output  
Current  
I
Sinking or sourcing  
MAX4200/MAX4203  
SC  
75  
R = 150Ω  
L
±3.3  
±3.2  
±3.8  
±3.7  
±3.3  
±2.1  
±2.3  
R = 100Ω  
L
Output Voltage Swing  
V
R = 37.5Ω  
L
V
OUT  
MAX4201/MAX4204  
MAX4202/MAX4205  
R = 50Ω  
±1.±  
±2.0  
L
R = 75Ω  
L
2
_______________________________________________________________________________________  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
AC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +5V, V = -5V, R = 100for MAX4200/MAX4201/MAX4203/MAX4204, R = 150for MAX4202/MAX4205, T = T  
to  
EE  
L
L
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX4200  
MIN  
TYP  
660  
780  
530  
720  
220  
280  
130  
230  
4±0  
310  
4200  
405  
12  
MAX  
UNITS  
MAX4201/MAX4202  
MAX4203  
-3dB Bandwidth  
BW  
V
V
100mV  
MHz  
(-3dB)  
OUT  
RMS  
MAX4204/MAX4205  
MAX4200  
MAX4201/MAX4202  
MAX4203  
0.1dB Bandwidth  
BW  
100mV  
2Vp-p  
MHz  
MHz  
(0.1dB)  
OUT  
RMS  
MAX4204/MAX4205  
MAX4200/MAX4201/MAX4202  
MAX4203/MAX4204/MAX4205  
Full-Power Bandwidth  
FPBW  
SR  
V
V
OUT  
Slew Rate  
= 2V step  
= 2V step  
V/µs  
ps  
OUT  
Group Delay Time  
Settling Time to 0.1%  
t
S
V
OUT  
ns  
f = 5MHz  
-48  
-45  
-34  
-47  
-44  
-32  
-72  
-48  
-48  
-83  
-47  
-47  
1.3  
MAX4200/MAX4201/  
MAX4202  
f = 20MHz  
f = 100MHz  
f = 5MHz  
Spurious-Free Dynamic  
Range  
V
=
OUT  
SFDR  
dBc  
dBc  
2Vp-p  
MAX4203/MAX4204/  
MAX4205  
f = 20MHz  
f = 100MHz  
Second harmonic  
MAX4200/MAX4201/  
MAX4202, f = 500kHz,  
Third harmonic  
Total harmonic  
Second harmonic  
Third harmonic  
Total harmonic  
V
OUT  
= 2Vp-p  
Harmonic Distortion  
HD  
MAX4203/MAX4204/|  
MAX4205, f = 500kHz,  
V
OUT  
= 2Vp-p  
Differential Gain Error  
DG  
DP  
NTSC, R = 150Ω  
%
L
Differential Phase Error  
Input Voltage Noise Density  
NTSC, R = 150Ω  
0.15  
2.1  
degrees  
nV/Hz  
L
e
n
f = 1MHz  
f = 1MHz  
Input Current Noise Density  
Input Capacitance  
i
n
0.8  
2
pA/Hz  
pF  
C
IN  
Output Impedance  
Z
OUT  
f = 10MHz  
6
f = 10MHz  
-87  
-65  
Amplifier Crosstalk  
X
TALK  
V
= 2Vp-p  
dB  
OUT  
f = 100MHz  
_______________________________________________________________________________________  
3
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
__________________________________________Typical Operating Characteristics  
(V  
= +5V, V  
= -5V, R = 100for MAX4200/MAX4201/MAX4203/MAX4204, R = 150for MAX4202/MAX4205, unless  
EE L L  
CC  
otherwise noted.)  
MAX4200  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4201/MAX4202  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4200/MAX4201/MAX4202  
LARGE-SIGNAL GAIN vs. FREQUENCY  
4
3
4
3
4
3
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
= 2Vp-p  
OUT  
2
1
2
1
2
1
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
-6  
-5  
-6  
-5  
-6  
1M  
1M  
100k  
1M  
10M  
100M  
1G  
100k  
10M  
100M  
1G  
100k  
10M  
100M  
1G  
–MAX4205  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4204/MAX4205  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4203  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX4203/MAX4204/MAX4205  
LARGE-SIGNAL GAIN vs. FREQUENCY  
4
3
4
3
4
3
V
OUT  
= 100mVp-p  
V
OUT  
= 100mVp-p  
V
OUT  
= 2Vp-p  
2
1
2
1
2
1
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
-6  
-5  
-6  
-5  
-6  
100k  
1M  
10M  
100M  
1G  
10G  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
SLEW RATE vs. OUTPUT VOLTAGE  
GROUP DELAY vs. FREQUENCY  
0
9000  
8000  
7000  
6000  
5000  
4000  
5
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
3
2
1
0
-1  
-2  
-3  
3000  
2000  
1000  
0
-90  
-4  
-5  
-100  
100k  
1M  
10M  
100M  
1G  
10G  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT VOLTAGE (Vp-p)  
100k  
1M  
10M  
100M  
1G  
10G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
_________________________________Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= -5V, R = 100for MAX4200/MAX4201/MAX4203/MAX4204, R = 150for MAX4202/MAX4205, unless  
EE L L  
CC  
otherwise noted.)  
MAX4203/MAX4204/MAX4205  
HARMONIC DISTORTION vs. FREQUENCY  
MAX4200/MAX4203  
OUTPUT IMPEDANCE vs. FREQUENCY  
MAX4200/MAX4201/MAX4202  
HARMONIC DISTORTION vs. FREQUENCY  
0
100  
0
V
= 2Vp-p  
V
IN  
= 2Vp-p  
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
THIRD HARMONIC  
THIRD HARMONIC  
10  
SECOND HARMONIC  
1M  
SECOND HARMONIC  
1M  
-100  
1
-100  
100k  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
100k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4201/MAX4204  
OUTPUT IMPEDANCE vs. FREQUENCY  
MAX4203/MAX4204/MAX4205  
CROSSTALK vs. FREQUENCY  
MAX4202/MAX4205  
OUTPUT IMPEDANCE vs. FREQUENCY  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
100  
10  
-100  
10  
10  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
10G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DIFFERENTIAL GAIN AND PHASE  
INPUT VOLTAGE NOISE DENSITY  
vs. FREQUENCY  
INPUT CURRENT NOISE DENSITY  
vs. FREQUENCY  
(R = 150)  
L
100  
1.5  
1.0  
0.5  
0
-0.5  
0
100  
10  
1.0  
0.1  
0.20  
0.15  
0.10  
0.05  
0
1
-0.05  
1
10 100  
1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
0
100  
1
10 100  
1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
IRE  
_______________________________________________________________________________________  
5
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
_________________________________Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= -5V, R = 100for MAX4200/MAX4201/MAX4203/MAX4204, R = 150for MAX4202/MAX4205, unless  
CC  
EE  
L
L
otherwise noted.)  
OUTPUT VOLTAGE SWING vs.  
EXTERNAL LOAD RESISTANCE  
SMALL-SIGNAL PULSE RESPONSE  
GAIN ERROR vs. INPUT VOLTAGE  
MAX4200-21  
10  
9
14  
12  
10  
8
MAX4200/4203  
MAX4201/4204  
IN  
GND  
GND  
8
7
6
VOLTAGE  
50mV/div  
5
6
R = 100Ω  
L
4
OUT  
4
MAX4202/4205  
3
R = 150Ω  
L
2
2
1
0
–MAX4205  
0
50 100 150 200 250 300 350 400  
TIME (5ns/div)  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
EXTERNAL LOAD RESISTANCE ()  
INPUT VOLTAGE (V)  
MAX4200/MAX4203  
SMALL-SIGNAL PULSE RESPONSE  
MAX4201/MAX4202/MAX4204/MAX4205  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
MAX4200-22  
MAX4200-23  
MAX4200-24  
IN  
GND  
GND  
IN  
GND  
GND  
IN  
GND  
GND  
VOLTAGE  
50mV/div  
VOLTAGE  
50mV/div  
VOLTAGE  
1V/div  
OUT  
OUT  
OUT  
C
LOAD  
= 15pF  
C
LOAD  
= 22pF  
TIME (5ns/div)  
TIME (5ns/div)  
TIME (5ns/div)  
6
_______________________________________________________________________________________  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
_________________________________Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= -5V, R = 100for MAX4200/MAX4201/MAX4203/MAX4204, R = 150for MAX4202/MAX4205, unless  
EE L L  
CC  
otherwise noted.)  
SUPPLY CURRENT (PER BUFFER)  
vs. TEMPERATURE  
MAX4201/MAX4202/MAX4204/MAX4205  
MAX4200/MAX4203  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
MAX4200-26  
MAX4200-25  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
IN  
GND  
IN  
GND  
GND  
VOLTAGE  
1V/div  
VOLTAGE  
1V/div  
OUT  
GND  
OUT  
C
LOAD  
= 22pF  
C
LOAD  
= 15pF  
-40  
-15  
10  
35  
60  
85  
TIME (5ns/div)  
TIME (5ns/div)  
TEMPERATURE (°C)  
MAX4200/MAX4203  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
5
4
5
4
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
3
3
R = 150Ω  
L
2
2
R = 100Ω  
L
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
______________________________________________________________Pin Description  
PIN  
MAX4203  
MAX4204  
MAX4205  
MAX4200/MAX4201/MAX4202  
NAME  
FUNCTION  
SOT23-5  
SO  
SO/µMAX  
1
3
1, 2, 5, 8  
N.C.  
IN  
Not Internally Connected  
3
1
Buffer Input  
2
4
IN1  
Buffer 1 Input  
2
OUT1  
Buffer 1 Output  
3
V
EE  
Negative Power Supply  
Negative Power Supply for Buffer 1  
Negative Power Supply for Buffer 2  
Buffer 2 Input  
5
6
V
EE1  
V
EE2  
4
–MAX4205  
5
IN2  
OUT2  
OUT  
6
Buffer 2 Output  
7
Buffer Output  
4
7
V
CC  
Positive Power Supply  
Positive Power Supply for Buffer 2  
Positive Power Supply for Buffer 1  
V
CC2  
V
CC1  
8
These buffers operate with ±5V supplies and consume  
only 2.2mA of quiescent supply current per buffer while  
providing up to ±±0mA of output current drive capability.  
_______________Detailed Description  
The MAX4200–MAX4205 wide-band, open-loop buffers  
feature high slew rates, high output current, low  
2.1nVHz voltage-noise density, and excellent capaci-  
tive-load-driving capability. The MAX4200/MAX4203  
are single/dual buffers with up to 660MHz bandwidth,  
230MHz 0.1dB gain flatness, and a 4200V/µs slew rate.  
The MAX4201/MAX4204 single/dual buffers with inte-  
grated 50output termination resistors, up to 780MHz  
bandwidth, 280MHz gain flatness, and a 4200V/µs slew  
rate, are ideally suited for driving high-speed signals  
over 50cables. The MAX4202/MAX4205 provide  
bandwidths up to 720MHz, 230MHz gain flatness,  
4200V/µs slew rate, and integrated 75output termina-  
tion resistors for driving 75cables.  
__________Applications Information  
Power Supplies  
The MAX4200–MAX4205 operate with dual supplies  
from ±4V to ±5.5V. Both V  
and V  
should be  
EE  
CC  
bypassed to the ground plane with a 0.1µF capacitor  
located as close to the device pin as possible.  
Layout Techniques  
Maxim recommends using microstrip and stripline tech-  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the amplifier’s performance,  
design it for a frequency greater than 6GHz. Pay care-  
ful attention to inputs and outputs to avoid large para-  
sitic capacitance. Whether or not you use a  
constant-impedance board, observe the following  
guidelines when designing the board:  
With an open-loop gain that is slightly less than +1V/V,  
these devices do not have to be compensated with the  
internal dominant pole (and its associated phase shift)  
that is present in voltage-feedback devices. This fea-  
ture allows the MAX4200–MAX4205 to achieve a nearly  
constant group delay time of 405ps over their full fre-  
quency range, making them well suited for a variety of  
RF and IF signal-processing applications.  
Do not use wire-wrap boards, because they are too  
inductive.  
Do not use IC sockets, because they increase para-  
sitic capacitance and inductance.  
8
_______________________________________________________________________________________  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
Use surface-mount instead of through-hole compo-  
nents for better high-frequency performance.  
Use a PC board with at least two layers; it should be  
50COAX  
R *  
T
as free from voids as possible.  
SOURCE  
Keep signal lines as short and as straight as possi-  
R
50Ω  
L
ble. Do not make ±0° turns; round all corners.  
MAX42_ _  
Input Impedance  
The MAX4200–MAX4205 input impedance looks like a  
500kresistor in parallel with a 2pF capacitor. Since  
these devices operate without negative feedback, there  
is no loop gain to transform the input impedance  
upward, as in closed-loop buffers. Inductive input  
sources (such as an unterminated cable) may react  
with the input capacitance and produce some peaking  
in the buffer’s frequency response. This effect can usu-  
ally be minimized by using a properly terminated trans-  
mission line at the buffer input, as shown in Figure 1.  
*MAX4201/4202/4204/4205 ONLY  
Figure 1. Using a Properly Terminated Input Source  
the bandwidth of the buffer itself is much higher. Also  
note that the isolation resistor forms a divider that  
decreases the voltage delivered to the load.  
Output Current and Gain Sensitivity  
The absence of negative feedback means that open-  
loop buffers have no loop gain to reduce their effective  
output impedance. As a result, open-loop devices usu-  
ally suffer from decreasing gain as the output current is  
decreased. The MAX4200–MAX4205 include local  
feedback around the buffer’s class-AB output stage to  
ensure low output impedance and reduce gain sensitiv-  
ity to load variations. This feedback also produces  
demand-driven current bias to the output transistors for  
±±0mA (MAX4200/MAX4203) drive capability that is rel-  
atively independent of the output voltage (see Typical  
Operating Characteristics).  
Another concern when driving capacitive loads results  
from the amplifier’s output impedance, which looks  
inductive at high frequency. This inductance forms an  
L-C resonant circuit with the capacitive load and caus-  
es peaking in the buffer’s frequency response.  
Figure 2 shows the frequency response of the  
MAX4200/MAX4203 under different capacitive loads.  
To settle out some of the peaking, the output requires  
an isolation resistor like the one shown in Figure 3.  
Figure 4 is a plot of the MAX4200/MAX4203 frequency  
response with capacitive loading and a 10isolation  
resistor. In many applications, the output termination  
resistors included in the MAX4201/MAX4202/  
MAX4204/MAX4205 will serve this purpose, reducing  
component count and board space. Figure 5 shows the  
MAX4201/MAX4202/MAX4204/MAX4205 frequency  
response with capacitive loads of 47pF, 68pF, and  
120pF.  
Output Capacitive Loading and Stability  
The MAX4200–MAX4205 provide maximum AC perfor-  
mance with no load capacitance. This is the case when  
the load is a properly terminated transmission line.  
However, these devices are designed to drive any load  
capacitance without oscillating, but with reduced AC per-  
formance.  
Coaxial Cable Drivers  
Coaxial cable and other transmission lines are easily dri-  
ven when properly terminated at both ends with their  
characteristic impedance. Driving back-terminated  
transmission lines essentially eliminates the line’s  
capacitance. The MAX4201/MAX4204, with their inte-  
grated 50output termination resistors, are ideal for dri-  
ving 50cables. The MAX4202/MAX4205 include  
integrated 75termination resistors for driving 75Ω  
cables. Note that the output termination resistor forms a  
voltage divider with the load resistance, thereby  
decreasing the amplitude of the signal at the receiving  
end of the cable by one half (see the Typical Application  
Circuit).  
Since the MAX4200–MAX4205 operate in an open-loop  
configuration, there is no negative feedback to be  
transformed into positive feedback through phase shift  
introduced by a capacitive load. Therefore, these  
devices will not oscillate with capacitive loading, unlike  
similar buffers operating in a closed-loop configuration.  
However, a capacitive load reacting with the buffer’s  
output impedance can still affect circuit performance. A  
capacitive load will form a lowpass filter with the  
buffer’s output resistance, thereby limiting system  
bandwidth. With higher capacitive loads, bandwidth is  
dominated by the RC network formed by R and C ;  
T
L
_______________________________________________________________________________________  
9
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
5
V
OUT  
= 100mVp-p  
C = 47pF  
L
4
C = 68pF  
L
3
2
R
ISO  
C = 120pF  
L
1
V
V
OUT  
IN  
0
C
L
-1  
-2  
-3  
MAX4200  
MAX4203  
C = 220pF  
L
-4  
-5  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
–MAX4205  
Figure 2. MAX4200/MAX4203 Small-Signal Gain vs.  
Frequency with Load Capacitance and No Isolation Resistor  
Figure 3. Driving a Capacitive Load Through an Isolation  
Resistor  
5
5
R
V
= 10Ω  
V
OUT  
= 100mVp-p  
ISO  
4
4
= 100mVp-p  
OUT  
3
2
3
2
C = 47pF  
L
C = 47pF  
L
1
1
C = 68pF  
L
C = 68pF  
L
0
0
-1  
-2  
-3  
-1  
-2  
-3  
C = 120pF  
L
C = 120pF  
L
-4  
-5  
-4  
-5  
10M  
100k  
1M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
Figure 4. MAX4200/MAX4203 Small-Signal Gain vs.  
Frequency with Load Capacitance and 10Isolation Resistor  
Figure 5. MAX4201/MAX4202/MAX4204/MAX4205 Small-  
Signal Gain vs. Frequency with Capacitive Load and No  
External Isolation Resistor  
10 ______________________________________________________________________________________  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
–MAX4205  
__________________________________________________________Pin Configurations  
TOP VIEW  
MAX4203  
MAX4204  
MAX4205  
MAX4200  
MAX4201  
MAX4202  
MAX4200  
MAX4201  
MAX4202  
1
2
3
4
8
7
6
5
1
2
3
5
4
1
2
3
4
8
7
6
5
OUT  
N.C.  
V
V
N.C.  
IN1  
N.C.  
N.C.  
IN  
CC1  
CC2  
OUT1  
V
CC  
*R  
T
*R  
T
*R  
T
V
EE  
*R  
T
OUT  
N.C.  
V
EE1  
OUT2  
IN2  
V
V
EE  
EE2  
IN  
V
CC  
SO/µMAX  
SO  
SOT23-5  
* R = 0(MAX4200/MAX4203)  
T
R = 50(MAX4201/MAX4204)  
R = 75(MAX4202/MAX4205)  
T
T
N.C. = NOT INTERNALLY CONNECTED  
___________________Chip Information  
TRANSISTOR COUNTS:  
MAX4200/MAX4201/MAX4202: 33  
MAX4203/MAX4204/MAX4205: 67  
SUBSTRATE CONNECTED TO V  
EE  
______________________________________________________________________________________ 11  
Ultra-High-Speed, Low-Noise, Low-Power,  
SOT23 Open-Loop Buffers  
________________________________________________________Package Information  
–MAX4205  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1±±± Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4205ESA+

Buffer Amplifier, 2 Func, PDSO8, SO-8
MAXIM

MAX4205ESA+T

Buffer Amplifier, 2 Func, PDSO8, SO-8
MAXIM

MAX4205ESA-T

Buffer Amplifier, 2 Func, BIPolar, PDSO8, SO-8
MAXIM

MAX4205EUA

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers
MAXIM

MAX4205EUA+

Buffer Amplifier, 2 Func, BIPolar, PDSO8, UMAX-8
MAXIM

MAX4205EUA+T

Buffer Amplifier, 2 Func, BIPolar, PDSO8, UMAX-8
MAXIM

MAX4205EUA-T

Ultra-High-Speed, Low-Noise, Low-Power, SOT23 Open-Loop Buffers
MAXIM

MAX4206

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range
MAXIM

MAX4206ETE

Precision Transimpedance Logarithmic Amplifier with Over 5 Decades of Dynamic Range
MAXIM

MAX4206ETE+

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4206ETE+T

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX4206ETE-T

Buffer Amplifier, 1 Func, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM