MAX4211EEUE [MAXIM]

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO16, MO-153AB, TSSOP-16;
MAX4211EEUE
型号: MAX4211EEUE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO16, MO-153AB, TSSOP-16

信息通信管理 光电二极管
文件: 总32页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3285; Rev 1; 5/05  
High-Side Power and  
Current Monitors  
General Description  
Features  
The MAX4210/MAX4211 low-cost, low-power, high-side  
power/current monitors provide an analog output volt-  
age proportional to the power consumed by a load by  
multiplying load current and source voltage. The  
MAX4210/MAX4211 measure load current by using a  
high-side current-sense amplifier, making them espe-  
cially useful in battery-powered systems by not interfer-  
ing with the ground path of the load.  
o Real-Time Current and Power Monitoring  
o ±±1.5 ꢀmaꢁx Current-ꢂenꢃe ꢄAAuraAc  
o ±±1.5 ꢀmaꢁx Power-ꢂenꢃe ꢄAAuraAc  
o Two UnAommitted Comparatorꢃ ꢀMꢄX42±±x  
o ±12±V ReferenAe Output ꢀMꢄX42±±x  
o Three Current/Power Gain Optionꢃ  
o ±00mV/±.0mV Current-ꢂenꢃe Full-ꢂAale Voltage  
o +4V to +28V Input ꢂourAe Voltage Range  
o +217V to +.1.V Power-ꢂupplc Voltage Range  
o Low ꢂupplc Current: 380µꢄ ꢀMꢄX42±0x  
o 220kHz Bandwidth  
The MAX4210 is a small, simple 6-pin power monitor  
intended for limited board space applications. The  
MAX4210A/B/C integrate an internal 25:1 resistor-divider  
network to reduce component count. The MAX4210D/E/F  
use an external resistor-divider network for greater design  
flexibility.  
o ꢂmall 6-Pin TDFN and 8-Pin µMꢄX PaAkageꢃ  
ꢀMꢄX42±0x  
The MAX4211 is a full-featured current and power mon-  
itor. The device combines a high-side current-sense  
amplifier, 1.21V bandgap reference, and two compara-  
tors with open-drain outputs to make detector circuits  
for overpower, overcurrent, and/or overvoltage condi-  
tions. The open-drain outputs can be connected to  
potentials as high as 28V, suitable for driving high-side  
switches for circuit-breaker applications.  
Ordering Information  
TOP  
PꢄRT  
TEMP RꢄNGE PIN-PꢄCKꢄGE  
MꢄRK  
AHF  
6 TDFN-6-EP*  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
MꢄX42±0AETT-T -40°C to +85°C  
Both the MAX4210/MAX4211 feature three different cur-  
rent-sense amplifier gain options: 16.67V/V, 25.00V/V, and  
40.96V/V. The MAX4210 is available in 3mm x 3mm, 6-pin  
MAX4210AEUA  
*EP = Exposed paddle.  
®
Ordering Information continued at end of data sheet.  
TDFN and 8-pin µMAX packages and the MAX4211 is  
available in 4mm x 4mm, 16-pin thin QFN and 16-pin  
TSSOP packages. Both parts are specified for the -40°C  
to +85°C extended operating temperature range.  
Functional Diagrams  
V
SENSE  
+
-
R
SENSE  
Applications  
+
-
4V TO  
28V  
LOAD  
RS+  
RS-  
Overpower Circuit Breakers  
Smart Battery Packs/Chargers  
Smart Peripheral Control  
Short-Circuit Protection  
Power-Supply Displays  
Measurement Instrumentation  
Baseband Analog Multipliers  
VGA Circuits  
V
CC  
+
-
2.7V TO  
5.5V  
IOUT  
25:1  
POUT  
REF  
1.21V  
REFERENCE  
INHIBIT  
CIN1+  
COUT1  
LE  
CIN1-  
CIN2+  
Power-Level Detectors  
COUT2  
CIN2-  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
MAX4211A  
MAX4211B  
MAX4211C  
GND  
Pin Configurations and Selector Guide appear at end of data  
sheet.  
Functional Diagrams continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Side Power and  
Current Monitors  
ꢄBꢂOLUTE MꢄXIMUM RꢄTINGꢂ  
CC  
RS+, RS-, INHIBIT, LE, COUT1, COUT2 to GND...-0.3V to +30V  
IOUT, POUT, REF to GND..........................-0.3V to (V + 0.3V)  
V
, IN, CIN1, CIN2 to GND....................................-0.3V to +6V  
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW  
16-Pin TSSOP (derate 9.4mW/°C above +70°C) ..........754mW  
16-Pin Thin QFN (derate 25mW/°C above +70°C) .....2000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
Differential Input Voltage (V  
- V ) ................................. 5V  
RS+  
RS-  
Maximum Current into Any Pin.......................................... 10mA  
Output Short-Circuit Duration to V or GND ........................10s  
CC  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin TDFN (derate 24.4mW/°C above +70°C) ..........1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
A
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2  
CC  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
MꢄX  
UNITꢂ  
Operating Voltage Range  
(Note 2)  
V
2.7  
5.5  
V
CC  
Common-Mode Input Range  
(Note 3)  
V
Measured at RS+  
= +25°C,  
4
28  
V
CMR  
MAX4210  
380  
670  
570  
960  
670  
1100  
25  
T
A
V
= +5.5V  
CC  
MAX4211  
Supply Current  
I
µA  
CC  
MAX4210  
V
= +5.5V  
CC  
MAX4211  
MAX421_A/B/C  
MAX421_D/E/F  
14  
3
I
V
V
= 0mV  
= 0mV  
RS+  
SENSE  
SENSE  
Input Bias Current  
µA  
8
I
3
8
RS-  
IN Input Bias Current  
Leakage Current  
I
MAX421_D/E/F  
= 0V  
-0.1  
0.1  
-1  
µA  
µA  
IN  
I
, I  
V
1
RS+ RS-  
CC  
MAX421_A/B/D/E  
MAX421_C/F  
150  
100  
V
Full-Scale Voltage  
SENSE  
V
mV  
V
SENSE_FS  
(Note 4)  
IN Full-Scale Voltage  
(Note 4)  
MAX421_D/E/F, V  
100mV  
= 10mV to  
= 10mV to  
= 10mV to  
= 10mV to  
SENSE  
SENSE  
V
1
0.16  
25  
4
IN_FS  
IN Input Voltage Range  
(Note 5)  
MAX421_D/E/F, V  
100mV  
V
1.10  
28  
V
IN  
V
Full-Scale Voltage  
MAX421_A/B/C, V  
100mV  
RS+  
SENSE  
SENSE  
V
(Note 4)  
V
Input Voltage Range  
MAX421_A/B/C, V  
100mV  
RS+  
V
V
RS+  
(Note 5)  
Current into IOUT = 10µA  
Current into IOUT = 100µA  
Current into POUT = 10µA  
Current into POUT = 100µA  
1.5  
2.5  
1.5  
2.5  
V
0V, V  
25V  
=
SENSE  
80  
80  
Minimum IOUT/POUT Voltage  
V
mV  
V
=
OUT_MIN  
RS+  
Current out of  
IOUT = 500µA  
V
-
CC  
0.25  
V
=
SENSE  
Maximum IOUT/POUT Voltage  
(Note 6)  
V
300mV,  
= 25V  
OUT_MAX  
Current out of  
POUT = 500µA  
V
-
CC  
0.25  
V
RS+  
2
_______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
A
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2  
CC  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
16.67  
25.00  
40.96  
0.667  
1.00  
1.64  
16.67  
25.00  
40.96  
80  
MꢄX  
UNITꢂ  
MAX4211A/D  
MAX4211B/E  
MAX4211C/F  
MAX421_A  
MAX421_B  
MAX421_C  
MAX421_D  
MAX421_E  
MAX421_F  
V
/
IOUT  
Current-Sense Amplifier Gain  
Power-Sense Amplifier Gain  
V/V  
V
SENSE  
V
/
POUT  
(V  
SENSE  
x
V
)
RS+  
1/V  
V
/
POUT  
(V  
x V )  
IN  
SENSE  
IOUT Common-Mode Rejection  
POUT Common-Mode Rejection  
IOUT Power-Supply Rejection  
POUT Power-Supply Rejection  
CMRI  
MAX4211, V  
= 4V to 28V  
60  
60  
52  
52  
dB  
dB  
dB  
dB  
RS+  
CMRP  
PSRI  
MAX421_D/E/F, V  
= 4V to 28V  
80  
RS+  
V
V
= 2.7V to 5.5V  
80  
CC  
CC  
PSRP  
= 2.7V to 5.5V  
70  
Output Resistance for POUT,  
IOUT, REF  
R
OUT  
0.5  
IOUT -3dB Bandwidth  
BW  
V
V
= 100mV, V  
= 100mV, V  
AC source  
220  
220  
kHz  
IOUT/SENSE  
SENSE  
SENSE  
SENSE  
BW  
AC source  
POUT/SENSE  
SENSE  
V
= 100mV, V AC source,  
IN  
SENSE  
BW  
500  
250  
450  
POUT/VIN  
MAX421_D/E/F  
POUT -3dB Bandwidth  
kHz  
V
= 100mV, V AC source,  
RS+  
SENSE  
BW  
POUT/RS+  
MAX421_A/B/C  
Capacitive-Load Stability  
(POUT, IOUT, REF)  
C
No sustained oscillations  
pF  
µs  
LOAD  
V
V
V
V
= 10mV to 100mV  
= 100mV to 10mV  
= 10mV to 100mV  
= 100mV to 10mV  
15  
15  
10  
10  
SENSE  
SENSE  
SENSE  
SENSE  
Current Output (IOUT) Settling  
Time to 1% of Final Value  
MAX4211  
V
V
= 4V to 25V,  
RS+  
MAX421_A/B/C  
15  
15  
= 100mV  
SENSE  
V
V
= 25V to 4V,  
RS+  
= 100mV  
SENSE  
Power Output (POUT) Settling  
Time to 1% of Final Value  
µs  
V
V
= 10mV to 100mV  
= 100mV to 10mV  
10  
10  
SENSE  
SENSE  
V
V
= 160mV to 1V,  
IN  
MAX421_D/E/F  
10  
10  
= 100mV  
SENSE  
V
V
= 1V to 160mV,  
IN  
= 100mV  
SENSE  
_______________________________________________________________________________________  
3
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
A
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2  
CC  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
MꢄX  
UNITꢂ  
Power-Up Time to 1% of  
Current Output Final Value  
V
= 100mV, C  
= 10pF,  
SENSE  
LOAD  
100  
µs  
MAX4211  
Power-Up Time to 1% of Power  
Output Final Value  
V
= 100mV, C  
= 10pF  
100  
µs  
µs  
SENSE  
LOAD  
C
= 10pF, V  
= -100mV to  
LOAD  
SENSE  
35  
35  
25  
Saturation Recovery Time for  
Current Out (Note 7)  
+100mV  
C
= 10pF, V  
= 1.5V to 100mV  
LOAD  
SENSE  
V
V
= 5V, V  
= 10V, C  
LOAD  
= 10pF,  
CC  
RS+  
= -100mV to +100mV  
SENSE  
Saturation Recovery Time for  
Power Out (Note 7)  
µs  
V
V
V
= 5V, V  
= 10V, C  
RS+ LOAD  
= 10pF,  
CC  
25  
= 1.5V to 100mV  
SENSE  
I
I
= 0 to 100µA, T = +25°C  
1.20  
1.19  
1.21  
1.22  
1.23  
5
REF  
A
Reference Voltage  
V
REF  
= 0 to 100µA, T = -40°C to +85°C  
REF  
A
Comparator Input Offset  
Comparator Hysteresis  
Common-mode voltage = REF  
0.5  
5
mV  
mV  
Comparator Common-Mode  
Low  
Functional test  
Functional test  
0.1  
V
Comparator Common-Mode  
High  
V
-
CC  
V
nA  
V
1.15  
Comparator Input Bias Current  
I
BIAS  
-2  
Comparator Output Low  
Voltage  
V
I
= 1mA  
0.2  
0.6  
1
OL  
SINK  
Comparator Output-High  
Leakage Current (Note 8)  
V
= 28V  
µA  
V
PULLUP  
LE Logic Input-High Voltage  
Threshold  
0.67 x  
V
IH  
V
CC  
LE Logic Input-Low Voltage  
Threshold  
0.33 x  
V
V
IL  
V
CC  
LE Logic Input Internal  
Pulldown Current  
0.68  
1.3  
1
2.20  
µA  
V
INHIBIT Logic Input-High  
Voltage Threshold  
INHIBIT Logic Input-Low  
Voltage Threshold  
0.5  
V
V
INHIBIT Logic Input Hysteresis  
0.6  
1
INHIBIT Logic Input Internal  
Pulldown Current  
0.68  
2.20  
µA  
4
_______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2 CC A  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
, t  
CONDITIONꢂ  
MIN  
TYP  
MꢄX  
UNITꢂ  
Comparator Propagation  
Delay  
C
= 10pF, R  
= 10kpullup to  
LOAD  
LOAD  
t
4
µs  
PD+ PD-  
V
, 5mV overdrive  
CC  
Minimum INHIBIT Pulse  
Width  
1
1
µs  
µs  
Minimum LE Pulse Width  
Comparator Power-Up  
t
V
V
from 0 to (2.7V to 5.5V)  
300  
3
µs  
µs  
ON  
CC  
Blanking Time From V  
LATCH Setup Time  
CC  
t
SETUP  
MꢄX42±0ꢄ/MꢄX42±±ꢄ ꢀpower gain = 01667x  
T
A
T
A
T
A
T
A
= +25°C  
0.5  
0.5  
1.5  
3.0  
1.5  
3.0  
V  
V  
/
= 10mV to  
SENSE  
POUT  
100mV, V  
= 25V  
SENSE  
RS+  
= T  
to T  
MIN  
MAX  
POUT Gain Accuracy  
(Note 9)  
%
= +25°C  
= T to T  
V  
/
V
V
= 100mV,  
SENSE  
POUT  
V  
= 5V to 25V  
RS+  
RS+  
MIN  
MAX  
V
= 5mV to  
SENSE  
T
T
= +25°C  
0.15  
0.2  
1.5  
3.0  
A
A
V  
/
/
POUT_MAX  
FSO  
100mV, V  
25V  
= 5V to  
% FSO*  
RS+  
= T  
to T  
MIN  
MAX  
T
T
= +25°C  
1.5  
3.0  
A
V
V
= 150mV,  
15V  
SENSE  
Total POUT Output Error  
(Note 10)  
RS+  
= T  
to T  
A
MIN  
MAX  
V
V
V
V
= 100mV, V  
= 100mV, V  
4V  
9V  
2.5  
1.2  
1.8  
1.8  
1.5  
V  
SENSE  
SENSE  
SENSE  
SENSE  
RS+  
POUT_MAX  
%
V
POUT  
RS+  
= 50mV, V  
= 25mV, V  
6V  
RS+  
RS+  
15V  
T
= +25°C  
5
POUT Output Offset Voltage  
(Note 11)  
V
V
= 0V,  
= 25V  
A
A
SENSE  
mV  
RS+  
T
= T  
to T  
15  
MIN  
MAX  
MꢄX42±0B/MꢄX42±±B ꢀpower gain = ±100x  
T
A
T
A
T
A
T
A
= +25°C  
0.5  
0.5  
1.5  
3.0  
1.5  
3.0  
V  
V  
/
V
= 10mV to  
POUT  
SENSE  
100mV, V  
= 25V  
SENSE  
RS+  
= T  
to T  
MIN  
MAX  
POUT Gain Accuracy  
(Note 9)  
%
= +25°C  
= T to T  
V  
V  
/
V
V
= 100mV,  
SENSE  
= 5V to 25V  
RS+  
POUT  
RS+  
MIN  
MAX  
*FSO refers to full-scale output under the conditions: V  
= 100mV, V = +25V, or V = 1V.  
RS+ IN  
SENSE  
_______________________________________________________________________________________  
.
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
A
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2  
CC  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
MꢄX  
UNITꢂ  
V
= 5mV to  
SENSE  
T
T
= +25°C  
0.15  
1.5  
A
V  
/
POUT_MAX  
FSO  
% FSO*  
100mV, V  
25V  
= 5V to  
RS+  
= T  
to T  
3.0  
A
MIN  
MAX  
T
T
= +25°C  
0.2  
1.5  
3.0  
A
V
V
= 150mV,  
> 15V  
SENSE  
Total POUT Output Error  
(Note 10)  
RS+  
= T  
to T  
A
MIN  
MAX  
V
V
V
V
= 100mV, V  
= 100mV, V  
> 4V  
> 9V  
2.5  
1.2  
1.8  
1.8  
2
V  
/
SENSE  
SENSE  
SENSE  
SENSE  
RS+  
RS+  
POUT_MAX  
%
V
POUT  
= 50mV, V  
= 25mV, V  
> 6V  
RS+  
RS+  
> 15V  
T
= +25°C  
6.5  
20  
POUT Output Offset Voltage  
(Note 11)  
V
V
= 0V,  
= 25V  
A
A
SENSE  
mV  
RS+  
T
= T to T  
MIN MAX  
MꢄX42±0C/MꢄX42±±C ꢀpower gain = ±164x  
T
T
T
T
T
= +25°C  
0.5  
0.5  
1.5  
3.0  
1.5  
3.0  
1.5  
A
A
A
A
A
V  
V  
/
V
= 10mV to  
POUT  
SENSE  
SENSE  
100mV, V  
= 25V  
RS+  
= T  
to T  
MIN  
MAX  
POUT Gain Accuracy  
(Note 9)  
%
= +25°C  
= T to T  
V  
V  
/
V
V
= 100mV,  
SENSE  
POUT  
= 5V to 25V  
RS+  
RS+  
MIN  
MAX  
V
= 5mV to  
SENSE  
= +25°C  
= T to T  
MAX  
0.15  
V  
/
/
POUT_MAX  
FSO  
% FSO*  
100mV, V  
to 25V  
= 5V  
RS+  
T
A
3.0  
MIN  
Total POUT Output Error  
(Note 10)  
V
V
V
V
= 100mV, V  
= 100mV, V  
4V  
9V  
2.5  
1.2  
1.8  
1.8  
SENSE  
SENSE  
SENSE  
SENSE  
RS+  
RS+  
V  
POUT_MAX  
%
V
POUT  
= 50mV, V  
= 25mV, V  
6V  
RS+  
RS+  
15V  
T
= +25°C  
3
10  
30  
POUT Output Offset Voltage  
(Note 11)  
V
V
= 0V,  
= 25V  
A
A
SENSE  
mV  
RS+  
T
= T  
to T  
MAX  
MIN  
MꢄX42±0D/MꢄX42±±D ꢀpower gain = ±6167x  
T
A
T
A
T
A
T
A
= +25°C  
0.5  
0.5  
1.5  
3.0  
1.5  
3.0  
V  
V  
/
V
= 10mV to  
POUT  
SENSE  
100mV, V = 1V  
SENSE  
IN  
= T  
to T  
MIN  
MAX  
POUT Gain Accuracy  
(Note 9)  
%
= +25°C  
= T to T  
V  
V  
/
V
V
= 100mV,  
SENSE  
= 0.2V to 1V  
IN  
POUT  
IN  
MIN  
MAX  
*FSO refers to full-scale output under the conditions: V  
= 100mV, V = +25V, or V = 1V.  
RS+ IN  
SENSE  
6
_______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
A
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2  
CC  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
MꢄX  
UNITꢂ  
V
= 5mV to  
SENSE  
T
T
= +25°C  
0.15  
1.5  
A
V  
/
POUT_MAX  
FSO  
100mV, V  
V
= 25V,  
% FSO*  
RS+  
= T  
to T  
3.0  
A
MIN  
MAX  
= 0.2V to 1V  
IN  
T
T
= +25°C  
0.2  
1.5  
3.0  
A
V
= 150mV, V  
SENSE  
RS+  
= 25V, V = 600mV  
IN  
= T  
to T  
A
MIN  
MAX  
V
V
= 100mV, V  
160mV  
= 15V,  
SENSE  
RS+  
RS+  
2.5  
1.2  
1.8  
Total POUT Output Error  
(Note 10)  
IN  
V  
/
V
V
= 100mV, V  
360mV  
= 15V,  
POUT_MAX  
SENSE  
%
V
IN  
POUT  
V
V
= 50mV, V  
= 25mV, V  
= 0V,  
= 15V,  
= 15V,  
SENSE  
RS+  
RS+  
240mV  
IN  
V
V
SENSE  
1.8  
1.5  
600mV  
IN  
T
T
= +25°C  
5
A
POUT Output Offset Voltage  
(Note 11)  
V
V
SENSE  
mV  
= 25V, V = 1V  
RS+  
IN  
= T  
to T  
15  
A
MIN  
MAX  
MꢄX42±0E/MꢄX42±±E ꢀpower gain = 2.100x  
T
A
T
A
T
A
T
A
= +25°C  
0.5  
0.5  
1.5  
3.0  
1.5  
3.0  
V  
V  
/
V
= 10mV to  
SENSE  
POUT  
100mV, V = 1V  
= T  
to T  
SENSE  
IN  
MIN  
MAX  
POUT Gain Accuracy  
(Note 9)  
%
= +25°C  
= T to T  
V  
V  
/
V
V
= 100mV,  
SENSE  
POUT  
= 0.2V to 1V  
IN  
IN  
MIN  
MAX  
V
= 5mV to  
SENSE  
T
A
T
A
T
A
T
A
= +25°C  
0.15  
0.2  
1.5  
3.0  
1.5  
3.0  
V  
/
POUT_MAX  
FSO  
100mV, V  
V
= 25V,  
% FSO*  
RS+  
= T  
to T  
= 0.2V to 1V  
MIN  
MAX  
IN  
V
V
= 150mV,  
SENSE  
= +25°C  
= T to T  
=25V, V  
=
IN  
RS+  
600mV  
MIN  
MAX  
V
V
= 100mV, V  
= 100mV, V  
= 15V,  
= 15V,  
15V,  
SENSE  
RS+  
Total POUT Output Error  
(Note 10)  
2.5  
1.2  
1.8  
160mV  
IN  
V  
/
POUT_MAX  
%
V
V
SENSE  
RS+  
V
POUT  
360mV  
IN  
V
V
= 50mV, V  
= 25mV, V  
= 0V,  
SENSE  
RS+ =  
240mV  
IN  
V
V
= 15V,  
RS+  
SENSE  
1.8  
2
600mV  
IN  
T
T
= +25°C  
6.5  
20  
A
POUT Output Offset Voltage  
(Note 11)  
V
V
SENSE  
mV  
= 25V, V = 1V  
RS+  
IN  
= T  
to T  
MIN MAX  
A
*FSO refers to full-scale output under the conditions: V  
= 100mV, V = +25V, or V = 1V.  
RS+ IN  
SENSE  
_______________________________________________________________________________________  
7
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2 CC A  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
0.5  
MꢄX  
UNITꢂ  
MꢄX42±0F/MꢄX42±±F ꢀpower gain = 40196x  
T
A
T
A
T
A
T
A
= +25°C  
1.5  
3.0  
1.5  
3.0  
V  
V  
/
V
= 10mV to  
SENSE  
100mV, V = 1V  
POUT  
SENSE  
IN  
= T  
to T  
POUT Gain Accuracy  
(Note 9)  
MIN  
MAX  
MAX  
%
= +25°C  
= T to T  
0.5  
V  
/
V
V
= 100mV,  
SENSE  
= 0.2V to 1V  
POUT  
V  
IN  
IN  
MIN  
V
= 5mV to  
SENSE  
T
= +25°C  
0.15  
1.5  
3.0  
A
A
V  
/
/
POUT_MAX  
FSO  
100mV, V  
V
= 25V,  
% FSO*  
RS+  
T
= T  
to T  
MAX  
= 0.2V to 1V  
MIN  
IN  
V
V
= 100mV, V  
160mV  
= 15V,  
= 15V,  
15V,  
SENSE  
RS+  
RS+  
2.5  
1.2  
1.8  
IN  
Total POUT Output Error  
(Note 10)  
V
V
= 100mV, V  
360mV  
SENSE  
IN  
V  
POUT_MAX  
%
V
POUT  
V
V
= 50mV, V  
= 25mV, V  
= 0V,  
SENSE  
RS+ =  
240mV  
IN  
V
V
= 15V,  
RS+  
SENSE  
1.8  
3
600mV  
IN  
T
T
= +25°C  
10  
30  
A
POUT Output Offset Voltage  
(Note 11)  
V
V
SENSE  
mV  
= 25V, V = 1V  
RS+  
IN  
= T to T  
MIN MAX  
A
MꢄX42±±ꢄ/MꢄX42±±D ꢀAurrent gain = ±6167x  
T
T
T
T
T
= +25°C  
0.5  
0.15  
0.2  
1.5  
3.0  
1.5  
3.0  
1.5  
3.0  
A
A
A
A
A
V  
/
V
= 20mV to  
SENSE  
IOUT  
IOUT Gain Accuracy  
%
V  
100mV, V  
= 25V  
RS+  
SENSE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
= +25°C  
= T to T  
V  
/
V
= 5mV to  
IOUT_MAX  
FSO  
SENSE  
% FSO*  
100mV  
MIN  
= +25°C  
to T  
V
= 150mV  
SENSE  
Total IOUT Output Error  
(Note 10)  
T = T  
A
MIN  
V  
_
/
IOUT MAX  
V
V
V
= 50mV  
= 25mV  
= 5mV  
1.2  
1.8  
20  
%
SENSE  
SENSE  
SENSE  
V
IOUT  
*FSO refers to full-scale output under the conditions: V  
= 100mV, V = +25V, or V = 1V.  
RS+ IN  
SENSE  
8
_______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
ELECTRICꢄL CHꢄRꢄCTERIꢂTICꢂ ꢀAontinuedx  
(V  
= 5.0V, V  
= 25V, V  
= 5mV, V = 1.0V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
GND, V  
RS+  
= 0V, R  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= R  
= 5kconnected to V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
INHIBIT  
COUT1  
COUT2 CC A  
T
A
= +25°C, unless otherwise noted.) (Note 1)  
PꢄRꢄMETER  
ꢂYMBOL  
CONDITIONꢂ  
MIN  
TYP  
0.5  
MꢄX  
UNITꢂ  
MꢄX42±±B/MꢄX42±±E ꢀAurrent gain = 2.100x  
T
T
T
T
T
T
= +25°C  
1.5  
3.0  
1.5  
3.0  
1.5  
3.0  
A
A
A
A
A
V  
/
V
= 20mV to  
SENSE  
IOUT  
IOUT Gain Accuracy  
%
V  
100mV, V  
= 25V  
RS+  
SENSE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
= +25°C  
= T to T  
0.15  
0.2  
V  
/
V
= 5mV to  
IOUT_MAX  
FSO  
SENSE  
% FSO*  
100mV  
MIN  
= +25°C  
= T to T  
V
= 150mV  
SENSE  
Total IOUT Output Error  
(Note 10)  
A
MIN  
V  
_
/
IOUT MAX  
%
V
V
V
= 50mV  
= 25mV  
= 5mV  
1.2  
1.8  
20  
SENSE  
SENSE  
SENSE  
V
IOUT  
MꢄX42±±C/MꢄX42±±F ꢀAurrent gain = 40196x  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
0.5  
0.15  
0.2  
1.5  
3.0  
1.5  
3.0  
1.5  
3.0  
V  
/
V
= 20mV to  
=25V  
RS+  
IOUT  
SENSE  
IOUT Gain Accuracy  
%
V  
100mV, V  
SENSE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
= +25°C  
= T to T  
V  
V  
/
V
= 5mV to  
IOUT_MAX  
FSO  
SENSE  
% FSO*  
100mV  
MIN  
= +25°C  
= T to T  
V
= 100mV  
SENSE  
Total IOUT Output Error  
(Note 10)  
MIN  
_
/
IOUT MAX  
%
V
V
V
= 50mV  
= 25mV  
= 5mV  
1.2  
1.8  
20  
SENSE  
SENSE  
SENSE  
V
IOUT  
*FSO refers to full-scale output under the conditions: V  
= 100mV, V = +25V, or V = 1V.  
RS+ IN  
SENSE  
Note ±: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Guaranteed by power-supply rejection test.  
Note 3: Guaranteed by output voltage error tests (IOUT).  
Note 4: Guaranteed by output voltage error tests (IOUT or POUT, or both).  
Note .: IN Input Voltage Range (MAX421_D/E/F) and V  
Input Voltage Range (MAX421_A/B/C) are guaranteed by design  
RS+  
(GBD) and not production tested. See Multiplier Transfer Characteristics graphs in the Typical Operating Characteristics.  
Note 6: This test does not apply to the low gain options, MAX421_A/D, because OUT is clamped at approximately 4V.  
Note 7: The device does not experience phase reversal when overdriven.  
Note 8:  
V
is defined as an externally applied voltage through a resistor, R  
, to pull up the comparator output.  
PULLUP  
PULLUP  
Note 9: POUT gain accuracy is the sum of gain error and multiplier nonlinearity.  
Note ±0: Total output voltage error is the sum of gain and offset voltage errors.  
Note ±±: POUT Output Offset Voltage is the sum of offset and multiplier feedthrough.  
_______________________________________________________________________________________  
9
High-Side Power and  
Current Monitors  
Typical Operating Characteristics  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
COUT2 CC A  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
INHIBIT  
COUT1  
SUPPLY CURRENT  
vs. COMMON-MODE VOLTAGE  
MAX4210  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
V
V
= 5mV  
V
= 5mV  
SENSE  
SENSE  
V
V
= 5mV  
SENSE  
CC  
= 5V  
CC  
= 5V  
V
= 5.5V  
CC  
MAX4211  
MAX4210  
V
= 4.0V  
CC  
MAX4211  
V
= 2.7V  
CC  
MAX4210  
4
8
12  
16  
20  
24  
28  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
RS+ VOLTAGE (V)  
TEMPERATURE (°C)  
RS+/RS- BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
RS+/RS- BIAS CURRENT  
vs. TEMPERATURE  
MAX4211  
SUPPLY CURRENT vs. TEMPERATURE  
16  
14  
12  
10  
8
16  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
= 5mV  
SENSE  
14  
12  
10  
8
V
= 5.5V  
RS+ (A/B/C VERSIONS)  
CC  
RS+ (A/B/C VERSIONS)  
V
= 4.0V  
CC  
V
+ = V - = 25V  
V + = V -  
RS RS  
RS  
RS  
6
RS-  
RS-  
6
V
= 2.7V  
CC  
4
4
2
2
RS+ (D/E/F VERSIONS)  
16 20 24  
RS+ (D/E/F VERSIONS)  
0
0
4
8
12  
28  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
POWER OUTPUT ERROR  
vs. SUPPLY VOLTAGE  
CURRENT OUTPUT ERROR  
vs. SUPPLY VOLTAGE  
POWER OUTPUT ERROR  
vs. SENSE VOLTAGE  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
T
= -40°C  
A
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
T
= -40°C  
A
T
= 0°C  
A
T
= 0°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= +25°C  
= +85°C  
A
T
= +25°C  
A
T
= 0°C  
A
T
A
T
= +85°C  
A
T
= +85°C  
A
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
0
25  
50  
75  
100  
125  
150  
SENSE VOLTAGE (mV)  
±0 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Typical Operating Characteristics (continued)  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
COUT2 CC A  
INHIBIT  
COUT1  
CURRENT OUTPUT ERROR  
vs. SENSE VOLTAGE  
POWER OUTPUT ERROR  
vs. IN VOLTAGE  
POWER OUTPUT ERROR vs. V  
+
RS  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
1.0  
0.8  
T
= -40°C  
A
-0.2  
T
= -40°C  
A
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
T
= 0°C  
0.6  
A
0.4  
T = -40°C  
A
T
= 0°C  
A
T
= +85°C  
A
T
= +85°C  
A
0.2  
T
= +25°C  
A
T
= +25°C  
A
0
T
= 0°C  
A
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
T
= +25°C  
A
T
= +85°C  
A
MAX4211B  
10  
4
7
13  
16  
19  
22  
25  
0
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800 1000 1200  
V
+ VOLTAGE (V)  
SENSE VOLTAGE (mV)  
IN VOLTAGE (mV)  
RS  
POWER GAIN vs. TEMPERATURE  
MULTIPLIER TRANSFER CHARACTERISTICS  
CURRENT GAIN vs. TEMPERATURE  
25.10  
25.05  
25.00  
24.95  
24.90  
24.85  
24.80  
2.5  
2.0  
1.5  
1.0  
0.5  
0
25.00  
24.95  
24.90  
24.85  
24.80  
24.75  
24.70  
MAX4211E  
MAX4211D  
V
= 100mV  
MAX4211E  
SENSE  
V
= 70mV  
SENSE  
V
= 30mV  
SENSE  
-40  
-15  
10  
35  
60  
85  
0
0.3  
0.6  
0.9  
1.2  
1.5  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
IN VOLTAGE (V)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
MULTIPLIER TRANSFER CHARACTERISTICS  
MULTIPLIER TRANSFER CHARACTERISTICS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
1.220  
1.215  
1.210  
1.205  
1.200  
MAX4211B  
MAX4211B  
V
= 100mV  
SENSE  
V
+ = 15V  
RS  
4
3
2
1
0
V
+ = 25V  
RS  
V
= 70mV  
SENSE  
V
= 30mV  
SENSE  
V
+ = 4V  
RS  
4
8
12  
16  
20  
24  
28  
0
50  
100  
150  
200  
250  
300  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
RS+ VOLTAGE (V)  
SENSE VOLTAGE (mV)  
______________________________________________________________________________________ ±±  
High-Side Power and  
Current Monitors  
Typical Operating Characteristics (continued)  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
COUT2 CC A  
INHIBIT  
COUT1  
COMPARATOR PROPAGATION DELAY  
vs. OVERDRIVE VOLTAGE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
COMPARATOR PROPAGATION DELAY  
vs. TEMPERATURE  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
1.220  
1.215  
1.210  
1.205  
1.200  
0
50  
100  
150  
200  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
OVERDRIVE VOLTAGE (mV)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMPARATOR OUTPUT VOLTAGE (V  
vs. CURRENT SINK  
)
COMPARATOR OUTPUT VOLTAGE (V  
)
OL  
OL  
COMPARATOR POWER-UP DELAY  
vs. TEMPERATURE  
MAX4210/11 toc24  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
CURRENT SINK = 1mA  
5V  
V
CC  
2V/div  
0V  
5V  
COUT  
2V/div  
0V  
0
200µs/div  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
TEMPERATURE (°C)  
CURRENT SINK (mA)  
POUT POWER-UP DELAY  
COMPARATOR PROPAGATION DELAY  
COMPARATOR AC RESPONSE  
MAX4210/11 toc26  
MAX4210/11 toc27  
MAX4210/11 toc25  
MAX4211E  
C
= 1.21V  
V
= 5mV  
IN-  
OD  
5V  
1.45V  
CIN+  
V
CIN+  
V
CC  
2V/div  
0V  
0.95V  
5V  
2.5V  
5V  
C
POUT  
1V/div  
OUT  
2V/div  
C
OUT  
2V/div  
0V  
0V  
0V  
200µs/div  
2µs/div  
4µs/div  
±2 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Typical Operating Characteristics (continued)  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
COUT2 CC A  
INHIBIT  
COUT1  
IOUT POWER-UP DELAY  
V
CC  
POWER-UP/DOWN RESPONSE POUT  
MAX4210/11 toc28  
MAX4210/11 toc29  
MAX4211E  
V
= 150mV  
SENSE  
5V  
MAX4211E  
V
CC  
V
2V/div  
CC  
2V/div  
0V  
0V  
2.5V  
POUT  
2V/div  
IOUT  
1V/div  
0V  
0V  
200µs/div  
2ms/div  
V
CC  
POWER-UP/DOWN RESPONSE IOUT  
RS POWER-UP/DOWN RESPONSE POUT  
MAX4210/11 toc30  
MAX4210/11 toc31  
V
= 150mV  
SENSE  
10V  
MAX4211E  
V
+
RS  
V
CC  
2V/div  
5V/div  
0V  
V
SENSE  
0V  
2.5V  
POUT  
1V/div  
IOUT  
2V/div  
0V  
0V  
2ms/div  
20ms/div  
POUT SMALL-SIGNAL PULSE RESPONSE  
RS POWER-UP/DOWN RESPONSE IOUT  
MAX4210/11 toc33  
MAX4210/11 toc32  
10V  
V
+
RS  
5V/div  
V
= 10mV  
SENSE  
TO 20mV STEP  
0V  
470pF  
LOAD  
2.5V  
IOUT  
1V/div  
POUT  
100mV/div  
0V  
10µs/div  
20ms/div  
______________________________________________________________________________________ ±3  
High-Side Power and  
Current Monitors  
Typical Operating Characteristics (continued)  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
COUT2 CC A  
INHIBIT  
COUT1  
POUT LARGE-SIGNAL PULSE RESPONSE  
IOUT SMALL-SIGNAL PULSE RESPONSE  
MAX4210/11 toc35  
MAX4210/11 toc34  
470pF  
LOAD  
V
= 10mV  
V
= 10mV  
SENSE  
TO 90mV STEP  
SENSE  
TO 20mV STEP  
470pF  
LOAD  
POUT  
1V/div  
IOUT  
100mV/div  
10µs/div  
10µs/div  
POUT SLEW-RATE PULSE RESPONSE  
IOUT LARGE-SIGNAL PULSE RESPONSE  
MAX4210/11 toc37  
MAX4210/11 toc36  
NO LOAD  
470pF  
LOAD  
V
= 10mV  
SENSE  
TO 90mV STEP  
V
= 10mV  
SENSE  
TO 90mV STEP  
POUT  
1V/div  
POUT  
1V/div  
10µs/div  
10µs/div  
POUT COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
IOUT SLEW-RATE PULSE RESPONSE  
MAX4210/11 toc38  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
NO LOAD  
V
= 100mV  
SENSE  
V
= 10mV  
SENSE  
TO 90mV STEP  
IOUT  
1V/div  
10µs/div  
0.001  
0.01  
0.1  
1
FREQUENCY (MHz)  
±4 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Typical Operating Characteristics (continued)  
(V  
0V, V  
= 5.0V, V  
= 25V, V  
= 100mV, V = 1V, V = 0V, R  
= R  
= 1M, V  
= V  
= V  
, V  
= V  
=
CIN2-  
CC  
RS+  
SENSE  
IN  
LE  
IOUT  
POUT  
CIN1+  
CIN2+  
REF CIN1-  
= 0V, R  
= R  
= 5kconnected to V , T = +25°C, unless otherwise noted.)  
COUT2 CC A  
INHIBIT  
COUT1  
POUT SMALL-SIGNAL GAIN  
vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
IOUT COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
30  
25  
20  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 100mV  
SENSE  
V
= 10mV  
P-P  
SENSE  
0
0.001  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
10  
100  
1k  
10k  
100k  
0.001  
0.01  
0.1  
1
FREQUENCY (Hz)  
FREQUENCY (MHz)  
IOUT SMALL-SIGNAL GAIN  
vs. FREQUENCY  
POUT LARGE-SIGNAL GAIN  
vs. FREQUENCY  
30  
30  
V
= 90mV  
P-P  
SENSE  
V
= 10mV  
P-P  
SENSE  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0.001  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
0.001  
0.01  
0.1  
1
FREQUENCY (MHz)  
IOUT LARGE-SIGNAL GAIN  
vs. FREQUENCY  
IN SMALL-SIGNAL GAIN  
vs. FREQUENCY  
5
30  
25  
20  
15  
10  
5
V
= 90mV  
P-P  
SENSE  
0
V
= 10mV  
P-P  
IN  
MEASURED AT POUT  
V
= 40mV  
SENSE  
-5  
-10  
-15  
-20  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
FREQUENCY (MHz)  
______________________________________________________________________________________ ±.  
High-Side Power and  
Current Monitors  
MAX4210A/B/C Pin Description  
PIN  
NꢄME  
FUNCTION  
6 TDFN  
8 µMꢄX  
1
2
3
4
5
1
GND  
N.C.  
Ground  
2, 3, 6  
No Connection. Not internally connected.  
4
5
7
V
Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V  
to GND.  
CC  
CC  
RS+  
RS-  
Power Connection to External-Sense Resistor and Internal Resistor-Divider  
Load-Side Connection for External-Sense Resistor  
Power Output Voltage. Voltage output proportional to source power (input voltage  
multiplied by load current).  
6
8
POUT  
EP*  
EP  
Exposed Paddle. EP is internally connected to GND.  
*TDFN package only.  
MAX4210D/E/F Pin Description  
PIN  
NꢄME  
FUNCTION  
6 TDFN  
8 µMꢄX  
1
2
3
4
5
1
2
4
5
7
GND  
IN  
Ground  
Multiplier Input Voltage. Voltage input for internal multiplier.  
V
Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V  
Power Connection to External-Sense Resistor  
to GND.  
CC  
CC  
RS+  
RS-  
Load-Side Connection for External-Sense Resistor  
Power Output Voltage. Voltage output proportional to source power (input voltage  
multiplied by load current).  
6
8
POUT  
EP  
EP*  
Exposed Paddle. EP is internally connected to GND.  
No Connection. Not internally connected.  
3, 6  
N.C.  
*TDFN package only.  
±6 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
MAX4211A/B/C Pin Description  
PIN  
±6 THIN QFN  
NꢄME  
FUNCTION  
±6 TꢂꢂOP  
1
2
3
4
V
Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V  
No Connection. Not internally connected.  
to GND.  
CC  
CC  
N.C.  
Latch Enable for Comparator 1. Driving logic low makes the comparator  
transparent (regular comparator). Driving logic high latches the output.  
3
4
5
5
6
7
LE  
COUT1  
INHIBIT  
Open-Drain Comparator 1 Output. LE and INHIBIT control the comparator 1 output.  
INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator  
operation. Drive logic low for normal operation.  
6
7
8
COUT2  
GND  
Open-Drain Comparator 2 Output  
Ground  
9
8
10  
11  
12  
13  
14  
CIN2+  
CIN2-  
CIN1+  
CIN1-  
REF  
Comparator 2 Positive Input  
Comparator 2 Negative Input  
Comparator 1 Positive Input  
Comparator 1 Negative Input  
1.21V Internal Reference Output  
9
10  
11  
12  
Power Output Voltage. Voltage output proportional to source power (input voltage  
multiplied by load current).  
13  
14  
15  
16  
POUT  
IOUT  
Current Output Voltage. Voltage output proportional to V  
(V  
- V ) load  
SENSE RS+ RS-  
current.  
15  
16  
EP  
1
2
RS-  
RS+  
EP*  
Load-Side Connection for External-Sense Resistor  
Power Connection to External-Sense Resistor and Internal Resistor-Divider  
Exposed Paddle. EP is internally connected to GND.  
*Thin QFN package only.  
______________________________________________________________________________________ ±7  
High-Side Power and  
Current Monitors  
MAX4211D/E/F Pin Description  
PIN  
NꢄME  
FUNCTION  
±6 THIN QFN  
±6 TꢂꢂOP  
1
2
3
4
V
Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V  
Multiplier Input Voltage. Voltage input for internal multiplier.  
to GND.  
CC  
CC  
IN  
Latch Enable for Comparator 1. Driving logic low makes the comparator  
transparent (regular comparator). Driving logic high latches the output.  
3
4
5
5
6
7
LE  
COUT1  
INHIBIT  
Open-Drain Comparator 1 Output. Output controlled by LE and INHIBIT.  
INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator  
operation. Drive logic low for normal operation.  
6
7
8
COUT2  
GND  
Open-Drain Comparator 2 Output  
Ground  
9
8
10  
11  
12  
13  
14  
CIN2+  
CIN2-  
CIN1+  
CIN1-  
REF  
Comparator 2 Positive Input  
Comparator 2 Negative Input  
Comparator 1 Positive Input  
Comparator 1 Negative Input  
1.21V Internal Reference Output  
9
10  
11  
12  
Power Output Voltage. Voltage output proportional source power (input voltage  
multiplied by load current).  
13  
14  
15  
16  
POUT  
IOUT  
Current Output Voltage. Voltage output proportional V  
current.  
(V  
- V ) load  
SENSE RS+ RS-  
15  
16  
EP  
1
2
RS-  
RS+  
EP*  
Load-Side Connection for External-Sense Resistor  
Power Connection to External-Sense Resistor  
Exposed Paddle. EP is internally connected to GND.  
*Thin QFN package only.  
Functional Diagrams  
V
R
V
SENSE  
SENSE  
SENSE  
+
-
+
-
R
SENSE  
+
-
+
-
4V TO  
28V  
4V TO  
28V  
LOAD  
LOAD  
RS+  
RS-  
RS+  
RS-  
V
V
CC  
CC  
+
-
+
-
2.7V TO  
5.5V  
2.7V TO  
5.5V  
MAX4210D  
MAX4210E  
MAX4210F  
25:1  
IN  
POUT  
POUT  
+
-
0 TO 1V  
MAX4210A  
MAX4210B  
MAX4210C  
GND  
GND  
±8 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Functional Diagrams (continued)  
V
R
V
SENSE  
SENSE  
SENSE  
+
-
+
-
R
SENSE  
+
-
+
-
4V TO  
28V  
4V TO  
28V  
LOAD  
LOAD  
RS+  
RS-  
RS+  
RS-  
V
CC  
V
CC  
+
-
+
-
2.7V TO  
5.5V  
2.7V TO  
5.5V  
IOUT  
IOUT  
25:1  
IN  
POUT  
POUT  
+
-
0 TO 1V  
REF  
REF  
1.21V  
REFERENCE  
1.21V  
REFERENCE  
INHIBIT  
INHIBIT  
CIN1+  
CIN1+  
COUT1  
LE  
COUT1  
LE  
CIN1-  
CIN2+  
CIN1-  
CIN2+  
COUT2  
COUT2  
CIN2-  
CIN2-  
MAX4211A  
MAX4211B  
MAX4211C  
MAX4211D  
MAX4211E  
MAX4211F  
GND  
GND  
output voltage proportional to that current at IOUT  
(MAX4211). This voltage is fed to the analog multiplier  
for multiplying the load current with a source voltage to  
obtain a voltage proportional to load power at POUT.  
Detailed Description  
The MAX4210/MAX4211 families of current- and power-  
monitoring ICs integrate a precision current-sense  
amplifier and an analog multiplier for a variety of cur-  
rent and power measurements. The MAX4211 inte-  
grates an additional uncommitted 1.21V reference and  
two comparators with open-drain outputs. These fea-  
tures enable the design of detector circuits for over-  
power, overcurrent, overvoltage, or any combination of  
fault conditions. The MAX4210/MAX4211 offer various  
gains, packages, and configurations allowing for  
greater design flexibility and lower overall cost.  
Current-Sense Amplifier  
The integrated current-sense amplifier is a differential  
amplifier that amplifies the voltage across RS+ and RS-.  
A sense resistor, R  
, is connected across RS+  
SENSE  
and RS-. A voltage drop across R  
is developed  
SENSE  
when a load current is passed through it. This voltage  
is amplified and is proportional to the load current. This  
voltage is also fed to the analog multiplier for power-  
sensing applications (see the Analog Multiplier sec-  
tion). The current-sense amplifiers feature three gain  
options: 16.67V/V, 25.0V/V, and 40.96V/V (see Table 1).  
These devices monitor the load current with their high-  
side current-sense amplifiers and provide an analog  
______________________________________________________________________________________ ±9  
High-Side Power and  
Current Monitors  
The common-mode voltage range is +4V to +28V and  
independent of the supply voltage. With this feature, the  
device can monitor the output current of a high-voltage  
source while running at a lower system voltage typically  
between 2.7V and 5.5V.  
where V  
VPOUT  
Table 2.  
is the voltage across RS+ and RS- and  
SENSE  
A
is the amplifier gain of the device given in  
Internal Comparators (MAX4211)  
The MAX4211 features two uncommitted open-drain  
output comparators. These comparators can be config-  
ured to trip when load current or power reaches a set  
limit. They can also be configured as a window com-  
parator with wire-OR output. Comparator 1 (COUT1)  
features latch-enable (LE) and inhibit (INHIBIT) inputs.  
When LE is low, the comparator is transparent (it func-  
tions as a regular unlatched comparator). When LE is  
high, the comparator output (COUT1) is latched. When  
high, the INHIBIT input suspends the comparator oper-  
ation and latches the output to the current state. The  
operation of INHIBIT is similar to LE, except it has a dif-  
ferent input threshold and wider hysteresis. The INHIB-  
IT logic-high threshold is 1.21V and logic-low threshold  
is 0.6V with 0.6V hysteresis. INHIBIT is useful in pre-  
venting the comparator from giving false output during  
fast RS+ transients. INHIBIT is generally triggered by  
an RC network connected to RS+ (see the Applications  
Information). Both comparators have a built-in 300µs  
blanking period at power-up to prevent false outputs.  
The comparator outputs are open drain and they can  
The MAX4211 has a current-sense amplifier output. The  
voltage at IOUT is proportional to the voltage across  
V
:
SENSE  
V
= A  
x V  
IOUT  
VIOUT SENSE  
where V  
VIOUT  
is the voltage across RS+ and RS-, and  
SENSE  
A
is the amplifier gain of the device given in Table 1.  
Analog Multiplier  
The MAX4210/MAX4211 integrate an analog multiplier  
that enables real-time monitoring of power delivered to  
a load. The voltage proportional to the load current is  
fed to one input of the multiplier and a voltage propor-  
tional to the source voltage is fed to the other. The ana-  
log multiplier multiplies these two voltages to obtain an  
output voltage proportional to the load power. The ana-  
log multiplier is designed only to operate in the positive  
quadrant, that is, the inputs and outputs are always  
positive voltages.  
For the MAX4210D/E/F and MAX4211D/E/F, the analog  
multiplier full-scale input at IN is approximately 1V. This  
independent multiplier input allows greater design flexi-  
bility when using an external voltage-divider. For the  
MAX4210A/B/C and MAX4211A/B/C, an integrated volt-  
age-divider divides the source voltage at the RS+ pin  
by a nominal value of 25 and passes this voltage to the  
multiplier. Thus, the full-scale input voltage at RS+ is  
25V. The integrated, trimmed resistor-dividers reduce  
external component count and cost.  
be pulled up to V , RS+, or any voltage less than  
CC  
+28V. LE and INHIBIT are internally pulled down by a  
1µA source.  
Table 21 MꢄX42±0/MꢄX42±± Power-ꢂenꢃe  
ꢄmplifier Gain and Full-ꢂAale ꢂenꢃe  
Voltage  
The voltage output at POUT is proportional to the output  
power:  
POWER-ꢂENꢂE  
ꢄMPLIFIER GꢄIN  
FULL-ꢂCꢄLE  
ꢂENꢂE VOLTꢄGE  
ꢀmVx  
For the MAX4210A/B/C and MAX4211A/B/C:  
PꢄRT  
ꢀꢄ  
, ±/Vx  
VPOUT  
V
= A  
x V  
x V  
POUT  
VPOUT  
SENSE RS+  
MAX4210A  
MAX4210B  
MAX4210C  
MAX4210D  
MAX4210E  
MAX4210F  
MAX4211A  
MAX4211B  
MAX4211C  
MAX4211D  
MAX4211E  
MAX4211F  
0.667  
1.000  
150  
150  
100  
150  
150  
100  
150  
150  
100  
150  
150  
100  
For the MAX4210D/E/F and MAX4211D/E/F:  
= A x V x V  
IN  
V
POUT  
VPOUT  
SENSE  
1.640  
Table ±1 MꢄX42±± Current-ꢂenꢃe  
ꢄmplifier Gain and Full-ꢂAale ꢂenꢃe  
Voltage  
16.670  
25.000  
40.960  
0.667  
CURRENT-ꢂENꢂE  
ꢄMPLIFIER GꢄIN  
FULL-ꢂCꢄLE  
ꢂENꢂE VOLTꢄGE  
ꢀmVx  
PꢄRT  
1.000  
ꢀꢄ  
, V/Vx  
VIOUT  
1.640  
MAX4211A/D  
MAX4211B/E  
MAX4211C/F  
16.67  
150  
150  
100  
16.670  
25.000  
40.960  
25.00  
40.96  
20 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
the comparatorsinputs. This is the comparison refer-  
ence voltage. If a lower reference voltage is needed,  
use an external voltage-divider. The reference can  
source or sink a load current up to 100µA.  
Internal Reference (MAX4211)  
The MAX4211 features a 1.21V bandgap reference out-  
put, stable over supply voltage and temperature.  
Typically, the reference output is connected to one of  
Typical Operating Circuit  
V
R
SENSE  
SENSE  
+
-
+
-
4V TO  
28V  
LOAD  
RS+  
RS-  
V
CC  
+
-
2.7V TO  
5.5V  
IOUT  
C1  
25:1  
POUT  
REF  
R
P
1.21V  
REFERENCE  
R7  
V
PULLUP  
PULLUP  
INHIBIT  
CIN1+  
R3  
R1  
R2  
COUT1  
LE  
CIN1-  
CIN2+  
V
R6  
R4  
COUT2  
CIN2-  
MAX4211A  
MAX4211B  
MAX4211C  
R5  
GND  
______________________________________________________________________________________ 2±  
High-Side Power and  
Current Monitors  
when the current is inside the current window and low  
when the current is outside the window. Note that  
COUT1 and COUT2 are wire-ORed together.  
Applications Information  
Recommended Component Values  
Ideally, the maximum load current develops the full-  
scale sense voltage across the current-sense resistor.  
Choose the gain version needed to yield the maximum  
current-sense amplifier output voltage without saturat-  
ing it. The typical high-side saturation voltage is about  
Overpower Circuit Breaker  
Figure 2 shows a circuit breaker that shuts off current to  
the load when an overpower fault is detected (the same  
circuit can be used to detect overcurrent conditions by  
connecting the R1-R2 resistor-divider to IOUT, instead  
of POUT). This circuit is useful for protecting the battery  
from short-circuit or overpower conditions. When a  
power fault is detected, the P-MOSFET, M1, is turned  
off and stays off until the manual reset button is  
pressed. Also, cycling the input power causes the LE  
pin to go low, which unlatches the comparator output  
OUT1 and resets the circuit breaker.  
V
- 0.25V. The current-sense amplifier output voltage  
CC  
is given by:  
VIOUT = VSENSE x AVIOUT  
where V  
or at IOUT. V  
is the voltage fed to the analog multiplier  
IOUT  
is the sense voltage. A  
is the  
SENSE  
VIOUT  
current-sense amplifier gain of the device specified in  
Table 1. Calculate the maximum value for R so  
SENSE  
During power-up or when the characteristics of the load  
change, there can be an inrush current into the load. The  
temporary inrush current results in a higher voltage at  
POUT. This can bring the voltage at CIN+ above the ref-  
erence voltage at CIN-, and, as a result, COUT1 goes  
high triggering the circuit-breaker function. This unwanted  
behavior can be disabled by bringing comparator 1s  
INHIBIT input high. An RC network connected to INHIBIT  
(R4 and C1) can be incorporated to suspend comparator  
1s operation for a brief period. In this way, short surges in  
load power can be made invisible to the circuit-breaker  
function, while longer term overpower load demands (or a  
load short circuit) still trip the breaker.”  
the differential voltage across RS+ and RS- does not  
exceed the full-scale sense voltage:  
V
SENSE(FULLSCALE)  
R
=
SENSE  
I
LOAD(FULLSCALE)  
Choose the highest value resistance possible to maxi-  
mize V and thus minimize total output error. In  
SENSE  
applications monitoring high current, ensure that  
R
is able to dissipate its own I2R power dissipa-  
SENSE  
tion. If the resistors power dissipation is exceeded, its  
value can drift or it can fail altogether, causing a differ-  
ential voltage across the terminals in excess of the  
absolute maximum ratings. Use resistors specified for  
current-sensing applications.  
The logic-high threshold for INHIBIT is typically 1.2V,  
and the logic-low threshold is 0.6V. During power-up,  
INHIBIT quickly exceeds 1.2V through C1 and inhibits  
COUT1 from changing state. The comparator inputs are  
inhibiteduntil the INHIBIT voltage is discharged to  
0.6V. R3 is a current-limiting resistor, typically 10k,  
which protects the INHIBIT input. Since INHIBIT is a  
high-impedance input, R3 has no effect on the R4-C1  
charge/discharge time. The time during which the com-  
parator is suspended is approximated by:  
Window Comparator  
In some applications where undercurrent or underpow-  
er (open-circuit fault) and overcurrent or overpower  
(short-circuit fault) needs to be monitored, a window  
comparator is desirable. Figure 1 shows a simple circuit  
suitable for window detection. Let P  
be the mini-  
OVER  
mum load power required to cause a low state at  
COUT2, and let P be the maximum load current  
V  
0.6V  
UNDER  
t
= R × C1 In  
4
INHIBIT  
required to cause a high state at COUT1:  
where V is the voltage change at the load. For  
improved transient immunity, t can be increased  
as required, with the understanding that the breaker  
function will be suspended for this period.  
V
R1 + R  
REF  
× R  
2
P
(WATTS) =  
(WATTS) =  
INHIBIT  
UNDER  
A
R
2
VPOUT  
SENSE  
5
V
R4 + R  
REF  
× R  
P
OVER  
If any comparator is not used, its input must be biased  
A
R
5
VPOUT  
SENSE  
to a known state. For example, connect CIN+ to V  
and CIN- to GND.  
CC  
where A  
in Table 2, and V  
is the power-sense amplifier gain given  
VPOUT  
is the internal reference voltage  
REF  
(1.2V, typ). The resulting comparator output is high  
22 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
V
R
SENSE  
+
-
SENSE  
+
-
4V TO  
28V  
LOAD  
RS+  
RS-  
V
CC  
+
-
2.7V TO  
5.5V  
IOUT  
25:1  
POUT  
REF  
1.21V  
REFERENCE  
V
PULLUP  
R1  
R2  
INHIBIT  
CIN1+  
COUT1  
LE  
CIN1-  
CIN2+  
R4  
COUT2  
OVER/  
UNDERPOWER  
CIN2-  
MAX4211A  
MAX4211B  
MAX4211C  
R5  
GND  
Figure 1. Window Comparator for Detecting Underpower and Overpower Faults (Also Detects Undercurrent and Overcurrent Faults  
by R1 and R4 to IOUT Instead of POUT)  
power accurately, choose the MAX4210D/E/F and  
MAX4211D/E/F with an external resistor-divider con-  
nected directly to the load as shown in Figure 4. This  
configuration improves the load-power measurement  
accuracy by excluding the additional power dissipated  
Variable-Gain Amplifier  
Figure 3 shows single-ended input, variable-gain ampli-  
fiers (VGA). This VGA features more than 200kHz band-  
width and is useful in automatic gain-control circuits  
commonly found in baseband processors. The gain is  
by R  
.
controlled by applying 0 to 1V to IN (V ) of the  
GC  
SENSE  
MAX4210D/E/F; 0V corresponds to minimum gain and  
1V corresponds to maximum gain.  
Power-Supply Bypassing  
to GND with a 0.1µF ceramic capacitor to  
Bypass V  
CC  
Measure Load Power  
The MAX4210A/B/C and MAX4211A/B/C have internal  
voltage-divider resistors connected to RS+ and the  
analog multiplier input. This configuration measures  
source power accurately and provides protection to the  
power source such as a battery. To measure the load  
isolate the IC from supply-voltage transients. To pre-  
vent high-frequency coupling, bypass RS+ or RS- with  
a 0.1µF capacitor. On the TDFN and thin QFN pack-  
ages, there is an exposed paddle that does not carry  
any current, but should also be connected to the  
ground plane for rated power dissipation.  
______________________________________________________________________________________ 23  
High-Side Power and  
Current Monitors  
V
R
SENSE  
SENSE  
+
-
M1  
+
-
4V TO  
28V  
LOAD  
R5  
RS+  
RS-  
V
CC  
+
-
2.7V TO  
5.5V  
IOUT  
C1  
25:1  
POUT  
R3  
REF  
1.21V  
REFERENCE  
R4  
R1  
R2  
INHIBIT  
CIN1+  
COUT1  
LE  
CIN1-  
CIN2+  
COUT2  
CIN2-  
RESET  
(FROM µC)  
MANUAL  
RESET  
MAX4211A  
MAX4211B  
MAX4211C  
GND  
Figure 2. Overpower Circuit Breaker (For a Detailed Example, Refer to the MAX4211E EV Kit)  
24 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
V
CC  
MAX4210D/E/F  
RS+  
RS-  
POUT  
R
2
OUTPUT  
V
= V  
OUTPUT  
(R /R ) A  
INPUT  
V  
IN  
IN  
2
1
VPOUT  
INPUT  
V
IN  
GAIN CONTROL  
(0 TO 1V)  
R
1
Figure 3. Single-Ended-Input, Variable-Gain Amplifier  
V
R
SENSE  
+
-
SENSE  
+
-
4V TO  
28V  
RS+  
RS-  
LOAD  
V
CC  
+
-
2.7V TO  
5.5V  
MAX4210D/E/F  
MAX4211D/E/F  
POUT  
IN  
GND  
Figure 4. Load-Power Measurement with External Voltage-Divider  
______________________________________________________________________________________ 2.  
High-Side Power and  
Current Monitors  
Selector Guide  
PIN-  
PꢄRT  
PꢄCKꢄGE  
MAX4210AETT  
MAX4210AEUA 8 µMAX  
MAX4210BETT 6 TDFN  
MAX4210BEUA 8 µMAX  
MAX4210CETT 6 TDFN  
MAX4210CEUA 8 µMAX  
MAX4210DETT 6 TDFN  
MAX4210DEUA 8 µMAX  
MAX4210EETT 6 TDFN  
MAX4210EEUA 8 µMAX  
MAX4210FETT 6 TDFN  
MAX4210FEUA 8 µMAX  
6 TDFN  
0.667  
0.667  
P
P
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
2
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
INT  
INT  
INT  
INT  
INT  
INT  
EXT  
EXT  
EXT  
EXT  
EXT  
EXT  
INT  
INT  
INT  
INT  
INT  
INT  
EXT  
EXT  
EXT  
EXT  
EXT  
EXT  
150  
150  
150  
150  
100  
100  
150  
150  
150  
150  
100  
100  
150  
150  
150  
150  
100  
100  
150  
150  
150  
150  
100  
100  
1.000  
P
1.000  
P
1.640  
P
1.640  
P
16.670  
16.670  
25.000  
25.000  
40.960  
40.960  
0.667  
P
P
P
P
P
P
MAX4211AETE  
16 Thin QFN  
16.67  
16.67  
25.00  
25.00  
40.96  
40.96  
16.67  
16.67  
25.00  
25.00  
40.96  
40.96  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
C/P  
MAX4211AEUE 16 TSSOP  
0.667  
2
MAX4211BETE  
MAX4211BEUE 16 TSSOP  
MAX4211CETE 16 Thin QFN  
MAX4211CEUE 16 TSSOP  
MAX4211DETE 16 Thin QFN  
MAX4211DEUE 16 TSSOP  
MAX4211EETE 16 Thin QFN  
MAX4211EEUE 16 TSSOP  
16 Thin QFN  
1.000  
2
1.000  
2
1.640  
2
1.640  
2
16.670  
16.670  
25.000  
25.000  
40.960  
40.960  
2
2
2
2
MAX4211FETE  
MAX4211FEUE  
16 Thin QFN  
16 TSSOP  
2
2
C = Current Measurement Output Available (IOUT).  
P = Power Measurement Output Available (POUT).  
Y = Yes.  
N = No.  
INT = Internal Resistor-Divider.  
EXT = External Input Pin.  
26 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Ordering Information (continued)  
Chip Information  
MAX4210 TRANSISTOR COUNT: 515  
MAX4211 TRANSISTOR COUNT: 1032  
PROCESS: BiCMOS  
TOP  
MꢄRK  
PꢄRT  
TEMP RꢄNGE PIN-PꢄCKꢄGE  
6 TDFN-6-EP*  
-40°C to +85°C  
MAX4210BETT  
MAX4210BEUA  
MAX4210CETT  
MAX4210CEUA  
MAX4210DETT  
MAX4210DEUA  
MAX4210EETT  
MAX4210EEUA  
MAX4210FETT  
MAX4210FEUA  
MꢄX42±±AETE  
MAX4211AEUE  
MAX4211BETE  
MAX4211BEUE  
MAX4211CETE  
MAX4211CEUE  
MAX4211DETE  
MAX4211DEUE  
MAX4211EETE  
MAX4211EEUE  
MAX4211FETE  
MAX4211FEUE  
AHG  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
6 TDFN-6-EP*  
-40°C to +85°C  
AHH  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
6 TDFN-6-EP*  
-40°C to +85°C  
AHI  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
6 TDFN-6-EP*  
-40°C to +85°C  
AHJ  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
6 TDFN-6-EP*  
-40°C to +85°C  
AHK  
(3mm x 3mm)  
-40°C to +85°C 8 µMAX  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
16 Thin QFN-EP*  
-40°C to +85°C  
(4mm x 4mm)  
-40°C to +85°C 16 TSSOP  
*EP = Exposed paddle.  
______________________________________________________________________________________ 27  
High-Side Power and  
Current Monitors  
Pin Configurations  
TOP VIEW  
5
4
6
GND  
(IN) N.C.  
N.C.  
1
2
3
4
8
7
6
5
POUT  
RS-  
MAX4210  
MAX4210  
N.C.  
RS+  
V
CC  
µMꢄX  
1
2
3
3mm ꢁ 3mm TDFN  
9
12  
10  
11  
RS-  
RS+  
1
2
3
4
5
6
7
8
16 IOUT  
15 POUT  
14 REF  
POUT  
13  
14  
15  
16  
8
CIN2+  
V
CC  
IOUT  
RS-  
7
6
5
GND  
(IN) N.C.  
LE  
MAX4211  
13 CIN1-  
12 CIN1+  
11 CIN2-  
10 CIN2+  
MAX4211  
COUT2  
INHIBIT  
COUT1  
INHIBIT  
COUT2  
RS+  
9
GND  
1
2
3
4
TꢂꢂOP  
4mm ꢁ 4mm THIN QFN  
( ) ARE FOR MAX421_D/E/F.  
28 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www1maꢁim-iA1Aom/paAkageꢃ.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50–0.10 2.30–0.10 0.95 BSC  
1.50–0.10 2.30–0.10 0.95 BSC  
1.50–0.10 2.30–0.10 0.65 BSC  
1.50–0.10 2.30–0.10 0.65 BSC  
1.50–0.10 2.30–0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
0.40–0.05  
0.40–0.05  
0.30–0.05  
0.30–0.05  
0.30–0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50–0.10 2.30–0.10 0.50 BSC MO229 / WEED-3 0.25–0.05  
1.70–0.10 2.30–0.10 0.40 BSC  
1.70–0.10 2.30–0.10 0.40 BSC  
- - - -  
- - - -  
0.20–0.05  
0.20–0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
NOTE: THE TDFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T633-1  
______________________________________________________________________________________ 29  
High-Side Power and  
Current Monitors  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www1maꢁim-iA1Aom/paAkageꢃ.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
21-0139  
D
2
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
21-0139  
D
2
NOTE: THE THIN QFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T1644-4  
30 ______________________________________________________________________________________  
High-Side Power and  
Current Monitors  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www1maꢁim-iA1Aom/paAkageꢃ.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
0.50–0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.60.1  
E
H
0.116  
0.188  
0.016  
0
0.120  
2.95  
4.78  
0.41  
0
3.05  
5.03  
0.66  
6
0.198  
0.026  
6
L
α
S
1
1
0.60.1  
0.0207 BSC  
0.5250 BSC  
D
BOTTOM VIEW  
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
______________________________________________________________________________________ 3±  
High-Side Power and  
Current Monitors  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www1maꢁim-iA1Aom/paAkageꢃ.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY