MAX4241 [MAXIM]

Single/Dual/Quad, !.8V/10レA, SOT23, Beyond-the-Rails Op Amps; 单/双/四路, ! .8V / 10レA, SOT23封装,超摆幅运算放大器
MAX4241
型号: MAX4241
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad, !.8V/10レA, SOT23, Beyond-the-Rails Op Amps
单/双/四路, ! .8V / 10レA, SOT23封装,超摆幅运算放大器

运算放大器
文件: 总16页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1343; Rev 0; 3/98  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX4240–MAX4244 family of micropower op amps  
operate from a single +1.8V to +5.5V supply or dual  
±0.9V to ±2.75V supplies and have Beyond-the-Rails™  
Ultra-Low-Voltage Operation:  
Guaranteed Down to +1.8V  
Typical Operation to +1.5V  
®
inp uts a nd Ra il-to-Ra il outp ut c a p a b ilitie s . The s e  
Ultra-Low Power Consumption:  
10µA Supply Current per Amplifier  
1µA Shutdown Mode (MAX4241/MAX4243)  
Up to 200,000 Hours Operation from Two AA  
Alkaline Cells  
amplifiers provide a 90kHz gain-bandwidth product  
while using only 10µA of supply current per amplifier.  
The MAX4241/MAX4243 have a low-power shutdown  
mode that reduces supply current to less than 1µA and  
forces the output into a high-impedance state. Although  
the minimum operating voltage is specified at +1.8V,  
these devices typically operate down to +1.5V. The  
combination of ultra-low-voltage operation, beyond-the-  
rails inputs, rail-to-rail outputs, and ultra-low power con-  
sumption makes these devices ideal for any portable/  
two-cell battery-powered system.  
Beyond-the-Rails Input Common-Mode Range  
Outputs Swing Rail-to-Rail  
No Phase Reversal for Overdriven Inputs  
200µV Input Offset Voltage  
These amplifiers have an input common-mode range  
that extends 200mV beyond each rail, and their outputs  
typically swing to within 9mV of the rails with a 100k  
load. Beyond-the-rails input and rail-to-rail output char-  
acteristics allow the full power-supply voltage to be  
used for signal range. The combination of low input off-  
set voltage, low input bias current, and high open-loop  
gain makes them suitable for low-power/low-voltage  
precision applications.  
Unity-Gain Stable for Capacitive Loads up to 200pF  
90kHz Gain-Bandwidth Product  
Available in Space-Saving 5-Pin SOT23 and  
8-Pin µMAX Packages  
_______________Ord e rin g In fo rm a t io n  
PIN-  
SOT  
PART  
TEMP. RANGE  
The MAX4240 is offered in a space-saving 5-pin SOT23  
package. All specifications are guaranteed over the  
-40°C to +85°C extended temperature range.  
PACKAGE TOP MARK  
MAX4240EUK-T -40°C to +85°C 5 SOT23-5  
ACCS  
MAX4241EUA  
MAX4241ESA  
MAX4242EUA  
MAX4242ESA  
MAX4243EUB  
MAX4243ESD  
MAX4244ESD  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 SO  
-40°C to +85°C 10 µMAX  
-40°C to +85°C 14 SO  
-40°C to +85°C 14 SO  
________________________Ap p lic a t io n s  
Two-Cell Battery-  
Powered Systems  
Strain Gauges  
Sensor Amplifiers  
Cellular Phones  
Notebook Computers  
PDAs  
Portable/Battery-Powered  
Electronic Equipment  
Digital Scales  
_________________P in Co n fig u ra t io n s  
_____________________S e le c t o r Gu id e  
TOP VIEW  
NO. OF  
AMPS  
PART  
SHUTDOWN  
PIN-PACKAGE  
OUT  
1
2
3
5
4
V
CC  
MAX4240  
MAX4241  
MAX4242  
1
1
2
Yes  
5-pin SOT23  
8-pin µMAX/SO  
8-pin µMAX/SO  
MAX4240  
V
EE  
10-pin µMAX,  
14-pin SO  
MAX4243  
MAX4244  
2
4
Yes  
IN+  
IN-  
14-pin SO  
SOT23-5  
Beyond-the-Rails is a trademark of Maxim Integrated Products.  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )....................................................6V  
10-pin µMAX (derate 5.6mW/°C above +70°C) ............444mW  
14-pin SO (derate 8.33mW/°C above +70°C)...............667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
All Other Pins ...................................(V + 0.3V) to (V - 0.3V)  
CC  
EE  
Output Short-Circuit Duration (to V or V )............Continuous  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
5-pin SOT23 (derate 7.1mW/°C above +70°C).............571mW  
8-pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW  
8-pin SO (derate 5.88mW/°C above +70°C).................471mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS — T = +25°C  
A
(V  
= +1.8V to +5.5V, V = 0, V  
= 0, V  
= V  
/ 2, R = 100ktied to V  
/ 2, SHDN = V , T = +25°C, unless  
CC CC A  
CC  
EE  
CM  
OUT  
CC  
L
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply-Voltage Range  
V
CC  
Inferred from PSRR test  
1.8  
V
V
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
10  
14  
12  
CC  
Supply Current  
per Amplifier  
I
µA  
µA  
SHDN = V  
CC  
CC  
0–MAX24  
V
CC  
18  
V
CC  
1.0  
1.5  
Shutdown Supply  
Current (Note 2)  
I
SHDN = V  
CC(SHDN)  
EE  
V
CC  
2.0  
3.0  
MAX4241ESA  
±0.20  
±0.75  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
±0.20  
±0.25  
±0.88  
±1.40  
(V - 0.2V) V  
(V + 0.2V)  
CC  
EE  
CM  
Input Offset Voltage  
V
OS  
mV  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
Input Bias Current  
Input Offset Current  
I
(Note 3)  
(Note 3)  
±2  
±0.5  
45  
±6  
nA  
nA  
MΩ  
kΩ  
B
I
OS  
±1.5  
V
IN+  
- V  
< 1.0V  
IN-  
Differential Input  
Resistance  
R
IN(DIFF)  
V
IN+  
- V  
> 2.5V  
4.4  
IN-  
Input Common-Mode  
Voltage Range  
V
CM  
Inferred from the CMRR test  
V
EE  
- 0.2  
V + 0.2  
CC  
V
MAX4241ESA  
72  
72  
90  
90  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
V
CC  
= 1.8V  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
66  
77  
77  
88  
94  
94  
Common-Mode  
Rejection Ratio  
(Note 4)  
CMRR  
dB  
MAX4241ESA  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
V
CC  
= 5.0V  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
72  
90  
2
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
ELECTRICAL CHARACTERISTICS — T = +25°C (continued)  
A
(V  
= +1.8V to +5.5V, V = 0, V  
= 0, V  
= V  
/ 2, R = 100ktied to V  
/ 2, SHDN = V , T = +25°C, unless  
CC  
EE  
CM  
OUT  
CC  
L
CC CC A  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX4241ESA  
MIN  
TYP  
MAX  
UNITS  
80  
85  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
80  
78  
85  
82  
Power-Supply  
Rejection Ratio  
PSRR  
1.8V V 5.5V  
dB  
CC  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
80  
70  
90  
82  
85  
73  
94  
85  
8
V
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
CC  
Large-Signal  
Voltage Gain  
(V + 0.2V) V  
(V - 0.2V)  
CC  
EE  
OUT  
A
dB  
mV  
mV  
VOL  
V
CC  
20  
65  
25  
95  
15  
35  
20  
60  
V
CC  
40  
10  
60  
6
Output Voltage  
Swing High  
Specified as  
V
OH  
V
CC  
- V  
OH  
V
CC  
V
CC  
23  
10  
40  
0.7  
2.5  
Output Voltage  
Swing Low  
Specified as  
- V  
V
OL  
V
EE  
OL  
V
CC  
Sourcing  
Sinking  
Output Short-Circuit  
Current  
I
mA  
nA  
OUT(SC)  
Output Leakage  
Current in Shutdown  
(Notes 2, 5)  
I
20  
50  
SHDN = V = 0, V = 5.5V  
OUT(SHDN)  
EE  
CC  
SHDN Logic Low  
(Note 2)  
V
0.3 x V  
V
V
IL  
CC  
SHDN Logic High  
(Note 2)  
V
IH  
0.7 x V  
CC  
SHDN Input Bias  
Current (Note 2)  
I
, I  
40  
80  
90  
80  
nA  
dB  
kHz  
SHDN = V = 5.5V or SHDN = V = 0  
IH IL  
CC  
EE  
Channel-to-Channel  
Isolation (Note 6)  
CH  
Specified at DC  
ISO  
Gain-Bandwidth  
Product  
GBW  
Φ
Phase Margin  
Gain Margin  
Slew Rate  
68  
18  
40  
degrees  
dB  
m
G
m
SR  
V/ms  
_______________________________________________________________________________________  
3
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
ELECTRICAL CHARACTERISTICS — T = +25°C (continued)  
A
(V  
= +1.8V to +5.5V, V = 0, V  
= 0, V  
= V  
/ 2, R = 100ktied to V  
/ 2, SHDN = V , T = +25°C, unless  
CC  
EE  
CM  
OUT  
CC  
L
CC CC A  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Noise  
Density  
e
n
f = 1kHz  
f = 1kHz  
70  
nV/Hz  
Input Current Noise  
Density  
i
n
0.05  
pA/Hz  
Capacitive-Load  
Stability  
A
VCL  
= +1V/V, no sustained oscillations  
200  
50  
pF  
µs  
µs  
Shutdown Time  
t
SHDN  
Enable Time from  
Shutdown  
t
150  
ENABLE  
Power-Up Time  
t
200  
3
µs  
ON  
Input Capacitance  
C
pF  
IN  
Total Harmonic  
Distortion  
0–MAX24  
THD  
f
= 1kHz, V = 5.0V, V  
= 2Vp-p, A = +1V/V  
0.05  
50  
%
IN  
CC  
OUT  
V
Settling Time to 0.01%  
t
A
= +1V/V, V = 5.0V, V  
= 2V  
STEP  
µs  
S
V
CC  
OUT  
ELECTRICAL CHARACTERISTICS — T = T  
T
MAX  
A
MIN  
to  
(V = +1.8V to +5.5V, V = 0, V  
= 0, V  
= V / 2, R = 100ktied to V / 2, SHDN = V , T = T  
to T , unless oth-  
MAX  
CC  
EE  
CM  
OUT  
CC  
L
CC  
CC  
A
MIN  
erwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply-Voltage Range  
V
Inferred from PSRR test  
1.8  
5.5  
14  
V
CC  
V
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
CC  
Supply Current  
per Amplifier  
I
CC  
µA  
µA  
SHDN = V  
CC  
V
CC  
19  
V
CC  
2.0  
3.5  
±1.2  
Shutdown Supply  
Current (Note 2)  
I
SHDN = V  
CC(SHDN)  
EE  
V
CC  
MAX4241ESA  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
±1.3  
±2.0  
(V - 0.2V) V  
(V + 0.2V)  
CC  
EE  
CM  
Input Offset Voltage  
V
OS  
mV  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
Input Offset Voltage  
Drift  
TC  
2
µV/°C  
VOS  
Input Bias Current  
Input Offset Current  
I
(Note 3)  
(Note 3)  
±15  
±7  
nA  
nA  
B
I
OS  
Input Common-Mode  
Voltage Range  
V
CM  
Inferred from the CMRR test  
-0.2  
V
CC  
+ 0.2  
V
4
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
ELECTRICAL CHARACTERISTICS — T = T  
T
(continued)  
MAX  
A
MIN  
to  
(V = +1.8V to +5.5V, V = 0, V  
= 0, V  
= V / 2, R = 100ktied to V / 2, SHDN = V , T = T  
to T , unless oth-  
MAX  
CC  
EE  
CM  
OUT  
CC  
L
CC  
CC  
A
MIN  
erwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX4241ESA  
68  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
68  
V
= 1.8V  
= 5.0V  
CC  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
64  
74  
74  
Common-Mode  
Rejection Ratio  
(Note 4)  
CMRR  
dB  
MAX4241ESA  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
V
CC  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
70  
76  
76  
MAX4241ESA  
MAX4242ESA/MAX4243ESD/  
MAX4244ESD  
Power-Supply  
Rejection Ratio  
PSRR  
1.8V V 5.5V  
dB  
CC  
MAX4240EUK/MAX424_EUA/  
MAX4243EUB  
74  
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
= 10kΩ  
76  
66  
84  
76  
V
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
CC  
Large-Signal  
Voltage Gain  
(V + 0.2V) V  
(V - 0.2V)  
CC  
EE  
OUT  
A
dB  
dB  
dB  
VOL  
V
CC  
25  
95  
30  
145  
20  
50  
25  
75  
V
CC  
Output Voltage  
Swing High  
Specified as  
V
OH  
V
CC  
- V  
OH  
V
CC  
V
CC  
Output Voltage  
Swing Low  
Specified as  
- V  
V
OL  
V
EE  
OL  
V
CC  
Output Leakage  
Current in Shutdown  
(Notes 2, 5)  
I
100  
nA  
V
SHDN = V = 0, V = 5.5V  
OUT(SHDN)  
EE  
CC  
SHDN Logic Low  
(Note 2)  
V
IL  
0.3 x V  
CC  
_______________________________________________________________________________________  
5
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
ELECTRICAL CHARACTERISTICS — T = T  
to T  
(continued)  
MAX  
MIN  
A
(V = +1.8V to +5.5V, V = 0, V  
= 0, V  
= V / 2, R = 100ktied to V / 2, SHDN = V , T = T  
to T , unless oth-  
MAX  
CC  
EE  
CM  
OUT  
CC  
L
CC  
CC  
A
MIN  
erwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SHDN Logic High  
(Note 2)  
V
IH  
0.7 x V  
V
CC  
SHDN Input Bias  
Current (Note 2)  
I
, I  
120  
nA  
SHDN = V = 5.5V or SHDN = V = 0  
IH IL  
CC  
EE  
Note 1: The MAX4240EUK, MAX4241EUA, MAX4242EUA, and MAX4243EUB specifications are 100% tested at T = +25°C. All  
A
temperature limits are guaranteed by design.  
Note 2: Shutdown mode applies to the MAX4241/MAX4243 only.  
Note 3: Input bias current and input offset current are tested with V = +5.0V and 0 V 5.0V.  
CC  
CM  
Note 4: Tested over the specified input common-mode range.  
Note 5: Tested for 0 V V . Does not include current through external feedback network.  
OUT  
CC  
Note 6: Channel-to-channel isolation specification applies to the MAX4242/MAX4243/MAX4244 only.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
0–MAX24  
(V = +5.0V, V = 0, V = V / 2, V  
= V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC L CC A  
CC  
EE  
CM  
CC  
SHDN  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
PER AMPLIFIER vs. TEMPERATURE  
MINIMUM OPERATING VOLTAGE  
vs. TEMPERATURE  
20  
5
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
PSRR 80dB  
18  
16  
14  
12  
10  
8
4
3
2
1
0
V
CC  
= +5.5V  
V
= +5.5V  
= +1.8V  
CC  
V
= +1.8V  
CC  
6
V
CC  
4
1.1  
1.0  
2
0
40  
TEMPERATURE (°C)  
0
80  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
-60 -40 -20  
20 40 60  
100  
-60 -40 -20  
0
20  
60 80 100  
TEMPERATURE (°C)  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE (V = 1.8V)  
CC  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
5.0  
2.5  
0
0
-1  
-2  
-3  
-4  
400  
300  
200  
100  
0
V
= 0  
CM  
V
CC  
= +1.8V  
V
= +1.8V  
= +5.5V  
CC  
V
CC  
-2.5  
-5.0  
40  
-0.2  
0.2  
0.6  
1.0  
(V)  
1.4  
1.8  
-60 -40 -20  
0
20  
60 80 100  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
V
CM  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, V  
= V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC L CC A  
CC  
EE  
CM  
CC  
SHDN  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE (V = 5.5V)  
OUTPUT SWING HIGH  
vs. TEMPERATURE  
OUTPUT SWING LOW  
vs. TEMPERATURE  
CC  
5.0  
120  
120  
100  
80  
V
CC  
= +5.5V  
R TO V  
L
EE  
R TO V  
L
CC  
100  
80  
2.5  
0
V
= +1.8V, R = 10kΩ  
L
CC  
60  
60  
V
CC  
= +5.5V, R = 20kΩ  
L
V
CC  
= +5.5V, R = 20kΩ  
L
40  
40  
V
= +1.8V, R = 10kΩ  
L
CC  
-2.5  
-5.0  
V
= +5.5V, R = 100kΩ  
L
CC  
V
CC  
= +5.5V, R = 100kΩ  
L
20  
0
20  
0
V
= +1.8V, R = 100kΩ  
L
V
= +1.8V, R = 100kΩ  
L
CC  
CC  
1.5  
2.5  
(V)  
3.5  
5.5  
40  
TEMPERATURE (°C)  
40  
TEMPERATURE (°C)  
-0.5  
0.5  
4.5  
-60 -40 -20  
0
20  
60 80 100  
-60 -40 -20  
0
20  
60 80 100  
V
CM  
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
(V = +1.8V, R TIED TO V )  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
(V = +1.8V, R TIED TO V )  
COMMON-MODE REJECTION  
vs. TEMPERATURE  
CC  
L
EE  
CC  
L
EE  
100  
90  
100  
90  
-80  
-85  
R = 100kΩ  
L
R = 100kΩ  
L
80  
80  
R = 10kΩ  
L
R = 10kΩ  
L
70  
60  
70  
60  
V
= +1.8V  
= +5.5V  
CC  
-90  
V
CC  
50  
40  
30  
50  
40  
30  
-95  
-100  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
V (mV)  
V (mV)  
OUT  
OUT  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
(V = +5.5V, R TIED TO V )  
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
(V = +5.5V, R TIED TO V )  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
CC  
L
EE  
CC  
L
EE  
110  
100  
90  
110  
105  
100  
95  
110  
100  
R = 100kΩ  
L
R = 100kΩ  
L
V
CC  
= +5.5V, R = 20kTO V  
L EE  
90  
80  
R = 20kΩ  
L
R = 20kΩ  
L
80  
90  
V
CC  
= +5.5V, R = 20kTO V  
L
CC  
70  
60  
70  
60  
85  
V
CC  
= +1.8V, R = 10kTO V  
EE  
L
80  
50  
40  
50  
40  
75  
V
CC  
= +1.8V, R = 10kTO V  
L CC  
70  
0
100  
200  
300  
400  
40  
TEMPERATURE (°C)  
0
100  
200  
V (mV)  
300  
400  
-60 -40 -20  
0
20  
60 80 100  
V (mV)  
OUT  
OUT  
_______________________________________________________________________________________  
7
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, V  
= V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC L CC A  
CC  
EE  
CM  
CC  
SHDN  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
GAIN AND PHASE vs. FREQUENCY  
GAIN AND PHASE vs. FREQUENCY  
(C = 100pF)  
L
(C = 0pF)  
L
MAX4240/44-16  
MAX4240/44-17  
110  
105  
100  
95  
60  
180  
60  
180  
A = +1000V/V  
V
A = +1000V/V  
V
50  
40  
30  
20  
144  
108  
50  
40  
144  
108  
V
CC  
= +5.5V, R TO V  
L
EE  
72  
36  
30  
20  
72  
36  
V
CC  
= +5.5V, R TO V  
L CC  
90  
10  
0
0
10  
0
0
V
= +1.8V, R TO V  
L EE  
CC  
-36  
-72  
-108  
-144  
-36  
-72  
-108  
-144  
85  
V
= +1.8V, R TO V  
CC  
L
CC  
-10  
-20  
-30  
-10  
-20  
-30  
-40  
80  
75  
70  
-40  
-180  
-180  
40  
-60 -40 -20  
0
20  
60 80 100  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0–MAX24  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LOAD RESISTOR vs.  
CAPACITIVE LOAD  
MAX4242/MAX4243/MAX4244  
CROSSTALK vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1000  
100  
10  
-60  
-70  
1
10%  
OVERSHOOT  
R = 10kΩ  
L
REGION OF  
MARGINAL STABILITY  
-80  
0.1  
-90  
REGION OF  
-100  
-110  
STABLE OPERATION  
R = 100kΩ  
L
R = 10kΩ  
L
0.01  
0
250  
500  
(pF)  
LOAD  
750  
1000  
100  
10  
1k  
10k  
1
10  
100  
1000  
C
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SMALL-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
(NONINVERTING)  
(INVERTING)  
MAX4240/44-21  
MAX4240/44-22  
100mV  
0V  
100mV  
0V  
IN  
IN  
50mV/div  
OUT  
50mV/div  
OUT  
100mV  
0V  
100mV  
0V  
10µs/div  
10µs/div  
8
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5.0V, V = 0, V = V / 2, V  
= V , R = 100kto V / 2, T = +25°C, unless otherwise noted.)  
CC L CC A  
CC  
EE  
CM  
CC  
SHDN  
LARGE-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
(INVERTING)  
(NONINVERTING)  
MAX4240/44-24  
MAX4240/44-23  
4.5V  
+2V  
-2V  
+2V  
-2V  
IN  
IN  
0.5V  
4.5V  
2V/div  
OUT  
2V/div  
OUT  
0.5V  
100µs/div  
100µs/div  
______________________________________________________________P in De s c rip t io n  
PIN  
MAX4243  
NAME  
FUNCTION  
MAX4240 MAX4241 MAX4242  
MAX4244  
µMAX  
SO  
Amplifier Output. High impedance when in  
shutdown mode.  
1
2
6
4
4
4
11  
OUT  
Negative Supply. Tie to ground for single-  
supply operation.  
4
V
EE  
3
4
5
3
2
7
8
10  
4
IN+  
IN-  
Noninverting Input  
Inverting Input  
14  
V
CC  
Positive Supply  
5, 7,  
8, 10  
1, 5  
N.C.  
No Connection. Not internally connected.  
Shutdown Input. Drive high, or tie to V for  
CC  
8
normal operation. Drive to V to place device  
EE  
SHDN  
in shutdown mode.  
OUTA,  
OUTB  
Outputs for Amplifiers A and B. High imped-  
ance when in shutdown mode.  
1, 7  
2, 6  
3, 5  
1, 9  
2, 8  
3, 7  
1, 13  
2, 12  
3, 11  
1, 7  
2, 6  
3, 5  
INA-,  
INB-  
Inverting Inputs to Amplifiers A and B  
INA+,  
INB+  
Noninverting Inputs to Amplifiers A and B  
Shutdown Inputs for Amplifiers A and B. Drive  
high, or tie to V for normal operation. Drive  
CC  
to V to place device in shutdown mode.  
EE  
SHDNA,  
SHDNB  
5, 6  
6, 9  
OUTC,  
OUTD  
8, 14  
9, 13  
Outputs for Amplifiers C and D  
INC-,  
IND-  
Inverting Inputs to Amplifiers C and D  
Noninverting Inputs to Amplifiers C and D  
INC+,  
IND+  
10, 12  
_______________________________________________________________________________________  
9
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
_______________De t a ile d De s c rip t io n  
Be yo n d -t h e -Ra ils In p u t S t a g e  
The MAX4240–MAX4244 have Beyond-the-Railsinputs  
and Rail-to-Rail output stages that are specifically  
designed for low-voltage, single-supply operation. The  
input stage consists of separate NPN and PNP differen-  
tial stages, which operate together to provide a com-  
mon-mode range extending to 200mV beyond both  
supply rails. The crossover region of these two pairs  
MAX4240  
MAX4241  
MAX4242  
MAX4243  
MAX4244  
®
V
IN  
R3  
R3 = R1 R2  
occurs halfway between V  
and V . The input offset  
CC  
EE  
voltage is typically 200µV. Low operating supply voltage,  
low supply current, beyond-the-rails common-mode  
input range, and rail-to-rail outputs make this family of  
operational amplifiers an excellent choice for precision or  
general-purpose, low-voltage battery-powered systems.  
R1  
R2  
Since the input stage consists of NPN and PNP pairs,  
the input bias current changes polarity as the common-  
mode voltage passes through the crossover region.  
Match the effective impedance seen by each input to  
reduce the offset error caused by input bias currents  
flowing through external source impedances (Figures  
1a and 1b). The combination of high source impedance  
plus input capacitance (amplifier input capacitance  
plus stray capacitance) creates a parasitic pole that  
produces an underdamped signal response. Reducing  
input capacitance or placing a small capacitor across  
the feedback resistor improves response in this case.  
Figure 1a. Minimizing Offset Error Due to Input Bias Current  
(Noninverting)  
0–MAX24  
MAX4240  
MAX4241  
MAX4242  
MAX4243  
MAX4244  
R3  
The MAX4240–MAX4244 family’s inputs are protected  
from large differential input voltages by internal 2.2kΩ  
series resistors and back-to-back triple-diode stacks  
across the inputs (Figure 2). For differential input volt-  
ages (much less than 1.8V), input resistance is typically  
45M. For differential input voltages greater than 1.8V,  
input resistance is around 4.4k, and the input bias  
current can be approximated by the following equation:  
R3 = R1 R2  
V
IN  
R1  
R2  
I
= (V  
- 1.8V) / 4.4kΩ  
BIAS  
DIFF  
Figure 1b. Minimizing Offset Error Due to Input Bias Current  
(Inverting)  
IN+  
2.2k  
IN-  
2.2k  
Figure 2. Input Protection Circuit  
10 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
In the re g ion whe re the d iffe re ntia l inp ut volta g e  
MAX4240-44 fig03  
approaches 1.8V, the input resistance decreases expo-  
nentially from 45Mto 4.4kas the diode block begins  
conducting. Conversely, the bias current increases with  
the same curve.  
R = 100kTIED TO V  
L
EE  
V = 2.0V  
IN  
f
IN  
= 1kHz  
1V/div  
OUT  
Ra il-to-Ra il Output Sta ge  
The MAX4240–MAX4244 output stage can drive up to a  
10kload and still swing to within 40mV of the rails.  
Figure 3 shows the output voltage swing of a MAX4240  
configured as a unity-gain buffer, powered from a single  
+2V supply voltage. The output for this setup typically  
1V/div  
IN  
swings from (V + 6mV) to (V  
- 8mV) with a 100kΩ  
EE  
CC  
load.  
200µs/div  
__________Ap p lic a t io n s In fo rm a t io n  
Figure 3. Rail-to-Rail Input/Output Voltage Range  
P o w e r-S u p p ly Co n s id e ra t io n s  
The MAX4240–MAX4244 operate from a single +1.8V  
to +5.5V supply (or dual ±0.9V to ±2.75V supplies) and  
consume only 10µA of supply current per amplifier. A  
high power-supply rejection ratio of 90dB allows the  
amplifiers to be powered directly off a decaying battery  
voltage, simplifying design and extending battery life.  
100  
T = +85°C  
A
90  
80  
70  
The MAX4240–MAX4244 are ideally suited for use with  
most battery-powered systems. Table 1 lists a variety of  
typical battery types showing voltage when fresh, volt-  
age at end-of-life, capacity, and approximate operating  
time from a MAX4240/MAX4241, assuming nominal  
conditions for both normal and shutdown modes.  
T = -40°C  
A
T = +25°C  
A
Although the amplifiers are fully guaranteed over tem-  
perature for operation down to a +1.8V single supply,  
even lower-voltage operation is possible in practice.  
Figures 4 and 5 show the PSRR and supply current as  
a function of supply voltage and temperature.  
60  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
SUPPLY VOLTAGE (V)  
Figure 4. Power-Supply Rejection Ratio vs. Supply Voltage  
P o w e r-Up S e t t lin g Tim e  
The MAX4240–MAX4244 typ ic a lly re q uire 200µs to  
12  
10  
8
power up after V  
is stable. During this start-up time,  
CC  
the output is ind e te rmina nt. The a p p lic a tion c irc uit  
should allow for this initial delay.  
S h u t d o w n Mo d e  
The MAX4241 (single) and MAX4243 (dual) feature a  
low-power shutdown mode. When the shutdown pin  
(SHDN) is pulled low, the supply current drops to 1µA  
per amplifier, the amplifier is disabled, and the outputs  
enter a high-impedance state. Pulling SHDN high or  
leaving it floating enables the amplifier. Take care to  
ensure that parasitic leakage current at the SHDN pin  
does not inadvertently place the part into shutdown  
mode when SHDN is left floating. Figure 6 shows the  
output voltage response to a shutdown pulse. The logic  
T = +85°C  
A
6
4
2
T = -40°C  
A
T = +25°C  
A
0
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
SUPPLY VOLTAGE (V)  
threshold for SHDN is always referred to V / 2 (not to  
CC  
Figure 5. Supply Current vs. Supply Voltage  
______________________________________________________________________________________ 11  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
Table 1. MAX4240/MAX4241 Characteristics with Typical Battery Systems  
MAX4240/MAX4241  
CAPACITY,  
AA SIZE  
(mA-h)  
MAX4241  
V
V
OPERATING TIME  
IN NORMAL MODE  
(Hours)  
OPERATING TIME  
IN SHUTDOWN  
MODE (Hours)  
FRESH  
(V)  
END-OF-LIFE  
(V)  
BATTERY TYPE  
RECHARGEABLE  
Alkaline (2 Cells)  
No  
Yes  
Yes  
Yes  
3.0  
2.4  
3.5  
2.4  
1.8  
1.8  
2.7  
1.8  
2000  
750  
200,000  
75,000  
2 x 106  
0.75 x 106  
106  
Nickel-  
Cadmium (2 Cells)  
Lithium-Ion (1 Cell)  
1000  
1000  
100,000  
100,000  
Nickel-Metal-  
Hydride (2 Cells)  
106  
MAX4240-44 fig06  
1200  
V = 2V  
IN  
V
= 5.5V, V = 200mV  
OH  
CC  
R = 100kTIED TO V  
L
EE  
1000  
800  
600  
400  
200  
0–MAX24  
SHDN  
OUT  
V
V
OH  
= 1.8V,  
= 200mV  
CC  
5V/div  
1V/div  
V
CC  
= 5.5V, V = 100mV  
OH  
V
V
OH  
= 1.8V,  
= 100mV  
CC  
V
CC  
= 5.5V, V = 50mV  
OH  
V
CC  
= 1.8V, V = 50mV  
OH  
0
-60 -40 -20  
0
20 40 60 80 100  
200µs/div  
TEMPERATURE (°C)  
Figure 6. Shutdown Enable/Disable Output Voltage  
Figure 7a. Output Source Current vs. Temperature  
GND). When using dual supplies, pull SHDN to V to  
EE  
3000  
enter shutdown mode.  
V
= 5.5V, V = 200mV  
OL  
CC  
Lo a d -Drivin g Ca p a b ilit y  
The MAX4240–MAX4244 are fully guaranteed over tem-  
perature and supply voltage to drive a maximum resis-  
2500  
2000  
1500  
1000  
500  
V
= 1.8V, V = 200mV  
OL  
CC  
tive load of 10kto V / 2, although heavier loads can  
CC  
V
= 5.5V,  
= 100mV  
CC  
be driven in many applications. The rail-to-rail output  
stage of the amplifier can be modeled as a current  
V
OL  
source when driving the load toward V , and as a cur-  
CC  
rent sink when driving the load toward V . The magni-  
EE  
V
CC  
= 1.8V, V = 100mV  
OL  
tud e of this c urre nt s ourc e /s ink va rie s with s up p ly  
voltage, ambient temperature, and lot-to-lot variations  
of the units.  
V
CC  
= 5.5V, V = 50mV  
OL  
V
CC  
= 1.8V, V = 50mV  
OL  
0
-60 -40 -20  
0
20 40 60 80 100  
Figures 7a and 7b show the typical current source and  
sink capability of the MAX4240–MAX4244 family as a  
function of supply voltage and ambient temperature.  
The contours on the graph depict the output current  
TEMPERATURE (°C)  
Figure 7b. Output Sink Current vs. Temperature  
12 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
value, based on driving the output voltage to within  
50mV, 100mV, and 200mV of either power-supply rail.  
and V supplies should be bypassed to ground with  
EE  
separate 100nF capacitors.  
For example, a MAX4241 running from a single +1.8V  
Good PC board layout techniques optimize perfor-  
mance by decreasing the amount of stray capacitance  
at the op amps inputs and output. To decrease stray  
capacitance, minimize trace lengths by placing exter-  
nal components as close as possible to the op amp.  
Surface-mount components are an excellent choice.  
supply, operating at T = +25°C, can source 240µA to  
A
within 100mV of V  
and is capable of driving a 7k  
CC  
load resistor to V  
:
EE  
1.8V - 0.1V  
RL  
=
= 7kto V  
EE  
240µA  
The same application can drive a 3.3kload resistor  
when terminated in V / 2 (+0.9V in this case).  
CC  
Drivin g Ca p a c it ive Lo a d s  
The MAX4240–MAX4244 are unity-gain stable for loads  
up to 200pF (see Load Resistor vs. Capacitive Load  
graph in Typical Operating Characteristics). Applica-  
tions that require greater capacitive drive capability  
should use an isolation resistor between the output and  
the capacitive load (Figure 8). Note that this alternative  
R
ISO  
R
C
L
L
MAX4240  
MAX4241  
MAX4242  
MAX4243  
MAX4244  
results in a loss of gain accuracy because R  
voltage divider with the load resistor.  
forms a  
ISO  
P o w e r-S u p p ly Byp a s s in g a n d La yo u t  
The MAX4240–MAX4244 family operates from either a  
single +1.8V to +5.5V supply or dual ±0.9V to ±2.75V  
s up p lie s . For s ing le -s up p ly op e ra tion, b yp a s s the  
R
R + R  
L
L
A =  
1  
V
ISO  
power supply with a 100nF capacitor to V (in this  
EE  
case GND). For dual-supply operation, both the V  
CC  
Figure 8a Using a Resistor to Isolate a Capacitive Load from  
the Op Amp  
MAX4240-44 fig08c  
MAX4240-44 fig08b  
50mV/div  
50mV/div  
IN  
50mV/div  
50mV/div  
IN  
OUT  
OUT  
100µs/div  
100µs/div  
R
ISO  
= 1k, R = 100k, C = 700pF  
R
ISO  
= NONE, R = 100k, C = 700pF  
L
L
L
L
Figure 8c. Pulse Response with Isolating Resistor  
Figure 8b. Pulse Response without Isolating Resistor  
______________________________________________________________________________________ 13  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
Us in g t h e MAX4 2 4 0 –MAX4 2 4 4  
a s Co m p a ra t o rs  
Us in g t h e MAX4 2 4 0 –MAX4 2 4 4  
a s Ult ra -Lo w -P o w e r Cu rre n t Mo n it o rs  
The MAX4240–MAX4244 a re id e a l for a p p lic a tions  
powered from a 2-cell battery stack. Figure 11 shows  
an application circuit in which the MAX4240 is used for  
monitoring the current of a 2-cell battery stack. In this  
circuit, a current load is applied, and the voltage drop  
at the battery terminal is sensed.  
Although optimized for use as operational amplifiers,  
the MAX4240–MAX4244 can also be used as rail-to-rail  
I/O comparators. Typical propagation delay depends  
on the input overdrive voltage, as shown in Figure 9.  
External hysteresis can be used to minimize the risk of  
output oscillation. The positive feedback circuit, shown  
in Figure 10, causes the input threshold to change  
when the output voltage changes state. The two thresh-  
olds create a hysteresis band that can be calculated by  
the following equations:  
The voltage on the load side of the battery stack is  
equal to the voltage at the emitter of Q1, due to the  
feedback loop containing the op amp. As the load cur-  
rent increases, the voltage drop across R1 and R2  
increases. Thus, R2 provides a fraction of the load cur-  
rent (set by the ratio of R1 and R2) that flows into the  
emitter of the PNP transistor. Neglecting PNP base cur-  
rent, this current flows into R3, producing a ground-ref-  
erenced voltage proportional to the load current. Scale  
R1 to give a voltage drop large enough in comparison  
V
= V - V  
HI LO  
HYST  
V
LO  
= V x R2 / (R1 + (R1 x R2 / R ) + R2)  
HYST  
IN  
V
HI  
= [(R2 / R1 x V ) + (R2 / R  
) x V ] /  
HYST CC  
IN  
(1 + R1 / R2 + R2 / R  
)
HYST  
The MAX4240–MAX4244 contain special circuitry to  
boost internal drive currents to the amplifier output  
stage. This maximizes the output voltage range over  
which the amplifiers are linear. In an open-loop com-  
parator application, the excursion of the output voltage  
is so close to the supply rails that the output stage tran-  
sistors will saturate, causing the quiescent current to  
increase from the normal 10µA. Typical quiescent cur-  
to V of the op amp, in order to minimize errors.  
OS  
0–MAX24  
The output voltage of the application can be calculated  
using the following equation:  
V
OUT  
= [I  
x (R1 / R2)] x R3  
LOAD  
For a 1V output and a current load of 50mA, the choice  
of resistors can be R1 = 2, R2 = 100k, R3 = 1M.  
The circuit consumes less power (but is more suscepti-  
ble to noise) with higher values of R1, R2, and R3.  
rents increase to 35µA for the output saturating at V  
CC  
and 28µA for the output at V  
.
EE  
HYSTERESIS  
V
HI  
INPUT  
V
OH  
10,000  
1000  
100  
V
LO  
V
OH  
t
+; V = +5V  
PD CC  
OUTPUT  
V
OL  
t
-; V = +5V  
PD CC  
V
IN  
R
HYST  
R1  
R2  
V
CC  
t
+; V = +1.8V  
PD CC  
V
OUT  
t
-; V = +1.8V  
PD CC  
10  
MAX4240  
MAX4241  
MAX4242  
MAX4243  
MAX4244  
0
10 20 30 40 50 60 70 80 90 100  
(mV)  
V
EE  
V
OD  
V
EE  
Figure 9. Propagation Delay vs. Input Overdrive  
Figure 10. Hysteresis Comparator Circuit  
14 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
0–MAX24  
___________________Ch ip In fo rm a t io n  
I
LOAD  
MAX4240/MAX4241  
TRANSISTOR COUNT: 234  
MAX4242/MAX4243  
TRANSISTOR COUNT: 466  
MAX4244  
R1  
V
CC  
R2  
TRANSISTOR COUNT: 932  
SUBSTRATE CONNECTED TO V  
EE  
Q1  
V
OUT  
R3  
MAX4240  
V
EE  
Figure 11. Current Monitor for a 2-Cell Battery Stack  
_____________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
OUTA  
INA-  
1
2
3
4
5
10  
9
V
CC  
N.C.  
IN-  
1
2
3
4
8
7
6
5
SHDN  
CC  
OUTB  
INB-  
OUTB  
INB-  
V
CC  
MAX4243  
MAX4242  
MAX4241  
INA+  
8
INA+  
IN+  
OUT  
N.C.  
V
EE  
7
INB+  
V
EE  
INB+  
V
EE  
SHDNA  
6
SHDNB  
µMAX  
SO/µMAX  
SO/µMAX  
OUTA  
1
2
3
4
5
6
7
14  
V
OUTA  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
CC  
INA-  
13 OUTB  
12 INB-  
11 INB+  
10 N.C.  
INA-  
INA+  
INA+  
V
EE  
V
CC  
11  
V
EE  
MAX4243  
MAX4244  
N.C.  
SHDNA  
N.C.  
INB+  
INB-  
10 INC+  
9
8
SHDNB  
N.C.  
9
8
INC-  
OUTB  
OUTC  
SO  
SO  
______________________________________________________________________________________ 15  
S in g le /Du a l/Qu a d , +1 .8 V/1 0 µA, S OT2 3 ,  
Be yo n d -t h e -Ra ils Op Am p s  
__________________________________________________Ta p e -a n d -Re e l In fo rm a t io n  
E
W
B
D
0
P
P
2
0
t
D
1
F
P
NOTE: DIMENSIONS ARE IN MM.  
K
0
A
0
AND FOLLOW EIA481-1 STANDARD.  
±0.102  
±0.102  
P
3.988  
40.005  
2.007  
±0.102  
±0.203  
±0.051  
±0.127  
A
B
3.200  
3.099  
E
1.753  
3.505  
1.397  
3.988  
±0.102  
0
0
P 10  
F
K
P
±0.051  
±0.102  
±0.102  
X
0
0
+0.102  
+0.000  
P
2
0
D
D
1.499  
0.991  
t
0.254  
+0.254  
+0.000  
1
+0.305  
-0.102  
W
8.001  
________________________________________________________P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY