MAX4410EUD [MAXIM]

80mW, DirectDrive Stereo Headphone Driver with Shutdown; 用80mW的关机, DirectDrive立体声耳机驱动器
MAX4410EUD
型号: MAX4410EUD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

80mW, DirectDrive Stereo Headphone Driver with Shutdown
用80mW的关机, DirectDrive立体声耳机驱动器

驱动器
文件: 总20页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2386; Rev 2; 10/02  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
General Description  
Features  
The MAX4410 stereo headphone driver is designed for  
portable equipment where board space is at a  
premium. The MAX4410 uses a unique, patented,  
DirectDrive architecture to produce a ground-refer-  
enced output from a single supply, eliminating the need  
for large DC-blocking capacitors, saving cost, board  
space, and component height.  
No Bulky DC-Blocking Capacitors Required  
Ground-Referenced Outputs Eliminate DC-Bias  
Voltages on Headphone Ground Pin  
No Degradation of Low-Frequency Response Due  
to Output Capacitors  
80mW Per Channel into 16  
The MAX4410 delivers up to 80mW per channel into a  
16load and has low 0.003% THD + N. A high power-  
supply rejection ratio (90dB at 1kHz) allows this device to  
operate from noisy digital supplies without an additional  
linear regulator. The MAX4410 includes 8kV ESD pro-  
tection on the headphone outputs. Comprehensive click-  
and-pop circuitry suppresses audible clicks and pops on  
startup and shutdown. Independent left/right, low-power  
shutdown controls make it possible to optimize power  
savings in mixed mode, mono/stereo applications.  
Low 0.003% THD + N  
High PSRR (90dB at 1kHz)  
Integrated Click-and-Pop Suppression  
1.8V to 3.6V Single-Supply Operation  
Low Quiescent Current  
Independent Left/Right, Low-Power  
Shutdown Controls  
Short-Circuit and Thermal Overload Protection  
The MAX4410 operates from a single 1.8V to 3.6V supply,  
consumes only 7mA of supply current, has short-circuit  
and thermal overload protection, and is specified over the  
extended -40°C to +85°C temperature range. The  
MAX4410 is available in a tiny (2mm x 2mm x 0.6mm),  
16-bump chip-scale package (UCSP™) and a 14-pin  
TSSOP package.  
8kV ESD-Protected Amplifier Outputs  
Available in Space-Saving Packages  
16-Bump UCSP (2mm x 2mm x 0.6mm)  
14-Pin TSSOP  
Ordering Information  
PIN/BUMP-  
PACKAGE  
PART  
TEMP RANGE  
Applications  
Notebooks  
Cellular Phones  
PDAs  
MP3 Players  
Web Pads  
Portable Audio Equipment  
MAX4410EBE-T*  
MAX4410EUD  
-40°C to +85°C  
-40°C to +85°C  
16 UCSP-16  
14 TSSOP  
*Future product—contact factory for availability.  
Functional Diagram  
MAX4410  
LEFT  
AUDIO  
INPUT  
SHDNL  
SHDNR  
RIGHT  
AUDIO  
INPUT  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations and Typical Application Circuit appear  
at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
ABSOLUTE MAXIMUM RATINGS  
PGND to SGND .....................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
PV  
to SV  
SS  
and SV  
-0.3V to +0.3V  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) ..........727mW  
16-Bump UCSP (derate 15.2mW/°C above +70°C)....1212mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering) (Note 1)  
Infrared (15s) ...............................................................+220°C  
Vapor Phase (60s) .......................................................+215°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD .................................................................  
PV to SV .........................................................-0.3V to +0.3V  
SS  
PV  
to PGND or SGND.........................-0.3V to +4V  
DD  
DD  
SS  
PV and SV to PGND or SGND ..........................-4V to +0.3V  
SS  
IN_ to SGND..........................................................-0.3V to +0.3V  
SHDN_ to SGND........................(SGND - 0.3V) to (SV  
OUT_ to SGND ............................(SV - 0.3V) to (SV  
C1P to PGND.............................(PGND - 0.3V) to (PV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
SS  
C1N to PGND.............................(PV - 0.3V) to (PGND + 0.3V)  
SS  
Output Short Circuit to GND or V ...........................Continuous  
DD  
Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device  
can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-  
mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.  
Preheating is required. Hand or wave soldering is not allowed.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(PV  
= SV  
= 3V, PGND = SGND = 0, SHDNL = SHDNR = SV , C1 = C2 = 2.2µF, R = R = 10k, R = , T = T  
to T  
,
MAX  
DD  
DD  
DD  
IN  
F
L
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
1.8  
3.6  
V
DD  
One channel enabled  
Two channels enabled  
SHDNL = SHDNR = GND  
4
7
6
Quiescent Supply Current  
Shutdown Supply Current  
I
mA  
µA  
DD  
11.5  
10  
I
SHDN  
0.7 x  
V
V
IH  
IL  
SV  
DD  
SHDN_ Thresholds  
V
0.3 x  
SV  
DD  
SHDN_ Input Leakage Current  
SHDN_ to Full Operation  
CHARGE PUMP  
-1  
+1  
µA  
µs  
t
f
175  
320  
0.5  
SON  
OSC  
Oscillator Frequency  
AMPLIFIERS  
272  
368  
kHz  
Input Offset Voltage  
Input Bias Current  
V
Input AC-coupled, R = 32Ω  
2.4  
mV  
nA  
OS  
L
I
-100  
75  
+100  
BIAS  
1.8V V  
3.6V  
DC  
90  
90  
55  
65  
80  
DD  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
dB  
f
f
= 1kHz  
RIPPLE  
RIPPLE  
200mV  
ripple  
P-P  
= 20kHz  
R = 32Ω  
L
P
THD + N = 1%  
mW  
OUT  
R = 16Ω  
L
40  
2
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
ELECTRICAL CHARACTERISTICS (continued)  
(PV  
= SV  
= 3V, PGND = SGND = 0, SHDNL = SHDNR = SV , C1 = C2 = 2.2µF, R = R = 10k, R = , T = T  
to T  
,
DD  
DD  
DD  
IN  
F
L
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 32,  
L
0.003  
P
= 25mW  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD + N  
f
= 1kHz  
%
IN  
R = 16,  
L
0.003  
P
= 50mW  
OUT  
Signal-to-Noise Ratio  
Slew Rate  
SNR  
SR  
R = 32, P  
= 20mW, f = 1kHz  
95  
0.8  
300  
70  
dB  
V/µs  
pF  
L
OUT  
IN  
Maximum Capacitive Load  
Crosstalk  
C
No sustained oscillations  
R = 16, P = 1.6mW, f = 10kHz  
L
dB  
°C  
L
OUT  
IN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
ESD Protection  
140  
15  
°C  
Human body model (OUTR, OUTL)  
8
kV  
Note 2: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Typical Operating Characteristics  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
TOTAL HARMONIC DISTORTION PLUS  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
NOISE vs. FREQUENCY  
NOISE vs. FREQUENCY  
MAX4410 toc01  
MAX4410 toc02  
1
0.1  
1
0.1  
1
V
A
= 3V  
V
A
= 3V  
DD  
DD  
V
A
= 3V  
DD  
V
R = 32  
= -1V/V  
= -2V/V  
V
V
= -1V/V  
R = 16Ω  
R = 16Ω  
L
L
L
0.1  
P
= 10mW  
OUT  
P
= 5mW  
OUT  
0.01  
0.001  
P
= 25mW  
OUT  
P
= 25mW  
OUT  
P
= 10mW  
OUT  
P
= 50mW  
OUT  
10k  
0.01  
0.001  
0.01  
0.001  
P
= 10mW  
100  
OUT  
P
= 25mW  
OUT  
1k  
P
= 50mW  
OUT  
1k  
0.0001  
10  
1k  
FREQUENCY (Hz)  
100k  
10  
100  
10k  
100k  
10  
100  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
3
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
NOISE vs. FREQUENCY  
MAX4410 toc05  
1
0.1  
1
0.1  
1
0.1  
V
A
L
= 1.8V  
V
A
= 1.8V  
DD  
V
R = 16Ω  
L
V
A
= 3V  
DD  
DD  
= -1V/V  
= -2V/V  
= -2V/V  
V
V
R = 16Ω  
R = 32Ω  
L
P
OUT  
= 5mW  
P
= 5mW  
OUT  
P
= 5mW  
OUT  
P
= 10mW  
OUT  
P
= 10mW  
P
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 10mW  
100  
OUT  
P
= 20mW  
= 20mW  
OUT  
P
= 25mW  
OUT  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
1
0.1  
1
100  
10  
1
V
A
= 1.8V  
V
A
= 3V  
DD  
V
V
A
= 1.8V  
DD  
DD  
= -2V/V  
= -1V/V  
= -1V/V  
V
V
R = 32Ω  
R = 16Ω  
R = 32Ω  
L
L
L
f
= 20Hz  
IN  
0.1  
0.01  
P
= 20mW  
OUT  
OUTPUTS  
180° OUT OF  
PHASE  
P
= 5mW  
OUT  
OUTPUTS IN  
PHASE  
P
= 10mW  
OUT  
0.1  
0.01  
0.001  
P
= 5mW  
OUT  
P
= 10mW  
OUT  
100  
0.01  
ONE  
CHANNEL  
P
= 20mW  
OUT  
1k  
0.001  
0.001  
10  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
50  
100  
150  
200  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
100  
10  
1
V
A
= 3V  
V
A
= 3V  
V
A
= 3V  
DD  
V
DD  
DD  
= -2V/V  
= -1V/V  
= -1V/V  
V
V
R = 16Ω  
= 20Hz  
R = 16Ω  
= 1kHz  
R = 16Ω  
L
10  
1
L
L
f
IN  
f
f
IN  
= 10kHz  
IN  
OUTPUTS  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
180° OUT OF  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
PHASE  
OUTPUTS IN  
PHASE  
0.1  
0.1  
0.1  
0.01  
ONE  
CHANNEL  
0.01  
0.01  
ONE  
CHANNEL  
ONE  
CHANNEL  
0.001  
0.001  
0.001  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
4
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
OUTPUTS IN  
PHASE  
= -1V/V  
V
L
V
A
= 3V  
V
A
= 3V  
V
A
= 3V  
DD  
DD  
DD  
= -2V/V  
= -2V/V  
V
V
R = 16Ω  
= 1kHz  
R = 16Ω  
= 10kHz  
R = 32Ω  
L
L
f
IN  
f
f = 20Hz  
IN  
IN  
1
ONE  
CHANNEL  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS IN  
PHASE  
0.1  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
OUTPUTS  
180° OUT OF  
PHASE  
0.01  
0.001  
0.0001  
0.01  
0.01  
ONE  
CHANNEL  
ONE  
CHANNEL  
0.001  
0.001  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
25  
50  
75  
100  
125  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
A
= 3V  
V
A
= 3V  
DD  
V
A
= 3V  
DD  
OUTPUTS IN  
PHASE  
DD  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
= -1V/V  
= -1V/V  
V
= -1V/V  
V
V
R = 32Ω  
= 20Hz  
R = 32Ω  
= 1kHz  
L
R = 32Ω  
= 10kHz  
L
L
f
IN  
f
IN  
f
IN  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
0.1  
ONE  
CHANNEL  
ONE  
CHANNEL  
ONE  
CHANNEL  
0.01  
0.01  
0.01  
0.001  
0.001  
0.001  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
A
= 3V  
OUTPUTS IN  
PHASE  
V
A
= 3V  
V
A
= 1.8V  
DD  
V
R = 16Ω  
L
DD  
DD  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
= -2V/V  
= -2V/V  
= -1V/V  
V
V
R = 32Ω  
= 1kHz  
R = 32Ω  
= 10kHz  
L
L
f
IN  
f
IN  
f = 20Hz  
IN  
OUTPUTS  
OUTPUTS  
180° OUT OF  
OUTPUTS  
180° OUT OF  
PHASE  
ONE  
CHANNEL  
0.1  
180° OUT OF  
0.1  
0.1  
PHASE  
PHASE  
ONE  
CHANNEL  
0.01  
0.01  
0.01  
ONE  
CHANNEL  
0.001  
0.001  
0.001  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
60  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
_______________________________________________________________________________________  
5
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
A
= 1.8V  
V
A
= 1.8V  
OUTPUTS IN  
PHASE  
V
A
= 1.8V  
DD  
V
R = 16Ω  
L
DD  
DD  
= -1V/V  
= -1V/V  
= -2V/V  
V
V
R = 16Ω  
= 10kHz  
R = 16Ω  
= 1kHz  
L
L
f
f
IN  
f = 20Hz  
IN  
IN  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
0.1  
ONE  
CHANNEL  
ONE  
CHANNEL  
0.01  
0.01  
0.01  
ONE  
CHANNEL  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
A
= 1.8V  
V
A
= 1.8V  
V
A
= 1.8V  
DD  
V
R = 32Ω  
L
DD  
DD  
= -2V/V  
= -2V/V  
= -1V/V  
V
V
R = 16Ω  
= 1kHz  
R = 16Ω  
= 10kHz  
L
L
f
IN  
f
f = 20Hz  
IN  
IN  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
0.1  
ONE  
CHANNEL  
0.01  
0.01  
0.01  
ONE  
ONE  
CHANNEL  
CHANNEL  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
A
= 1.8V  
V
A
= 1.8V  
V
A
= 1.8V  
DD  
V
R = 32Ω  
L
DD  
DD  
= -2V/V  
= -1V/V  
= -1V/V  
V
V
R = 32Ω  
= 20Hz  
R = 32Ω  
= 1kHz  
L
L
f
f
IN  
f
= 10kHz  
IN  
IN  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
0.1  
ONE  
CHANNEL  
0.01  
0.01  
0.01  
ONE  
CHANNEL  
ONE  
CHANNEL  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
6
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
0
100  
10  
1
100  
10  
1
V
R
= 3V  
DD  
= 16Ω  
V
A
= 1.8V  
V
A
= 1.8V  
DD  
DD  
= -2V/V  
= -2V/V  
L
V
V
R = 32Ω  
= 10kHz  
-20  
R = 32Ω  
= 1kHz  
L
L
f
f
IN  
IN  
OUTPUTS IN  
PHASE  
-40  
-60  
OUTPUTS  
180° OUT OF  
PHASE  
OUTPUTS IN  
PHASE  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.1  
ONE  
CHANNEL  
-80  
ONE  
CHANNEL  
0.01  
0.01  
0.001  
-100  
0.001  
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
0
0
0
V
= 3V  
V
= 1.8V  
V
= 1.8V  
DD  
DD  
= 32Ω  
DD  
= 16Ω  
R
R
L
R = 32Ω  
L
L
-20  
-20  
-40  
-60  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-80  
-100  
-100  
-100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
CROSSTALK vs. FREQUENCY  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
0
-20  
200  
180  
160  
140  
120  
100  
80  
300  
V
P
= 3V  
f
= 1kHz  
f
= 1kHz  
IN  
L
DD  
IN  
= 1.6mW  
INPUTS 180°  
OUT OF PHASE  
R
L
= 16Ω  
R
= 16Ω  
OUT  
250  
200  
150  
100  
50  
INPUTS 180°  
OUT OF PHASE  
R = 16Ω  
THD + N = 1%  
THD + N = 10%  
L
-40  
-60  
60  
LEFT TO RIGHT  
RIGHT TO LEFT  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
-80  
40  
20  
-100  
0
0
0.01  
0.1  
1
10  
100  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. LOAD RESISTANCE  
140  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
f
= 1kHz  
f
= 1kHz  
IN  
L
IN  
V
IN  
= 3V  
DD  
= 1kHz  
R
L
= 32Ω  
R
= 32Ω  
120  
100  
f
INPUTS 180°  
THD + N = 10%  
INPUTS 180°  
OUT OF PHASE  
THD + N = 1%  
THD + N = 1%  
OUT OF PHASE  
80  
60  
40  
20  
0
INPUTS 180°  
OUT OF PHASE  
INPUTS  
IN PHASE  
60  
60  
40  
20  
0
INPUTS  
IN PHASE  
40  
20  
0
INPUTS  
IN PHASE  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. LOAD RESISTANCE  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
250  
200  
150  
V
IN  
= 3V  
V
= 1.8V  
= 1kHz  
V
= 1.8V  
f = 1kHz  
IN  
DD  
= 1kHz  
DD  
DD  
f
f
IN  
INPUTS 180°  
OUT OF PHASE  
INPUTS 180°  
OUT OF PHASE  
THD + N = 10%  
THD + N = 1%  
THD + N = 10%  
INPUTS IN  
PHASE  
INPUTS IN  
PHASE  
INPUTS 180°  
OUT OF PHASE  
100  
50  
0
INPUTS  
IN PHASE  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
180  
160  
140  
120  
100  
400  
350  
300  
250  
200  
150  
100  
50  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
INPUTS  
IN PHASE  
f
= 1kHz  
= 16Ω  
= 1.8V  
f
= 1kHz  
= 16Ω  
= 3V  
IN  
L
DD  
OUT  
IN  
L
DD  
OUT  
R
V
R
V
140  
120  
100  
80  
P
= P  
+ P  
P
= P  
+ P  
OUTR  
OUTL OUTR  
OUTL  
INPUTS 180°  
OUT OF PHASE  
INPUTS 180°  
OUT OF PHASE  
80  
60  
40  
20  
0
INPUTS 180°  
OUT OF PHASE  
60  
40  
20  
0
f
= 1kHz  
= 32Ω  
IN  
R
L
V
P
= 3V  
DD  
OUT  
= P  
+ P  
OUTR  
OUTL  
0
0
40  
80  
120  
160  
200  
0
10  
20  
30  
40  
50  
60  
0
40  
80  
120  
160  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
8
_______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
POWER DISSIPATION  
vs. OUTPUT POWER  
GAIN AND PHASE vs. FREQUENCY  
70  
60  
50  
80  
60  
40  
20  
0
INPUTS  
IN PHASE  
GAIN  
INPUTS 180°  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
40  
30  
20  
10  
0
OUT OF PHASE  
PHASE  
f
= 1kHz  
= 32Ω  
= 1.8V  
IN  
L
DD  
R
V
V
A
= 3V  
DD  
= 1000V/V  
V
R
P
= P  
+ P  
OUT  
OUTL OUTR  
= 16Ω  
L
0
10  
20  
30  
40  
50  
60  
100  
10k  
100k  
1M  
10M  
1k  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
CHARGE-PUMP OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
GAIN FLATNESS vs. FREQUENCY  
10  
10  
V
PVSS  
NO LOAD  
= GND  
IN_  
0
-10  
-20  
I
= 10mA  
8
6
4
2
0
-30  
-40  
-50  
V
A
L
= 3V  
DD  
= -1V/V  
V
R = 16Ω  
100  
10  
1k  
10k 100k 1M  
10M  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
OUTPUT SPECTRUM vs. FREQUENCY  
90  
80  
70  
60  
50  
0
-20  
C1 = C2 = 2.2µF  
C1 = C2 = 1µF  
V
IN  
R
A
= 1V  
P-P  
IN  
f
= 1kHz  
= 32Ω  
= -1V/V  
L
V
-40  
C1 = C2 = 0.68µF  
C1 = C2 = 0.47µF  
-60  
40  
30  
20  
10  
0
-80  
f
= 1kHz  
IN  
-100  
-120  
THD + N = 1%  
INPUTS IN PHASE  
10  
20  
30  
40  
50  
0.1  
1
10  
100  
LOAD RESISTANCE ()  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
9
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Operating Characteristics (continued)  
(C1 = C2 = 2.2µF, THD + N measurement bandwidth = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
10  
10  
SHDNL = SHDNR = GND  
8
6
4
2
0
8
6
4
2
0
0
0.9  
1.8  
2.7  
3.6  
0
0.9  
1.8  
2.7  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
POWER-UP/DOWN WAVEFORM  
EXITING SHUTDOWN  
MAX4410 toc58  
MAX4410 toc57  
3V  
0V  
2V/div  
V
DD  
SHDNR  
OUTR  
OUT_  
10mV/div  
20dB/div  
-100dB  
500mV/div  
OUT_FFT  
200ms/div  
FFT: 25Hz/div  
200µs/div  
f
= 1kHz  
IN  
R = 32Ω  
IN_  
R = 32Ω  
SHDNL = GND  
L
L
V
= GND  
10 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Pin Description  
PIN  
BUMP  
NAME  
FUNCTION  
TSSOP  
UCSP  
1
B2  
SHDNL  
Active-Low, Left-Channel Shutdown. Connect to V for normal operation.  
DD  
Charge-Pump Power Supply. Powers charge-pump inverter, charge-pump logic, and  
oscillator.  
2
A3  
PV  
DD  
3
4
A4  
B4  
C4  
D4  
D3  
D2  
D1  
C1  
C2  
B1  
A1  
A2  
C1P  
PGND  
C1N  
Flying Capacitor Positive Terminal  
Power Ground. Connect to SGND.  
Flying Capacitor Negative Terminal  
Charge-Pump Output  
5
6
PV  
SS  
SS  
7
SV  
Amplifier Negative Power Supply. Connect to PV  
.
SS  
8
OUTL  
SV  
Left-Channel Output  
9
Amplifier Positive Power Supply. Connect to PV  
.
DD  
DD  
10  
11  
12  
13  
14  
INL  
Left-Channel Audio Input  
OUTR  
SHDNR  
INR  
Right-Channel Output  
Active-Low, Right-Channel Shutdown. Connect to V  
Right-Channel Audio Input  
for normal operation.  
DD  
SGND  
Signal Ground. Connect to PGND.  
______________________________________________________________________________________ 11  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Detailed Description  
The MAX4410 stereo headphone driver features Maxims  
patented DirectDrive architecture, eliminating the large  
output-coupling capacitors required by traditional single-  
supply headphone drivers. The device consists of two  
80mW Class AB headphone drivers, undervoltage lock-  
out (UVLO)/shutdown control, charge-pump, and com-  
prehensive click-and-pop suppression circuitry (see  
Typical Application Circuit). The charge pump inverts the  
V
DD  
V
/2  
V
DD  
OUT  
positive supply (PV ), creating a negative supply  
DD  
(PV ). The headphone drivers operate from these bipo-  
SS  
GND  
lar supplies with their outputs biased about GND (Figure  
1). The drivers have almost twice the supply range com-  
pared to other 3V single-supply drivers, increasing the  
available output power. The benefit of this GND bias is  
that the driver outputs do not have a DC component typi-  
CONVENTIONAL DRIVER-BIASING SCHEME  
cally V /2. Thus, the large DC-blocking capacitors are  
DD  
+V  
DD  
unnecessary, improving frequency response while con-  
serving board space and system cost.  
Each channel has independent left/right, active-low  
shutdown controls, making it possible to optimize  
power savings in mixed-mode, mono/stereo operation.  
The device features an undervoltage lockout that pre-  
vents operation from an insufficient power supply and  
click-and-pop suppression that eliminates audible tran-  
sients on startup and shutdown. Additionally, the  
MAX4410 features thermal overload and short-circuit  
protection and can withstand 8kV ESD strikes on the  
output pins.  
V
GND  
-V  
OUT  
DD  
DirectDrive BIASING SCHEME  
Figure 1. Traditional Driver Output Waveform vs. MAX4410  
Output Waveform  
DirectDrive  
Traditional single-supply headphone drivers have their  
outputs biased about a nominal DC voltage (typically  
half the supply) for maximum dynamic range. Large  
coupling capacitors are needed to block this DC bias  
from the headphone. Without these capacitors, a signif-  
icant amount of DC current flows to the headphone,  
resulting in unnecessary power dissipation and possi-  
ble damage to both headphone and headphone driver.  
details of the possible capacitor sizes. There is a low  
DC voltage on the driver outputs due to amplifier offset.  
However, the offset of the MAX4410 is typically 0.5mV,  
which, when combined with a 32load, results in less  
than 16µA of DC current flow to the headphones.  
Previous attempts to eliminate the output-coupling capac-  
itors involved biasing the headphone return (sleeve) to  
the DC-bias voltage of the headphone amplifiers. This  
method raises some issues:  
Maxims patented DirectDrive architecture uses a  
charge pump to create an internal negative supply volt-  
age. This allows the outputs of the MAX4410 to be  
biased about GND, almost doubling dynamic range  
while operating from a single supply. With no DC com-  
ponent, there is no need for the large DC-blocking  
capacitors. Instead of two large (220µF, typ) tantalum  
capacitors, the MAX4410 charge pump requires two  
small ceramic capacitors, conserving board space,  
reducing cost, and improving the frequency response  
of the headphone driver. See the Output Power vs.  
Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics for  
1) When combining a microphone and headphone on  
a single connector, the microphone bias scheme  
typically requires a 0V reference.  
2) The sleeve is typically grounded to the chassis.  
Using this biasing approach, the sleeve must be  
isolated from system ground, complicating product  
design.  
3) During an ESD strike, the drivers ESD structures  
are the only path to system ground. Thus, the driver  
must be able to withstand the full ESD strike.  
12 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
4) When using the headphone jack as a line out to other  
equipment, the bias voltage on the sleeve may con-  
flict with the ground potential from other equipment,  
resulting in possible damage to the drivers.  
Charge Pump  
The MAX4410 features a low-noise charge pump. The  
320kHz switching frequency is well beyond the audio  
range, and thus does not interfere with the audio sig-  
nals. The switch drivers feature a controlled switching  
speed that minimizes noise generated by turn-on and  
turn-off transients. By limiting the switching speed of the  
switches, the di/dt noise caused by the parasitic bond  
wire and trace inductance is minimized. Although not  
typically required, additional high-frequency noise atten-  
uation can be achieved by increasing the size of C2  
(see Typical Application Circuit).  
Low-Frequency Response  
In addition to the cost and size disadvantages of the DC-  
blocking capacitors required by conventional head-  
phone amplifiers, these capacitors limit the amplifiers  
low-frequency response and can distort the audio signal.  
1) The impedance of the headphone load and the DC-  
blocking capacitor form a highpass filter with the  
-3dB point set by:  
LF ROLL OFF (16LOAD)  
1
f
=
3dB  
0
2πR C  
L
OUT  
-3  
-5  
330µF  
where R is the headphone impedance and C  
is  
220µF  
100µF  
L
OUT  
-10  
-15  
the DC-blocking capacitor value. The highpass filter  
is required by conventional single-ended, single  
power-supply headphone drivers to block the midrail  
DC bias component of the audio signal from the  
headphones. The drawback to the filter is that it can  
attenuate low-frequency signals. Larger values of  
-3dB CORNER FOR  
100µF IS 100Hz  
33µF  
-20  
-25  
-30  
C
OUT  
reduce this effect but result in physically larg-  
er, more expensive capacitors. Figure 2 shows the  
relationship between the size of C and the result-  
ing low-frequency attenuation. Note that the -3dB  
point for a 16headphone with a 100µF blocking  
capacitor is 100Hz, well within the normal audio  
band, resulting in low-frequency attenuation of the  
reproduced signal.  
-35  
OUT  
10  
100  
FREQUENCY (Hz)  
1k  
Figure 2. Low-Frequency Attenuation for Common DC-Blocking  
Capacitor Values  
2) The voltage coefficient of the DC-blocking capacitor  
contributes distortion to the reproduced audio signal  
as the capacitance value varies as a function of the  
voltage change across the capacitor. At low fre-  
quencies, the reactance of the capacitor dominates  
at frequencies below the -3dB point and the voltage  
coefficient appears as frequency-dependent distor-  
tion. Figure 3 shows the THD + N introduced by two  
different capacitor dielectric types. Note that below  
100Hz, THD + N increases rapidly.  
ADDITIONAL THD + N DUE  
TO DC-BLOCKING CAPACITORS  
10  
1
0.1  
TANTALUM  
0.01  
The combination of low-frequency attenuation and fre-  
quency-dependent distortion compromises audio  
reproduction in portable audio equipment that empha-  
sizes low-frequency effects such as multimedia lap-  
tops, as well as MP3, CD, and DVD players. By  
eliminating the DC-blocking capacitors through  
DirectDrive technology, these capacitor-related defi-  
ciencies are eliminated.  
0.001  
ALUM/ELEC  
0.0001  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 3. Distortion Contributed by DC-Blocking Capacitors  
______________________________________________________________________________________ 13  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
°C/W as specified in the Absolute Maximum Ratings  
Shutdown  
The MAX4410 features two shutdown controls allowing  
either channel to be shut down or muted independently.  
SHDNL controls the left channel while SHDNR controls  
the right channel. Driving either SHDN_ low disables the  
respective channel, sets the driver output impedance to  
about 1k, and reduces the supply current to less than  
10µA. When both SHDN_ inputs are driven low, the  
charge pump is also disabled, further reducing supply  
current draw to 6µA. The charge pump is enabled once  
either SHDN_ input is driven high.  
section. For example, θ  
of the TSSOP package is  
JA  
+109.9°C/W.  
The MAX4410 has two sources of power dissipation,  
the charge pump and the two drivers. If the power dis-  
sipation for a given application exceeds the maximum  
allowed for a given package, either reduce V  
,
DD  
increase load impedance, decrease the ambient tem-  
perature, or add heat sinking to the device. Large out-  
put, supply, and ground traces improve the maximum  
power dissipation in the package.  
Click-and-Pop Suppression  
In traditional single-supply audio drivers, the output-  
coupling capacitor is a major contributor of audible  
clicks and pops. Upon startup, the driver charges the  
coupling capacitor to its bias voltage, typically half the  
supply. Likewise, on shutdown the capacitor is dis-  
charged to GND. This results in a DC shift across the  
capacitor, which in turn, appears as an audible transient  
at the speaker. Since the MAX4410 does not require  
output-coupling capacitors, this does not arise.  
Thermal overload protection limits total power dissipa-  
tion in the MAX4410. When the junction temperature  
exceeds +140°C, the thermal protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
mal overload conditions.  
Output Power  
The device has been specified for the worst-case sce-  
nariowhen both inputs are in phase. Under this con-  
dition, the drivers simultaneously draw current from the  
charge pump, leading to a slight loss in headroom of  
Additionally, the MAX4410 features extensive click-and-  
pop suppression that eliminates any audible transient  
sources internal to the device. The Power-Up/Down  
Waveform in the Typical Operating Characteristics  
shows that there are minimal spectral components in the  
audible range at the output upon startup or shutdown.  
V
. In typical stereo audio applications, the left and  
SS  
right signals have differences in both magnitude and  
phase, subsequently leading to an increase in the max-  
imum attainable output power. Figure 4 shows the two  
extreme cases for in and out of phase. In reality, the  
available power lies between these extremes.  
In most applications, the output of the preamplifier dri-  
ving the MAX4410 has a DC bias of typically half the  
supply. At startup, the input-coupling capacitor is  
charged to the preamplifiers DC-bias voltage through  
the R of the MAX4410, resulting in a DC shift across  
F
TOTAL HARMONIC DISTORTION PLUS  
the capacitor and an audible click/pop. Delaying the  
NOISE vs. OUTPUT POWER  
rise of the MAX4410s SHDN_ signals 4 to 5 time con-  
100  
V
A
= 3V  
DD  
stants (200ms to 300ms) based on R and C relative  
IN  
IN  
= -1V/V  
V
to the start of the preamplifier eliminates this click/pop  
caused by the input filter.  
R = 16Ω  
= 10kHz  
10  
1
L
f
IN  
Applications Information  
OUTPUTS IN  
PHASE  
Power Dissipation  
Under normal operating conditions, linear power ampli-  
fiers can dissipate a significant amount of power. The  
maximum power dissipation for each package is given  
in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
OUTPUTS  
180° OUT OF  
PHASE  
0.1  
0.01  
ONE  
CHANNEL  
0.001  
0
50  
100  
150  
200  
OUTPUT POWER (mW)  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
Figure 4. Output Power vs. Supply Voltage with Inputs In/Out  
of Phase  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
14 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
an optimum DC level. Assuming zero-source impedance,  
the -3dB point of the highpass filter is given by:  
Powering Other Circuits from a  
Negative Supply  
An additional benefit of the MAX4410 is the internally  
1
f
=
generated, negative supply voltage (-V ). This voltage  
DD  
3dB  
2πR C  
IN IN  
is used by the MAX4410 to provide the ground-refer-  
enced output level. It can, however, also be used to  
power other devices within a design. Current draw from  
Choose R according to the Gain-Setting Resistors sec-  
IN  
tion. Choose the C such that f  
lowest frequency of interest. Setting f  
is well below the  
-3dB  
IN  
this negative supply (PV ) should be limited to 5mA,  
SS  
exceeding this will affect the operation of the head-  
phone driver. The negative supply voltage appears on  
the PV pin. A typical application is a negative supply  
SS  
to adjust the contrast of LCD modules.  
too high affects  
-3dB  
the low-frequency response of the amplifier. Use capaci-  
tors whose dielectrics have low-voltage coefficients,  
such as tantalum or aluminum electrolytic. Capacitors  
with high-voltage coefficients, such as ceramics, may  
result in increased distortion at low frequencies.  
When considering the use of PV in this manner, note  
SS  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat-gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as  
cellular phones and two-way radios need only concen-  
trate on the frequency range of the spoken human voice  
(typically 300Hz to 3.5kHz). In addition, speakers used  
in portable devices typically have a poor response  
below 150Hz. Taking these two factors into considera-  
tion, the input filter may not need to be designed for a  
20Hz to 20kHz response, saving both board space and  
cost due to the use of smaller capacitors.  
that the charge-pump voltage at PV is roughly pro-  
SS  
portional to -V  
and is not a regulated voltage. The  
DD  
charge-pump output impedance plot appears in the  
Typical Operating Characteristics.  
Component Selection  
Gain-Setting Resistors  
External feedback components set the gain of the  
MAX4410. Resistors R and R (see Typical Application  
F
IN  
Circuit) set the gain of each amplifier as follows:  
R
F
A
= −  
V
R
IN  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric. Table 1  
lists suggested manufacturers.  
To minimize V , set R equal to 10k. Values other  
OS  
F
OS  
than 10kincrease V  
due to the input bias current,  
which in turn increases the amount of DC current flow  
to the speaker.  
Compensation Capacitor  
The stability of the MAX4410 is affected by the value of  
the feedback resistor (R ). The combination of R and  
F
F
the input and parasitic trace capacitance introduces an  
additional pole. Adding a capacitor in parallel with R  
compensates for this pole. Under typical conditions  
with proper layout, the device is stable without the  
additional capacitor.  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the devices ability  
to provide sufficient current drive, which leads to a loss  
of output voltage. Increasing the value of C1 improves  
load regulation and reduces the charge-pump output  
resistance to an extent. See the Output Power vs.  
Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics. Above  
2.2µF, the on-resistance of the switches and the ESR of  
C1 and C2 dominate.  
F
Input Filtering  
The input capacitor (C ), in conjunction with R forms a  
IN  
IN,  
highpass filter that removes the DC bias from an incom-  
ing signal (see Typical Application Circuit). The AC-cou-  
pling capacitor allows the amplifier to bias the signal to  
Table 1. Suggested Capacitor Manufacturers  
SUPPLIER  
Taiyo Yuden  
TDK  
PHONE  
FAX  
WEBSITE  
www.t-yuden.com  
www.component.tdk.com  
800-348-2496  
847-803-6100  
847-925-0899  
847-390-4405  
Note: Please indicate you are using the MAX4410 when contacting these component suppliers.  
______________________________________________________________________________________ 15  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Output Capacitor (C2)  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Connect PGND and SGND together at a  
single point on the PC board. Connect all components  
associated with the charge pump (C2 and C3) to the  
The output capacitor value and ESR directly affect the  
ripple at PV . Increasing the value of C2 reduces out-  
SS  
put ripple. Likewise, decreasing the ESR of C2  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics.  
PGND plane. Connect PV  
and SV  
together at the  
DD  
DD  
and SV  
device. Connect PV  
together at the  
SS  
SS  
device. Bypassing of both supplies is accomplished  
by charge-pump capacitors C2 and C3 (see Typical  
Application Circuit). Place capacitors C2 and C3 as  
close to the device as possible. Route PGND and all  
traces that carry switching transients away from SGND  
and the traces and components in the audio signal  
path. Refer to the layout example in the MAX4410 EV  
kit datasheet.  
Power-Supply Bypass Capacitor  
The power-supply bypass capacitor (C3) lowers the out-  
put impedance of the power supply, and reduces the  
impact of the MAX4410s charge-pump switching tran-  
sients. Bypass PV with C3, the same value as C1, and  
DD  
place it physically close to the PV  
and PGND pins  
DD  
When using the MAX4410 in a UCSP package, make  
sure the traces to OUTR (bump C2) are wide enough  
to handle the maximum expected current flow. Multiple  
traces may be necessary.  
(refer to the MAX4410 EV kit for a suggested layout).  
Adding Volume Control  
The addition of a digital potentiometer provides simple  
volume control. Figure 5 shows the MAX4410 with the  
MAX5408 dual log taper digital potentiometer used as  
an input attenuator. Connect the high terminal of the  
MAX5408 to the audio input, the low terminal to ground  
UCSP Considerations  
For general UCSP information and PC layout consider-  
ations, refer to the Maxim Application Note: Wafer-  
Level Ultra Chip-Scale Package.  
and the wiper to C . Setting the wiper to the top posi-  
IN  
tion passes the audio signal unattenuated. Setting the  
wiper to the lowest position fully attenuates the input.  
R
F
5
6
H0  
L0  
LEFT AUDIO  
INPUT  
C
IN  
R
IN  
10  
W0A  
7
8
INL  
OUTL  
MAX4410  
MAX5408  
RIGHT AUDIO  
INPUT  
H1  
L1  
12  
C
IN  
R
IN  
13  
11  
10  
W1A  
INR  
OUTR  
11  
R
F
Figure 5. MAX4410 and MAX5408 Volume Control Circuit  
16 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Typical Application Circuit  
C
IN  
1µF  
R
R
F
IN  
10kΩ  
1.8V to 3.6V  
10kΩ  
LEFT  
CHANNEL  
AUDIO IN  
C3  
2.2µF  
9
(D1)  
1
(B2)  
12  
(B1)  
10  
(C1)  
2
(A3)  
INL  
PV  
DD  
SV  
DD  
SHDNL  
SHDNR  
SV  
DD  
8
(D2)  
OUTL  
SGND  
HEADPHONE  
JACK  
UVLO/  
SHUTDOWN  
CONTROL  
3
(A4)  
C1P  
SV  
SS  
CHARGE  
PUMP  
CLICK-AND-POP  
SUPPRESSION  
C1  
2.2µF  
5
(C4) C1N  
SV  
DD  
SGND  
11  
(C2)  
MAX4410  
OUTR  
SV  
SS  
PV  
SV  
7
SS  
6
PGND  
4
SGND  
INR  
SS  
14  
(A2)  
13  
(A1)  
(D4)  
C2  
2.2µF  
(D3) (B4)  
C
IN  
1µF  
R
F
10kΩ  
R
IN  
10kΩ  
RIGHT  
CHANNEL  
AUDIO IN  
( ) DENOTE BUMPS FOR UCSP.  
______________________________________________________________________________________ 17  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Pin Configurations  
TOP VIEW  
(BUMP SIDE  
DOWN)  
MAX4410  
TOP VIEW  
1
2
3
4
A
B
C
D
SHDNL  
PV  
1
2
3
4
5
6
7
14 SGND  
13 INR  
INR  
SGND  
SHDNL  
OUTR  
PV  
C1P  
DD  
DD  
C1P  
PGND  
C1N  
12 SHDNR  
11 OUTR  
10 INL  
PGND  
C1N  
SHDNR  
INL  
MAX4410  
PV  
SS  
SV  
SS  
9
8
SV  
DD  
OUTL  
SV  
DD  
OUTL  
SV  
SS  
PV  
SS  
TSSOP  
UCSP (B16-2)  
Chip Information  
TRANSISTOR COUNT: 4295  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 19  
80mW, DirectDrive Stereo Headphone Driver  
with Shutdown  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4410EUD+

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX4410EUD-T

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX4410EVKIT

Evaluation Kit for the MAX4410
MAXIM

MAX4411

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411B

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BEBE

Audio/Video Amplifier, BICMOS, PBGA14
MAXIM

MAX4411BEBE+

Audio/Video Amplifier, BICMOS, PBGA14
MAXIM

MAX4411BEBE-T

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BETP

80mW, Fixed-Gain, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX4411BETP+T

Audio Amplifier, 0.08W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX4411BETP-T

暂无描述
MAXIM

MAX4411EBE+

Audio/Video Amplifier, BICMOS, PBGA14,
MAXIM