MAX44241_V01 [MAXIM]

36V, Low-Noise, Precision, Single/Quad/Dual Op Amps;
MAX44241_V01
型号: MAX44241_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

36V, Low-Noise, Precision, Single/Quad/Dual Op Amps

文件: 总13页 (文件大小:875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
General Description  
Benefits and Features  
The MAX44241/MAX44243/MAX44246 are 36V, ultra-  
precision, low-noise, low-drift, single/quad/dual opera-  
tional amplifiers that offer near-zero DC offset and drift  
through the use of patented chopper stabilized and  
auto-zeroing techniques. This method constantly mea-  
sures and compensates the input offset, eliminating drift  
over time and temperature and the effect of 1/f noise.  
These single/quad/dual devices feature rail-to-rail out-  
puts, operate from a single 2.7V to 36V supply or dual  
1.3ꢀV to 1ꢁV supplies, and consume only 0.42mA per  
channel, with only 9nV/Hz input-referred voltage noise.  
S Reduces Noise-Sensitive Precision Applications  
• Low 9nV/Hz Noise at 1kHz  
• Integrated EMI Filter  
S Eliminates Cost of Calibration with Increased  
Accuracy and Patented Auto-Zero Circuitry  
• Ultra-Low Input V : 5µV (max)  
OS  
• Low 20nV/°C (max) of Offset Drift  
S Suitable for High-Bandwidth Applications  
• 1µs Fast Settling Time  
The ICs are available in ꢁ-pin FMAXM or SO packages  
and are rated over the -40NC to +12ꢀNC temperature  
range.  
• 5MHz Gain-Bandwidth Product  
S Low 0.55mA Per Channel (max) Quiescent Current  
S Wide Supply for High-Voltage Front-Ends  
Applications  
Battery-Powered  
Equipment  
• 2.7V to 36V Supply Range  
Transducer Amplifiers  
Load Cell Amplifiers  
S Rail-to-Rail Output  
PLC Analog I/O  
Modules  
Precision  
Instrumentation  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part,  
refer to www.maximintegrated.com/MAX44241.related.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Typical Operating Circuit  
15V  
3.3V  
½ MAX44246  
R
1
3V  
BUFFER  
V
OUT  
R
MAX6126  
15V  
V
DD  
-15V  
15V  
50R  
G
R
V
V
REF  
DD  
V
BUFFER  
R
IN+  
R
G
MICRO-  
PROCESSOR  
50R  
G
MAX11211  
OUTPUT  
V
15V  
IN-  
-15V  
R
V
SS  
½ MAX44246  
C
1
1.5V  
½ MAX44246  
-15V  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6375; Rev 7; 4/15  
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
All Other Pins................................(GND - 0.3V) to (V  
Short-Circuit Duration, OUTA,  
OUTB to Either Supply Rail………………………… ............. 1s  
Continuous Input Current (Any Pin) ..................................20mA  
Differential Input Current................................................. Q20mA  
Differential Input Voltage (Note 1)....................................... .Q6V  
to GND) .............................-0.3V to +40V  
ꢁ-Pin SO (derate 7.60mW/NC above +70NC)...........606.1mW  
14-Pin SO (derate 12.30mW/NC above +70NC).......9ꢁ7.7mW  
14-Pin TSSOP (derate 10mW/NC above +70NC).....796.ꢁmW  
Operating Temperature Range........................ -40NC to +12ꢀNC  
Junction Temperature ....................................................+1ꢀ0NC  
Storage Temperature Range............................ -6ꢀNC to +1ꢀ0NC  
Lead Temperature (soldering,10s) .................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
DD  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70NC)  
A
ꢀ-Pin SOT23 (derate 3.9mW/NC above +70NC).......312.6mW  
ꢁ-Pin FMAX (derate 4.ꢁmW/NC above +70NC)........3ꢁ7.ꢁmW  
Note 1: The amplifier inputs are connected by internal back-to-back clamp diodes. In order to minimize noise in the input stage,  
current-limiting resistors are not used. If differential input voltages exceeding 1V are applied, limit input current to 20mA.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 2)  
µMAX  
SOT23  
Junction-to-Ambient Thermal Resistance (q ) .....206.3NC/W  
Junction-to-Ambient Thermal Resistance (q ) .....2ꢀꢀ.9NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (q ) ..............42NC/W  
Junction-to-Case Thermal Resistance (q ) ..............ꢁ1NC/W  
JC  
JC  
SO-ꢁ  
TSSOP  
Junction-to-Ambient Thermal Resistance (q ) .....100.4NC/W  
Junction-to-Ambient Thermal Resistance (q ) ........132NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (q ) ..............3ꢁNC/W  
Junction-to-Case Thermal Resistance (q ) ..............30NC/W  
JC  
JC  
SO-14  
Junction-to-Ambient Thermal Resistance (q ) ..........ꢁ1NC/W  
JA  
Junction-to-Case Thermal Resistance (q ) ..............32NC/W  
JC  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESDꢀ1-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 30V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values at  
DD  
GND  
IN+ IN- DD L DD A  
T
= +2ꢀ°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR  
MIN  
2.7  
TYP  
166  
0.42  
20  
MAX  
UNITS  
V
Supply Voltage Range  
DD  
36  
V
V
V
= 2.7V to 36V, T =  
+2ꢀNC  
= 2.7V to 36V, -40NC < T < +12ꢀNC  
14ꢁ  
146  
Power-Supply Rejection Ratio  
(Note 4)  
DD  
A
PSRR  
dB  
DD  
A
T
=
+2ꢀNC  
0.ꢀꢀ  
0.60  
A
I
Quiescent Current per Amplifier  
DD  
R = J  
mA  
L
-40NC < T  
< +12ꢀNC  
A
t
Power-Up Time  
ON  
Fs  
DC SPECIFICATIONS  
(V  
- 0.0ꢀ)  
(V  
DD  
- 1.ꢀ)  
GND  
V
Input Common-Mode Range  
CM  
Guaranteed by CMRR test  
= (V - 0.0ꢀV) to (V  
V
Common-Mode Rejection Ratio  
(Note 4)  
CMRR  
V
- 1.ꢀV)  
146  
166  
1
dB  
CM  
GND  
DD  
V
Input Offset Voltage (Note 4)  
OS  
FV  
Maxim Integrated  
2
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 30V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values at  
DD  
GND  
IN+  
IN-  
DD  
L
DD  
A
T
= +2ꢀ°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
TC V  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
Input Offset Voltage Drift  
(Note 4)  
20  
nV/NC  
OS  
T
=
+2ꢀNC  
300  
600  
A
Input Bias Current (Note 4)  
I
pA  
B
-40NC < T  
< +12ꢀNC  
12ꢀ0  
1200  
2ꢀ00  
A
T
=
+2ꢀNC  
600  
A
I
Input Offset Current (Note 4)  
Open-Loop Gain (Note 4)  
Output Short-Circuit Current  
OS  
pA  
dB  
mA  
-40NC < T  
<
+12ꢀN  
C
A
A
P (V  
DD  
– 0.ꢀV)  
VOL  
(V  
+ 0.ꢀV) P V  
1ꢀ4  
16ꢁ  
40  
GND  
OUT  
Sinking  
Noncontinuous  
Sourcing  
30  
T
=
+2ꢀNC  
90  
11ꢀ  
1ꢁ0  
A
V
Output Voltage Low  
Output Voltage High  
OL  
mV  
V
-40NC < T  
<
+12ꢀNC  
A
(V  
0.17)  
(V  
DD  
0.13)  
-
-
DD  
T
= +2ꢀNC  
A
V
OH  
(V  
0.2ꢀ)  
-
DD  
-40NC < T  
<
+12ꢀNC  
A
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
Input Capacitance  
Gain-Bandwidth Product  
Phase Margin  
e
f = 1kHz  
9
nV/  
Hz  
N
nV  
0.1Hz < f < 10Hz  
117  
2
P-P  
C
IN  
pF  
GBW  
PM  
MHz  
Degrees  
V/Fs  
C
= 20pF  
60  
L
Slew Rate  
SR  
A
= 1V/V, V  
= 4V  
3.ꢁ  
300  
-96  
-77  
-91  
-76  
V
OUT  
P-P  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
pF  
L
V
,
f = 1kHz  
f = 20kHz  
f = 1kHz  
f = 20kHz  
V
= 4V  
P-P  
OUT  
dB  
dB  
A
= +1V/V  
V
Total Harmonic Distortion  
THD  
,
V
= 2V  
P-P  
OUT  
A
= +1V/V  
V
ELECTRICAL CHARACTERISTICS  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values at  
DD  
GND  
IN+  
IN-  
DD  
L
DD  
A
T
= +2ꢀ°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.42  
20  
MAX  
UNITS  
POWER SUPPLY  
T
=
+2ꢀNC  
0.ꢀꢀ  
0.60  
A
I
Quiescent Current per Amplifier  
Power-Up Time  
DD  
R
= J  
mA  
L
-40NC < T  
<
+12ꢀNC  
A
t
ON  
Fs  
Maxim Integrated  
3
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values at  
DD  
GND  
IN+ IN- DD L DD A  
T
= +2ꢀ°C.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC SPECIFICATIONS  
(V  
1.ꢀ)  
(V  
- 0.0ꢀ)  
GND  
DD  
V
Input Common-Mode Range  
CM  
Guaranteed by CMRR test  
= (V - 0.0ꢀV) to (V - 1.ꢀV)  
DD  
V
Common-Mode Rejection Ratio  
(Note 4)  
CMRR  
V
140  
1ꢀꢁ  
dB  
CM  
GND  
V
Input Offset Voltage (Note 4)  
OS  
1
FV  
Input Offset Voltage Drift (Note 4)  
TC V  
2.4  
300  
20  
nV/NC  
OS  
T
=
+2ꢀNC  
600  
1100  
1200  
2200  
A
Input Bias Current (Note 4)  
I
pA  
B
-40NC < T  
<
+12ꢀN  
C
A
T
=
+2ꢀNC  
600  
A
I
Input Offset Current (Note 4)  
Open-Loop Gain (Note 4)  
Output Short-Circuit Current  
OS  
pA  
dB  
mA  
-40NC < T  
<
+12ꢀNC  
A
A
VOL  
(V  
+ 0.ꢀV) ≤ V  
≤ (V - 0.ꢀV)  
DD  
144  
164  
40  
GND  
OUT  
Sinking  
Sourcing  
Noncontinuous  
30  
T
=
+2ꢀNC  
30  
40  
60  
A
V
Output Voltage Low  
Output Voltage High  
OL  
mV  
V
-40NC < T  
<
+12ꢀN  
C
A
(V  
(V  
DD  
0.0ꢀ)  
-
-
DD  
T
= +2ꢀNC  
A
0.06)  
V
OH  
(V  
-
DD  
-40NC < T  
< +12ꢀN  
C
A
0.09)  
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
Input Capacitance  
Gain-Bandwidth Product  
Phase Margin  
e
f = 1kHz  
9
117  
2
nV/  
Hz  
N
nV  
0.1Hz < f < 10Hz  
P-P  
C
pF  
IN  
GBW  
PM  
MHz  
Degrees  
V/µs  
C
= 20pF  
60  
3.ꢁ  
300  
-92  
-76  
1
L
Slew Rate  
SR  
A
= +1V/V, V  
= 2V , 10% to 90%  
V
OUT P-P  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
pF  
L
V
f = 1kHz  
V
= 2V  
,
OUT  
P-P  
Total Harmonic Distortion  
Settling Time  
THD  
dB  
µs  
A
= 1V/V  
f = 20kHz  
V
To 0.01%, V  
= 2V step, A = 1V/V  
V
OUT  
Note 3: All devices are 100% production tested at T = +2ꢀ°C. Temperature limits are guaranteed by design.  
A
Note 4: Guaranteed by design.  
Maxim Integrated  
4
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are  
DD  
A
GND  
IN+ IN- DD L DD A  
at T = +2ꢀ°C.) (Note 3)  
INPUT OFFSET VOLTAGE DRIFT  
HISTOGRAM  
SUPPLY CURRENT PER AMPLIFIER  
vs. SUPPLY VOLTAGE  
INPUT OFFSET VOLTAGE HISTOGRAM  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= V /2  
DD  
IN  
NO LOAD  
0
0
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE (V)  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
-0.006 -0.004 -0.002  
0
0.002 0.003 0.005  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE DRIFT (µV/°C)  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE vs. INPUT  
COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
470  
460  
450  
440  
430  
420  
410  
400  
390  
3
2
5
0
V
= V /2  
DD  
IN  
NO LOAD  
1
0
-1  
-2  
-3  
-5  
-50 -25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
CM  
INPUT BIAS CURRENT vs. V  
vs. TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
CM  
toc08  
700  
600  
500  
400  
300  
200  
100  
0
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
IB+ (  
T = +125°C)  
A
IB+  
IB- (  
T = +25°C)  
A
IB- (  
T = +125°C)  
A
IB+ (  
T = +25°C)  
A
IB-  
-100  
-200  
-300  
IB- (  
T = -40°C)  
A
IB+ (  
T
=
5
-40°C)  
6
A
80  
-1  
0
1
2
3
4
7
8
9
-50 -25  
0
25  
50  
75 100 125  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
CM  
Maxim Integrated  
5
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are  
DD  
A
GND  
IN+ IN- DD L DD A  
at T = +2ꢀ°C.) (Note 3)  
POWER-SUPPLY REJECTION RATIO  
vs. TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
OPEN-LOOP GAIN vs. FREQUENCY  
160  
140  
120  
100  
80  
180  
200  
150  
100  
50  
V
= 100mV  
P-P  
IN  
100mV  
P-P  
170  
160  
150  
140  
130  
120  
110  
100  
90  
60  
40  
20  
0
0
-20  
-40  
-50  
80  
0.1  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
-50 -25  
0
25  
50  
75 100 125  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE HIGH  
vs. OUTPUT SOURCE CURRENT  
OUTPUT VOLTAGE LOW  
vs. TEMPERATURE  
OUTPUT VOLTAGE LOW  
vs. OUTPUT SINK CURRENT  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
-50 -25  
0
25  
50  
75 100 125  
OUTPUT SINK CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE HIGH  
vs. TEMPERATURE  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
9.970  
9.965  
9.960  
9.955  
9.950  
9.945  
9.940  
9.935  
9.930  
2
0
5
0
-2  
-5  
NORMALIZED GAIN,  
NORMALIZED GAIN,  
V = 2V  
IN P-P  
V
= 100mV  
IN  
P-P  
-4  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-50 -25  
0
25  
50  
75 100 125  
10 100 1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
10 100 1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Maxim Integrated  
6
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are  
DD  
A
GND  
IN+ IN- DD L DD A  
at T = +2ꢀ°C.) (Note 3)  
INPUT VOLTAGE NOISE vs. FREQUENCY  
INPUT VOLTAGE 0.1Hz TO 10Hz NOISE  
MAX44241 toc20  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200nV/div  
0
1
10  
100  
1k  
10k  
100k  
1s/div  
FREQUENCY (Hz)  
LARGE-SIGNAL (2V  
STEP RESPONSE vs. TIME  
SMALL-SIGNAL (100mV  
STEP RESPONSE vs. TIME  
P-P)  
P-P)  
MAX44241 toc22  
MAX44241 toc21  
V
V
IN  
1V/div  
IN  
50mV/div  
V
V
OUT  
OUT  
1V/div  
50mV/div  
s/div  
s/div  
STABILITY vs. CAPACITIVE AND  
RESISTIVE LOAD IN PARALLEL  
STABILITY vs. CAPACITIVE LOAD AND  
SERIES ISOLATION RESISTANCE  
POWER-UP TIME  
MAX44241 toc25  
100  
10  
100  
10  
1
STABLE  
V
= V = 0V  
DD  
SS  
V
= 10V  
DD  
5V/div  
1
UNSTABLE  
UNSTABLE  
0.1  
STABLE  
V
= V  
OUT  
= 0V  
IN  
0.01  
0.001  
200mV/div  
0.1  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
20µs  
Maxim Integrated  
7
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V  
= 0V, V  
= V = V /2, R = ꢀkΩ to V /2, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are  
DD  
A
GND  
IN+ IN- DD L DD A  
at T = +2ꢀ°C.) (Note 3)  
TOTAL HARMONIC DISTORTION  
vs. OUTPUT AMPLITUDE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
0
-20  
0
-10  
0
-20  
-20  
-40  
-40  
-30  
-40  
-60  
-50  
-80  
-60  
-60  
-70  
-100  
-120  
-140  
-160  
-80  
-80  
2V OUTPUT  
P-P  
-90  
-100  
-110  
-120  
-100  
-120  
4V OUTPUT  
P-P  
1
10 100 1k  
10k 100k 1M 10M  
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT AMPLITUDE (V)  
EMIRR  
vs. FREQUENCY (V = 3.3V)  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
DD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-10  
V
= 30V  
DD  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
2V INPUT  
P-P  
-90  
-100  
-110  
-120  
4V INPUT  
P-P  
1
10  
100  
1000  
10,000  
10  
100  
1k  
10k  
100k  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Maxim Integrated  
8
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Pin Configurations  
TOP VIEW  
+
OUTA  
1
2
3
5
4
V
DD  
+
8
7
6
5
N.C.  
INA-  
INA+  
1
2
3
4
N.C.  
MAX44241  
V
DD  
MAX44241  
V
SS  
OUTA  
N.C.  
V
SS  
INA+  
INA-  
µMAX  
SOT-23  
+
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
+
OUTA  
INA-  
1
14 OUTD  
2
3
4
5
6
7
13 IND-  
12 IND+  
MAX44243  
INA+  
INA+  
MAX44243  
V
11 V  
SS  
DD  
V
11  
V
SS  
DD  
INB+  
INB-  
10 INC+  
INB+  
INB-  
10 INC+  
9
8
INC-  
9
8
INC-  
OUTB  
OUTC  
OUTB  
OUTC  
TSSOP  
SO  
+
OUTA  
1
2
3
4
8
7
6
5
V
DD  
MAX44246  
INA-  
INA+  
GND  
OUTB  
INB-  
INB+  
µMAX/SO  
Maxim Integrated  
9
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Pin Descriptions  
PIN  
MAX44241  
MAX44243  
MAX44246  
NAME  
FUNCTION  
SOT23-5  
µMAX-8  
SO-14  
TSSOP-14  
SO-8  
µMAX-8  
1
2
6
1
11  
3
1
11  
3
1
4
1
4
OUTA  
Channel A Output  
4
V
Negative Supply Voltage  
Channel A Positive Input  
Channel A Negative Input  
Positive Supply Voltage  
Channel B Positive Input  
Channel B Negative Input  
Channel B Output  
SS  
3
3
3
3
INA+  
INA-  
4
2
2
2
2
2
5
7
4
4
8
8
V
DD  
5
5
5
5
INB+  
INB-  
6
6
6
6
7
7
7
7
OUTB  
OUTC  
INC-  
8
8
Channel C Output  
9
9
Channel C Negative Input  
Channel C Positive Input  
Channel D Positive Input  
Channel D Negative Input  
Channel D Output  
10  
12  
13  
14  
10  
12  
13  
14  
INC+  
IND+  
IND-  
OUTD  
No Connection. Not internally  
connected.  
1, 5, 8  
N.C.  
Maxim Integrated  
10  
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Detailed Description  
V
SUPPLY  
The MAX44241/MAX44243/MAX44246 are high-precision  
amplifiers that provide below ꢀµV of maximum input-  
referred offset and low flicker noise. These characteris-  
tics are achieved by using a combination of proprietary  
auto-zeroing and chopper stabilized techniques. This  
combination of auto-zeroing and chopping ensures that  
these amplifiers give all the benefits of zero-drift ampli-  
fiers, while still ensuring low noise, minimizing chopper  
spikes, and providing wide bandwidth. Offset voltages  
due to power ripple/spikes as well as common-mode  
variation, are corrected resulting in excellent PSRR and  
CMRR specifications.  
I
LOAD  
½ MAX44246  
OUT  
R
SENSE  
R2  
R1  
Figure 1. Low-Side Current Sensing  
Noise Suppression  
Flicker noise, inherent in all active devices, is inverse-  
ly proportional to frequency present. Charges at the  
oxide-silicon interface that are trapped-and-released  
by MOSFET oxide occurs at low frequency more often.  
For this reason, flicker noise is also called 1/f noise. The  
MAX44241/MAX44243/MAX44246 eliminate the 1/f noise  
internally, thus making them ideal choices for DC or sub-  
Hz precision applications. The 1/f noise appears as a  
slow varying offset voltage and is eliminated by the chop-  
ping technique used.  
Circuit details an example of a load cell and ampli-  
fier driven from the same 10V supplies, along with the  
MAX11211 1ꢁ-bit delta sigma ADC. Load cells produce a  
very small voltage change at their outputs; therefore driv-  
ing the excitation source with a higher voltage produces  
a wider dynamic range that can be measured at the ADC  
inputs.  
The MAX11211 ADC operates from a single 2.7V to 3.6V  
analog supply, offers 1ꢁ-bit noise-free resolution and  
0.ꢁ6mW power dissipation. The MAX11211 also offers  
> 100dB rejection at ꢀ0Hz and 60Hz. This ADC is part of  
a family of 16-, 1ꢁ-, 20-, and 24-bit delta sigma ADCs with  
high precision and < 1mW power dissipation.  
Electromagnetic interference (EMI) noise occurs at higher  
frequency, resulting in malfunction or degradation of elec-  
trical equipment. The ICs have an input EMI filter to avoid  
the output being affected by radio frequency interference.  
The EMI filter composed of passive devices, presents sig-  
nificant higher impedance to higher frequency.  
The low input offset voltage and low noise of MAX44241/  
MAX44243/MAX44246 allow a gain circuit to precede the  
MAX11211 without losing any dynamic range at the ADC.  
See the Typical Operating Circuit.  
Applications Information  
Precision Low-Side Current Sensing  
The ICs’ ultra-low offset voltage and drift make them  
ideal for precision current-sensing applications. Figure 1  
shows the ICs in a low-side current-sense configuration.  
ADC Buffer Amplifier  
The MAX44241/MAX44243/MAX44246 have low input  
offset voltage, low noise, and fast settling time that make  
these amplifiers ideal for ADC buffers. Weight scales  
are one application that often requires a low-noise, high-  
voltage amplifier in front of an ADC. The Typical Operating  
This circuit produces an accurate output voltage, V  
OUT  
equal to I  
x R  
x (1 + R /R ).  
LOAD  
SENSE 2 1  
Maxim Integrated  
11  
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Layout Guidelines  
Ordering Information  
The MAX44241/MAX44243/MAX44246 feature ultra-low  
offset voltage and noise. Therefore, to get optimum per-  
formance follow the following layout guidelines.  
TOP  
MARK  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
MAX44241AUA+ -40NC to +12ꢀNC ꢁ FMAX  
MAX44241AUK+ -40NC to +12ꢀNC ꢀ SOT23  
MAX44243ASD+ -40NC to +12ꢀNC 14 SO  
MAX44243AUD+ -40NC to +12ꢀNC 14 TSSOP  
MAX44246ASA+ -40NC to +12ꢀNC ꢁ SO  
MAX44246AUA+ -40NC to +12ꢀNC ꢁ FMAX  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
AFMQ  
Avoid temperature gradients at the junction of two dis-  
similar metals. The most common dissimilar metals used  
on a PCB are solder-to-component lead and solder-to-  
board trace. Dissimilar metals create a local thermo-  
couple. A variation in temperature across the board can  
cause an additional offset due to Seebeck effect at the  
solder junctions. To minimize the Seebeck effect, place  
the amplifier away from potential heat sources on the  
board, if possible. Orient the resistors such that both  
the ends are heated equally. It is a good practice to  
match the input signal path to ensure that the type and  
number of thermoelectric junctions remain the same. For  
example, consider using dummy 0Ω resistors oriented  
in such a way that the thermoelectric sources, due to  
the real resistors in the signal path, are cancelled. It is  
recommended to flood the PCB with ground plane. The  
ground plane ensures that heat is distributed uniformly  
reducing the potential offset voltage degradation due to  
Seebeck effect.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
ꢀ SOT23  
ꢁ SO  
Uꢀ+1  
Sꢁ+4  
21-0057  
21-0041  
21-0036  
21-0041  
21-0066  
90-0174  
90-0096  
90-0092  
90-0112  
90-0113  
ꢁ µMAX  
14 SO  
Uꢁ+1  
S14M+4  
U14M+1  
14 TSSOP  
Maxim Integrated  
12  
MAX44241/MAX44243/MAX44246  
36V, Low-Noise, Precision,  
Single/Quad/Dual Op Amps  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
7/12  
9/12  
2/13  
ꢀ/13  
0
1
2
3
Initial release  
Revised the Electrical Characteristics and the Typical Operating Characteristics.  
1, 2, 3, ꢀ  
Revised the Typical Operating Characteristics.  
Updated General Description, Typical Application Circuit, and Pin Description.  
1, 9  
Added the MAX44241/MAX44243 to the data sheet. Revised the Typical Operating  
Circuit.  
4
9/13  
1–13  
6
7
1/14  
12/14  
4/1ꢀ  
Revised Electrical Characteristics and the Typical Operating Characteristics.  
Revised Benefits and Features section.  
2, ꢀ  
1
Revised Ordering Information  
13  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
13  
©
201ꢀ Maxim Integrated  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY