MAX44248ASA+ [MAXIM]

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps;
MAX44248ASA+
型号: MAX44248ASA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps

文件: 总14页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
General Description  
Benefits and Features  
Reduces Power for Sensitive Precision Applications  
The MAX44244/MAX44245/MAX44248 family of parts  
provide ultra-precision, low-noise, zero-drift single/quad/  
dual operational amplifiers featuring very low-power  
operation with a wide supply range. The devices  
incorporate a patented auto-zero circuit that constantly  
measures and compensates the input offset to eliminate  
drift over time and temperature as well as the effect of 1/f  
noise. These devices also feature integrated EMI filters  
to reduce high-frequency signal demodulation on the  
output. The op amps operate from either a single 2.7V to  
36V supply or dual ±1.35V to ±18V supply. The devices  
are unity-gain stable with a 1MHz gain-bandwidth product  
and a low 90µA supply current per amplifier.  
Low 90µA Quiescent Current per Amplifier  
Eliminates the Cost of Calibration with Increased  
Accuracy with Maxim’s Patented Autozero Circuitry  
Very Low Input Voltage Offset 7.5µV (max)  
• Low 30nV/°C Offset Drift (max)  
Low Noise Ideal for Sensor Interfaces and  
Transmitters  
50nV/√Hz at 1kHz  
• 0.5µV  
from 0.1Hz to 10Hz  
P-P  
1MHz Gain-Bandwidth Product  
• EMI Suppression Circuitry  
The low offset and noise specifications and high supply  
range make the devices ideal for sensor interfaces and  
transmitters.  
Rail-to-Rail Output  
Wide Supply for High-Voltage Front Ends  
• 2.7V to 36V Supply Range  
®
The devices are available in µMAX , SO, SOT23, and  
µMAX, SO, SOT23, TSSOP Packages  
TSSOP packages and are specified over the -40°C to  
+125°C automotive operating temperature range.  
Ordering Information appears at end of data sheet.  
Applications  
Sensors Interfaces  
4mA to 20mA and 0 to10V Transmitters  
PLC Analog I/O Modules  
Weight Scales  
Portable Medical Devices  
μMAX is a registered trademark of Maxim Integrated Products, Inc.  
Typical Operating Circuit  
LP+  
V
REF  
MAX6033  
REF  
I
SIG  
R1  
(4-20mA)  
R2  
MAX5216  
DAC  
MAX44244  
R3  
FLOATING  
GROUND  
R
SENSE  
LP-  
19-6367; Rev 6; 11/18  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Absolute Maximum Ratings  
V
to V ............................................................-0.3V to +40V  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature........................................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
DD  
SS  
Common-Mode Input Voltage........(V - 0.3V) to (V  
Differential Input Voltage IN_+, IN_- ......................................6V  
Continuous Input Current Into Any Pin.............................±20mA  
+ 0.3V)  
SS  
DD  
Output Voltage to V (OUT_)............... – 0.3V to (V  
+ 0.3V)  
SS  
DD  
Output Short-Circuit Duration (OUT_)..................................... 1s  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
SO-8  
TSSOP  
Junction-to-Ambient Thermal Resistance (θ ) ........110°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ........132°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ )...............38°C/W  
Junction-to-Case Thermal Resistance (θ )...............30°C/W  
JC  
JC  
SO-14  
µMAX  
Junction-to-Ambient Thermal Resistance (θ ) ........120°C/W  
Junction-to-Ambient Thermal Resistance (θ ) .....206.3°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ )...............37°C/W  
Junction-to-Case Thermal Resistance (θ )...............42°C/W  
JC  
JC  
SOT23  
Junction-to-Ambient Thermal Resistance (θ ) .....324.3°C/W  
JA  
Junction-to-Case Thermal Resistance (θ )...............82°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 10V, V  
= 0V, V  
= V  
= V /2, R = 5kto V /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25°C.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Supply Voltage Range  
V
Guaranteed by PSRR  
T = +25°C, V = V = V /2 - 1V  
2.7  
140  
133  
36  
V
DD  
148  
100  
90  
A
IN+  
IN-  
DD  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
dB  
-40°C < T < +125°C  
A
T = +25°C  
160  
190  
130  
145  
A
Quiescent Current Per Amplifier  
(MAX4244 Only)  
I
I
µA  
µA  
DD  
DD  
-40°C < T < +125°C  
A
T = +25°C  
A
Quiescent Current Per Amplifier  
(MAX44245/MAX44248 Only)  
-40°C < T < +125°C  
A
DC SPECIFICATIONS  
V
0.05  
-
V
1.5  
-
DD  
SS  
Input Common-Mode Range  
V
CM  
Guaranteed by CMRR test  
V
Maxim Integrated  
2  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Electrical Characteristics (continued)  
(V  
= 10V, V  
= 0V, V  
= V  
= V /2, R = 5kto V /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25°C.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
V
= +25°C, V  
= V - 0.05V to  
A
CM SS  
126  
130  
- 1.5V  
DD  
Common-Mode Rejection Ratio  
(Note 3)  
CMRR  
dB  
-40°C < T < +125°C, V  
= V - 0.05V  
SS  
A
CM  
120  
to V  
- 1.5V  
DD  
T
= +25°C  
2
7.5  
10  
A
Input Offset Voltage (Note 3)  
V
µV  
nV/°C  
pA  
OS  
-40°C < T < +125°C  
A
Input Offset Voltage Drift  
(Note 3)  
TC V  
10  
30  
OS  
T = +25°C  
150  
300  
700  
A
Input Bias Current (Note 3)  
Input Offset Current (Note 3)  
I
B
-40°C < T < +125°C  
A
T = +25°C  
300  
150  
600  
A
I
pA  
OS  
-40°C < T < +125°C  
1400  
A
V
V
0.5V  
+ 0.5V ≤  
T
= +25°C  
140  
135  
SS  
A
Open-Loop Gain (Note 3)  
A
≤ V -  
DD  
dB  
VOL  
OUT  
-40°C < T < +125°C  
A
Output Short-Circuit Current  
To V  
or V , noncontinuous  
40  
mA  
DD  
SS  
T = +25°C  
80  
110  
50  
A
V
V
-
DD  
OUT  
-40°C < T < +125°C  
A
Output Voltage Swing  
mV  
T = +25°C  
A
V
-
OUT  
V
SS  
-40°C < T < +125°C  
A
75  
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
e
f = 1kHz  
50  
500  
0.1  
1
nV/√Hz  
N
0.1Hz < f < 10Hz  
f = 1kHz  
nV  
P-P  
Input Current-Noise Density  
Gain-Bandwidth Product  
Slew Rate  
i
pA/√Hz  
MHz  
V/µs  
pF  
N
GBW  
SR  
A
V
= 1V/V, V  
= 2V  
P-P  
0.7  
400  
OUT  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
V
L
Total Harmonic Distortion  
Plus Noise  
THD+N  
EMIRR  
V
= 2V , A = +1V/V, f = 1kHz  
-100  
dB  
OUT  
P-P  
V
f = 400MHz  
f = 900MHz  
f = 1800MHz  
f = 2400MHz  
75  
78  
80  
90  
EMI Rejection Ratio  
V
= 100mV  
dB  
RF_PEAK  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Electrical Characteristics (continued)  
(V  
= 30V, V  
= 0V, V  
= V  
= V /2, R = 5kto V /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25°C.) (Note 2)  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T = +25°C  
100  
160  
190  
130  
145  
A
Quiescent Current Per Amplifier  
(MAX44244 Only)  
I
I
µA  
µA  
DD  
-40°C < T < +125°C  
A
T = +25°C  
90  
A
Quiescent Current Per Amplifier  
(MAX44245/MAX44248 Only)  
DD  
-40°C < T < +125°C  
A
DC SPECIFICATIONS  
V
0.05  
-
V
1.5  
-
DD  
SS  
Input Common-Mode Range  
V
Guaranteed by CMRR test  
V
CM  
T
V
= +25°C, V  
= V - 0.05V to  
A
CM SS  
130  
126  
140  
2
- 1.5V  
DD  
Common-Mode Rejection Ratio  
(Note 3)  
CMRR  
dB  
-40°C < T < +125°C, V  
to V  
= V - 0.05V  
SS  
A
CM  
- 1.5V  
DD  
T
= +25°C  
7.5  
10  
A
Input Offset Voltage (Note 3)  
V
µV  
nV/°C  
pA  
OS  
-40°C < T < +125°C  
A
Input Offset Voltage Drift  
(Note 3)  
TC V  
10  
30  
OS  
T = +25°C  
150  
300  
700  
600  
A
Input Bias Current (Note 3)  
Input Offset Current (Note 3)  
I
B
-40°C < T < +125°C  
A
T = +25°C  
300  
150  
40  
A
I
pA  
OS  
-40°C < T < +125°C  
1400  
A
T
= +25°C  
146  
140  
V
+ 0.5V ≤ V  
A
SS  
≤ V  
OUT  
Open-Loop Gain (Note 3)  
A
dB  
VOL  
- 0.5V  
-40°C < T < +125°C  
DD  
A
Output Short-Circuit Current  
To V  
or V , noncontinuous  
mA  
DD  
SS  
T = +25°C  
200  
270  
140  
220  
A
V
V
-
DD  
OUT  
-40°C < T < +125°C  
A
Output Voltage Swing  
mV  
T = +25°C  
A
V
-
OUT  
V
SS  
-40°C < T < +125°C  
A
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
e
f = 1kHz  
50  
500  
0.1  
1
nV/√Hz  
N
0.1Hz < f < 10Hz  
f = 1kHz  
nV  
P-P  
Input Current-Noise Density  
Gain-Bandwidth Product  
i
pA/√Hz  
N
GBW  
MHz  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Electrical Characteristics (continued)  
(V  
= 30V, V  
= 0V, V  
= V  
= V /2, R = 5kto V /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25°C.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.7  
MAX  
UNITS  
V/µs  
pF  
Slew Rate  
SR  
A
= 1V/V, V  
= 2V  
V
OUT P-P  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
400  
L
V
Total Harmonic Distortion  
Plus Noise  
THD+N  
V
OUT  
= 2V , A = +1V/V, f = 1kHz  
-100  
dB  
P-P  
V
f = 400MHz  
f = 900MHz  
f = 1800MHz  
f = 2400MHz  
75  
78  
80  
90  
EMI Rejection Ratio  
EMIRR  
V
= 100mV  
dB  
RF_PEAK  
Note 2: All devices are 100% production tested at T = +25°C. Temperature limits are guaranteed by design.  
A
Note 3: Guaranteed by design.  
Note 4: At IN+ and IN-. Defined as 20log (V  
/ΔV ).  
OS  
RF_PEAK  
Typical Operating Characteristics  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kΩ to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+ IN- DD L DD A  
SUPPLY CURRENT  
INPUT OFFSET VOLTAGE HISTOGRAM  
INPUT OFFSET VOLTAGE DRIFT  
vs. SUPPLY VOLTAGE  
45  
35  
30  
25  
20  
15  
10  
5
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
INPUT OFFSET VOLTAGE (µV)  
4
5
6
7
8
9
10 11 12 13 14  
0
10  
20  
30  
40  
INPUT OFFSET VOLTAGE DRIFT (nV/°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kΩ to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+ IN- DD L DD A  
INPUT OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE  
VS. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
100  
2
1
3
2
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
1
0
-1  
-2  
-3  
-4  
0
-1  
-2  
-3  
-4  
-5  
-50 -25  
0
25  
50  
75 100 125  
-6  
-4  
-2  
0
2
4
6
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT BIAS CURRENT  
VS. COMMON-MODE VOLTAGE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
180  
160  
140  
120  
100  
80  
800  
600  
400  
200  
0
60  
40  
-200  
-400  
20  
0
0
2
4
6
8
10  
-50 -25  
0
25  
50  
75 100 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
0
-20  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kΩ to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT VOLTAGE HIGH  
vs. TEMPERATURE  
OUTPUT VOLTAGE LOW  
vs. TEMPERATURE  
0
80  
70  
60  
50  
40  
30  
60  
50  
40  
30  
20  
10  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
1000  
1000  
100  
10  
100  
10  
1
1
0.1  
1
10  
0.1  
1
10  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
0.1Hz TO 10Hz INPUT VOLTAGE  
PEAK-PEAK NOISE  
INPUT VOLTAGE NOISE  
vs. FREQUENCY  
MAX44248 toc17  
200  
180  
160  
140  
120  
100  
80  
200nV/div  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
4s/div  
FREQUENCY (Hz)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kΩ to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+ IN- DD L DD A  
INPUT CURRENT NOISE  
vs. FREQUENCY  
SMALL SIGNAL GAIN  
vs. FREQUENCY  
LARGE SIGNAL GAIN  
vs. FREQUENCY  
10  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
9
8
7
6
5
4
3
2
1
0
GAIN = 11V/V,  
= 200mV  
GAIN = 11V/V,  
= 2V  
V
V
OUT  
OUT  
PP  
PP  
0
0
-5  
-5  
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LARGE-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
MAX44248 toc22  
MAX44248 toc21  
V
V
IN  
2V/div  
IN  
100mV/div  
V
V
OUT  
OUT  
50mV/div  
500mV/div  
4µs/div  
4µs/div  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
POWER-UP TIME  
MAX44248 toc23  
0
-20  
V
DD  
10V/div  
-40  
R
= 1k  
LOAD  
-60  
R
= 600Ω  
LOAD  
-80  
V
OUT  
2V/div  
-100  
-120  
-140  
R
LOAD  
= 5kΩ  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
20µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kΩ to V /2. Typical values are at T = +25°C.)  
IN+ IN- DD L DD A  
DD  
SS  
OUTPUT STABILITY  
OUTPUT STABILITY  
vs. CAPACITIVE LOAD  
vs. ISOLATION RESISTANCE  
10k  
1k  
10k  
1k  
UNSTABLE  
STABLE  
100  
10  
100  
10  
1
STABLE  
UNSTABLE  
1
100  
1000  
10,000  
100,000  
100  
1000  
10,000  
100,000  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
CROSSTALK vs. FREQUENCY  
OUTPUT IMPEDANCE vs. FREQUENCY  
0
-20  
1000  
100  
10  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
1
0.1  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
EMIRR vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
10  
100  
1,000  
10,000  
FREQUENCY (MHz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Pin Configurations  
TOP VIEW  
+
OUTA  
1
2
3
5
4
V
DD  
+
N.C.  
INA-  
INA+  
1
2
3
4
8
7
6
5
N.C.  
MAX44244  
V
DD  
V
MAX44244  
SS  
OUTA  
N.C.  
V
SS  
INA+  
INA-  
µMAX  
SOT23  
+
+
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
13 IND-  
12 IND+  
INA+  
INA+  
MAX44245  
MAX44245  
V
11  
V
SS  
DD  
V
11 V  
SS  
DD  
INB+  
INB-  
10 INC+  
INB+  
INB-  
10 INC+  
9
8
INC-  
9
8
INC-  
OUTB  
OUTC  
OUTB  
OUTC  
TSSOP  
SO-14  
+
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
DD  
+
OUTA  
1
2
3
4
8
7
6
5
V
DD  
MAX44248  
OUTB  
INB-  
INA-  
OUTB  
INB-  
MAX44248  
INA+  
INA+  
V
INB+  
SS  
µMAX  
V
SS  
INB+  
SO-8  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Pin Description  
PIN  
MAX44245  
MAX44244  
MAX44248  
NAME  
FUNCTION  
SOT23  
µMAX  
6
SO-14  
TSSOP  
SO-8  
µMAX  
1
1
2
1
11  
3
1
11  
3
1
4
OUTA  
Channel A Output  
4
4
V
Negative Supply Voltage  
Channel A Positive Input  
Channel A Negative Input  
Positive Supply Voltage  
Channel B Positive Input  
Channel B Negative Input  
Channel B Output  
SS  
3
3
3
3
INA+  
INA-  
4
2
2
2
2
2
5
7
4
4
8
8
V
DD  
5
5
5
5
INB+  
INB-  
6
6
6
6
7
7
7
7
OUTB  
OUTC  
INC-  
8
8
Channel C Output  
9
9
Channel C Negative Input  
Channel C Positive Input  
Channel D Positive Input  
Channel D Negative Input  
Channel D Output  
10  
12  
13  
14  
10  
12  
13  
14  
INC+  
IND+  
IND-  
OUTD  
No Connection. Not internally  
connected.  
1, 5, 8  
N.C.  
Detailed Description  
Applications Information  
The MAX44244/MAX44245/MAX44248 are high-  
precision amplifiers with less than 2µV (typ) input-referred  
offset and low input voltage-noise density at 10Hz.  
1/f noise, in fact, is eliminated to improve the performance  
in low-frequency applications. These characteristics are  
achieved through an auto-zeroing technique that cancels  
the input offset voltage and 1/f noise of the amplifier.  
The devices feature ultra-high precision operational  
amplifiers with a high supply voltage range designed  
for load cell, medical instrumentation, and precision  
instrument applications.  
4–20mA Current-Loop Communication  
Industrial environments typically have a large amount of  
broadcast electromagnetic interference (EMI) from high-  
voltage transients and switching motors. This combined  
with long cables for sensor communication leads to  
high-voltage noise on communication lines. Current-Loop  
communication is resistant to this noise because the EMI  
induced current is low. This configuration also allows for  
low-power sensor applications to be powered from the  
communication lines.  
External Noise Suppression in EMI Form  
These devices have input EMI filters to prevent effects  
of radio frequency interference on the output. The EMI  
filters comprise passive devices that present significant  
higher impedance to higher frequency signals. See the  
EMIRR vs. Frequency graph in the Typical Operating  
Characteristics section for details.  
The Typical Operating Circuit shows how the device can  
be used to make a current loop driver.  
High Supply Voltage Range  
The devices feature 90µA current consumption per chan-  
nel and a voltage supply range from either 2.7V to 36V  
single supply or ±1.35V to ±18V split supply.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
The circuit uses low-power components such as the  
MAX44244 op amp, the 16-bit MAX5216 DAC, and the  
high-precision 60µA-only MAX6033 reference. In this  
circuit, both the DAC and the reference are referred to  
the local ground. The MAX44244 op-amp inputs are  
capable of swinging to the negative supply (which is the  
local ground in this case). R3 acts as a current mirror with  
high dynamic range with low power such as sensors on  
a 4–20mA industrial control loop. The devices provide a  
high-accuracy internal oscillator that requires no external  
components.  
Layout Guidelines  
The MAX44244/MAX44245/MAX44248 feature ultra-low  
input offset voltage and noise. Therefore, to get optimum  
performance follow the layout guidelines.  
R
. Therefore, if R  
= 50Ω (i.e. 20mA will drop  
SENSE  
SENSE  
1V) and if the current through R3 is 10μA when I  
is  
OUT  
20mA (0.05% error) then R3 = 100kΩ. R1 is chosen along  
with the reference voltage to provide the 4mA offset. R2  
= 512kΩ for 20mA full scale or R2 = 614kΩ for 20% over-  
Avoid temperature tradients at the junction of two dissimilar  
metals. The most common dissimilar metals used on a  
PCB are solder-to-component lead and solder-to-board  
trace. Dissimilar metals create a local thermocouple.  
A variation in temperature across the board can cause  
an additional offset due to Seebeck effect at the solder  
junctions. To minimize the Seebeck effect, place the  
amplifier away from potential heat sources on the board,  
if possible. Orient the resistors such that both the ends  
are heated equally. It is a good practice to match the  
input signal path to ensure that the type and number of  
thermoelectric juntions remain the same. For example,  
consider using dummy 0Ω resistors oriented in such a way  
that the thermoelectric source, due to the real resistors in  
the signal path, are cancelled. It is recommended to flood  
the PCB with ground plane. The ground plane ensures  
that heat is distributed uniformly reducing the potential  
offset voltage degradation due to Seebeck effect.  
range. R  
is ratiometric with R3, R1 independently  
SENSE  
sets the offset current and R2 independently sets the  
DAC scaling.  
Driving High-Performance ADCs  
The MAX44244/MAX44245/MAX44248’s low input offset  
voltage and low noise make these amplifiers ideal for  
ADC buffering. Weight scale applications require a low-  
noise, precision amplifier in front of an ADC. Figure 1  
details an example of a load cell and amplifier driven from  
the same 5V supply, along with a 16-bit delta sigma ADC  
such as the MAX11205.  
The MAX11205 is an ultra-low-power (< 300μA, max  
active current), high-resolution, serial output ADC. It  
provides the highest resolution per unit power in the  
industry and is optimized for applications that require very  
5V  
5V  
½ MAX44248  
AMP A  
V
DD  
5V  
MICRO-  
CONTROLLER  
R
R
F
V
DD  
SCLK  
RDY/DOUT  
MAX11205  
SCK  
V
V
IN+  
MISO  
R
G
F
IN-  
V
SS  
5V  
V
SS  
AMP B  
½ MAX44248  
Figure 1. Weight Application  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
Ordering Information  
PIN-  
TOP  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
PART  
TEMP RANGE  
PACKAGE MARK  
MAX44244AUK+  
MAX44244AUA+  
MAX44245ASD+  
MAX44245AUD+  
MAX44248AUA+  
MAX44248ASA+  
-40°C to +125°C 5 SOT23  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 14 SO  
-40°C to +125°C 14 TSSOP  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 8 SO  
AFMR  
5 SOT23  
8 SO  
U5+1  
S8+4  
21-0057  
21-0041  
21-0036  
21-0041  
21-0066  
90-0174  
90-0096  
90-0092  
90-0112  
90-0113  
8 µMAX  
14 SO  
U8+1  
S14M+4  
U14M+1  
14 TSSOP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX44244/MAX44245/  
MAX44248  
36V, Precision, Low-Power, 90μA,  
Single/Quad/Dual Op Amps  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
7/12  
Initial release  
Added the MAX44244/MAX44245 to data sheet. Updated the Electrical  
Characteristics, Absolute Maximum Ratings, Pin Description, and Pin  
Configurations.  
1
6/13  
1–13  
Released the MAX44244 for introduction. Revised the Electrical  
Characteristics  
2
9/13  
2–5, 13  
3
4
5
6
6/14  
12/14  
9/15  
Corrected Figure 1 and Package Information  
Updated Benefits and Features section  
Updated Typical Operating Circuit  
12, 13  
1
1
11/18  
Updated Typical Operating Chracteristics  
7–9  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY