MAX4456CQH-D [MAXIM]

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, PLASTIC, MO-047AC, LCC-44;
MAX4456CQH-D
型号: MAX4456CQH-D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Cross Point Switch, 1 Func, 8 Channel, CMOS, PQCC44, PLASTIC, MO-047AC, LCC-44

PC 输出元件
文件: 总16页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1389; Rev 1; 12/99  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
General Description  
Features  
The MAX4359/MAX4360/MAX4456 low-cost video cross-  
point switches are designed to reduce component count,  
board space, design time, and system cost. Each con-  
tains a matrix of T-switches that connect any of their four  
(MAX4359) or eight (MAX4360/MAX4456) video inputs to  
any of their buffered outputs, in any combination. Each  
matrix output is buffered by an internal, high-speed  
(250V/µs), unity-gain amplifier that is capable of driving  
400and 20pF at 2.6Vp-p. For applications requiring  
increased drive capability, buffer the MAX4359/  
MAX4360/MAX4456 outputs with the MAX497 quad,  
gain-of-two video line driver.  
Eight (MAX4456) or Four (MAX4359/MAX4360)  
Internal Buffers  
250V/µs Slew Rate  
Three-State Output Capability  
Power-Saving Disable Feature  
65MHz -3dB Bandwidth  
Routes Any Input Channel to Any Output Channel  
Serial or Parallel Digital Interface  
Expandable for Larger Switch Matrices  
80dB All-Channel Off-Isolation at 5MHz  
70dB Single-Channel Crosstalk  
The MAX4456 has a digitally controlled 8x8 switch matrix  
and is a low-cost pin-for-pin compatible alternative to the  
popular MAX456. The MAX4359/MAX4360 are similar to  
the MAX4456, with the 8x8 switch matrix replaced by a  
4x4 (MAX4359) or an 8x4 (MAX4360) switch matrix.  
Straight-Through Pinouts Simplify Layout  
Low-Cost Pin-Compatible Alternative to  
MAX456 (MAX4456)  
Three-state output capability and internal, programmable  
active loads make it feasible to parallel multiple devices  
to form larger switch arrays. The inputs and outputs are  
on opposite sides, and a quiet power supply or digital  
input line separates each channel, which reduces  
crosstalk to -70dB at 5MHz. For applications demanding  
better DC specifications, see the MAX456 8x8 video  
crosspoint switch.  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
PIN-PACKAGE  
36 SSOP  
MAX4359EAX  
MAX4359EWG  
MAX4360EAX  
MAX4456CPL  
MAX4456CQH  
MAX4456EPL  
MAX4456EQH  
24 SO  
36 SSOP  
40 Plastic DIP  
44 PLCC  
0°C to +70°C  
________________________Applications  
-40°C to +85°C  
-40°C to +85°C  
40 Plastic DIP  
44 PLCC  
High-Speed Signal  
Video Test Equipment  
Video Conferencing  
Security Systems  
Routing  
Pin Configurations appear at end of data sheet.  
Video-On-Demand  
Systems  
_________________________________________________Typical Application Circuits  
8 INPUT CHANNELS  
4 INPUT CHANNELS  
(8 INPUT CHANNELS)  
MAX497  
= +2  
(MAX4360)  
A
Z = 75  
0
V
75Ω  
MAX497  
= +2  
WR  
LATCH  
A
V
Z = 75Ω  
0
75Ω  
WR  
LATCH  
75Ω  
MAX4456  
75Ω  
MAX4359  
(MAX4360)  
A2  
A1  
A0  
OUTPUT  
SELECT  
A1  
A0  
OUTPUT  
SELECT  
8x8  
T-SWITCH  
MATRIX  
4x4  
(8x4)  
T-SWITCH  
MATRIX  
INPUT  
SELECT  
OR  
SERIAL  
I/O  
D3  
D2  
INPUT  
SELECT  
OR  
SERIAL  
I/O  
D3  
D2  
D1/SER OUT  
D0/SER IN  
D1/SER OUT  
D0/SER IN  
A
= +2  
V
MAX497  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V-) ...........................................+±2V  
Positive Supply Voltage (V+) Referred to AGND .......-0.3V to +±2V  
Negative Supply Voltage (V-) Referred to AGND ......-±2V to +0.3V  
DGND to AGND..................................................................±0.3V  
Buffer Short Circuit to Ground when  
Continuous Power Dissipation (T = +70°C)  
A
36-Pin SSOP (derate ±±.8mW/°C above +70°C)...........94±mW  
24-Pin SO (derate ±±.8mW/°C above +70°C)................94±mW  
40-Pin Plastic DIP (derate ±±.3mW/°C above +70°C)....889mW  
44-Pin PLCC (derate ±3.3mW/°C above +70°C) .......±066mW  
Operating Temperature Ranges  
Not Exceeding Package Power Dissipation.............Indefinite  
Analog Input Voltage............................(V+ + 0.3V) to (V- - 0.3V)  
Digital Input Voltage .............................(V+ + 0.3V) to (V- - 0.3V)  
Input Current, Power On or Off  
Digital Inputs.................................................................±20mA  
Analog Inputs ...............................................................±50mA  
MAX4456C _ _ ....................................................0°C to +70°C  
MAX4_ _ _E_ _.................................................-40°C to +85°C  
Junction Temperature......................................................+±50°C  
Storage Temperature Range.............................-65°C to +±50°C  
Lead Temperature (soldering, ±0sec) .............................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V+ = +5V, V- = -5V, V  
= +5V (internal load resistors on), V  
= V  
= V = 0, T = T  
DGND  
to T , unless otherwise noted.  
MAX  
LOAD  
IN_  
AGND  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
Operating Supply Voltage  
Input Voltage Range  
CONDITIONS  
Inferred from PSRR test  
MIN  
±4.5  
-±.3  
TYP  
MAX  
±5.5  
±.3  
UNITS  
V
V
Inferred from swing test  
T = +25°C  
0.99  
0.98  
±.0  
±.0  
±±  
±.0±  
±.02  
±±5  
±20  
A
Internal load resistors on,  
Voltage Gain  
V/V  
no external load, V = 0 to ±V  
IN  
T = T  
to T  
MAX  
A
MIN  
T = +25°C  
A
Buffer Offset Voltage  
Offset Voltage Drift  
mV  
T = T  
to T  
MAX  
A
MIN  
20  
20  
µV/°C  
T = +25°C  
32  
37  
50  
65  
5
A
MAX4359/MAX4360  
MAX4456  
T = T  
A
to T  
MAX  
MIN  
Supply Current, All Buffers On  
(no external load)  
mA  
T = +25°C  
39  
A
T = T  
A
to T  
MIN  
MAX  
Supply Current, All Buffers Off  
Power-Supply Rejection Ratio  
Analog Input Current  
±.6  
64  
mA  
dB  
nA  
nA  
±4.5V to ±5.5V  
50  
±0.±  
±±00  
±±00  
600  
Output Leakage Current  
Internal load resistors off, all buffers off  
T = +25°C  
250  
200  
400  
±0  
A
Internal Amplifier Load Resistor  
V
LOAD  
= 5V  
T = T  
A
to T  
765  
MIN  
MAX  
Buffer Output Voltage Swing  
Digital Input Current  
Internal load resistors on, no external load  
±±.3  
V
µA  
V
±±  
0.8  
0.4  
Output Impedance at DC  
Input Logic Low Threshold  
Input Logic High Threshold  
2.4  
4
V
I
I
= 0.4mA  
= -0.4mA  
Serial mode,  
= 5V  
OL  
SER OUT Output Logic Low/High  
V
V
SER/PAR  
OH  
2
_______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
AC ELECTRICAL CHARACTERISTICS  
(V+ = +5V, V- = -5V, V  
= +5V (internal load resistors on), V  
= V  
= 0, T = +25°C, unless otherwise noted.)  
DGND  
A
LOAD  
AGND  
PARAMETER  
DYNAMIC SPECIFICATIONS  
Output-Buffer Slew Rate  
Single-Channel Crosstalk  
All-Hostile Crosstalk  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal load resistors on, ±0pF load  
250  
70  
57  
80  
35  
65  
4
V/µs  
dB  
5MHz, V = 2Vp-p (Note ±)  
IN  
5MHz, V = 2Vp-p (Notes ±, 2)  
dB  
IN  
All-Channel Off-Isolation  
-3dB Bandwidth  
5MHz, V = 2Vp-p (Note ±)  
dB  
IN  
±0pF load, V = 2Vp-p (Note ±)  
MHz  
MHz  
MHz  
degrees  
%
IN  
Small-Signal -3dB Bandwidth  
0.±dB Bandwidth  
±0pF load, V = ±00mVp-p (Note ±)  
IN  
±0pF load, V = ±00mVp-p (Note ±)  
IN  
Differential Phase Error  
Differential Gain Error  
Input Noise  
(Note 3)  
±.0  
0.5  
0.3  
6
(Note 3)  
DC to 40MHz  
All buffer inputs grounded  
mV  
RMS  
Input Capacitance  
pF  
Additional capacitance for each output buffer  
connected to channel input  
Buffer Input Capacitance  
Output Capacitance  
2
7
pF  
pF  
Output buffer off  
SWITCHING CHARACTERISTICS  
(Figure 4, V+ = +5V, V- = -5V, V  
= +5V (internal load resistors on), V  
= V  
= V  
= 0, T = T  
to T  
, unless other-  
MAX  
LOAD  
IN_  
AGND  
DGND  
A
MIN  
wise noted. Typical values are at T = +25°C.) (Note 4)  
A
PARAMETER  
Chip-Enable to Write Setup  
Write Pulse Width High  
Write Pulse Width Low  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
ns  
t
CE  
t
80  
80  
240  
±60  
0
ns  
WH  
t
ns  
WL  
Parallel mode  
Data Setup  
t
ns  
DS  
Serial mode  
Data Hold  
t
ns  
ns  
ns  
ns  
ns  
ns  
DH  
Latch Pulse Width  
t
L
80  
80  
Latch Delay  
t
D
Switch Break-Before-Make Delay  
LATCH Edge to Switch Off  
LATCH Edge to Switch On  
t
t
±5  
35  
50  
ON - OFF  
t
LATCH on  
OFF  
t
ON  
Note 1: See Dynamic Test Circuits section.  
Note 2: 3dB typical crosstalk improvement when R = 0.  
S
Note 3: Input test signal: 3.58MHz sine wave of amplitude 40IRE superimposed on a linear ramp (0 to ±00IRE). IRE is a unit of  
video-signal amplitude developed by the International Radio Engineers. ±40IRE = ±.0V.  
Note 4: Guaranteed by design.  
_______________________________________________________________________________________  
3
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Pin Description  
PIN  
MAX4359  
SSOP  
MAX4360  
SSOP  
MAX4456  
NAME  
FUNCTION  
SO  
DIP  
PLCC  
D±/  
SER OUT  
Parallel Data Bit D± when SER/PAR = GND. Serial out-  
±
±
±
±
2
put for cascading multiple parts when SER/PAR = V  
.
CC  
Parallel Data Bit D0 when SER/PAR = GND. Serial  
2
2
2
2
3
D0/SER IN  
A_  
input when SER/PAR = V  
.
CC  
3, 5  
3, 5  
3, 5  
3, 4, 6  
4, 5, 7  
Output Buffer Address Lines  
4, 6, 8, ±0, 5, 7, 9, ±±, 6, 8, ±0, ±3,  
4, 6, 8, ±0 4, 6, 8, ±0 ±2, ±4, ±6, ±3, ±5, ±7, ±5, ±7, ±9,  
IN_  
Video Input Lines  
±8  
±9  
2±  
Asynchronous Control Line. When LOAD = V , all the  
CC  
400internal active loads are on. When LOAD = GND,  
external 400loads must be used. The buffers must  
have a resistive load to maintain stability.  
7
9
7
9
7
8
9
LOAD  
Digital Ground. DGND pins must have the same  
potential and be bypassed to AGND. DGND should  
be within ±0.3V of AGND.  
9
±0, ±2  
±4  
±±, ±4  
±6  
DGND  
When this control line is high, the 2nd-rank registers  
are loaded with the rising edge of LATCH. If this con-  
trol line is low, the 2nd-rank registers are transparent  
when LATCH is low, passing data directly from the  
±st-rank registers to the decoders.  
EDGE/  
LEVEL  
±±  
±±  
±±  
±2–±6, ±8,  
22–26  
±, ±2, 23,  
34  
±2  
±3  
22–26  
±7  
±8  
N.C.  
SER/PAR  
V-  
No connection. Not internally connected.  
Connect to V  
for serial mode; connect to GND for  
CC  
±7  
20  
parallel mode.  
Negative Supply. All V- pins must be connected to each  
other and bypassed to GND separately (Figure 2).  
±9, 30  
±9, 30  
20, 34  
22, 38  
In serial mode, WR (write) shifts data into the input regis-  
ter. In parallel mode, WR loads data into the ±st-rank  
registers. Data is latched on the rising edge.  
±4  
20  
2±  
20  
2±  
2±  
22  
24  
25  
WR  
If EDGE/LEVEL = V , data is loaded from the ±st-  
CC  
rank registers to the 2nd-rank registers on the rising  
edge of LATCH. If EDGE/LEVEL = GND, data is  
loaded while LATCH = GND. In addition, data is  
loaded during the execution of parallel-mode func-  
±5  
LATCH  
tions ±0±± through ±±±0, or if LATCH = V  
during  
CC  
the execution of the parallel-mode “software-latch”  
command (±±±±).  
4
_______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Pin Description (continued)  
PIN  
MAX4359  
SSOP  
MAX4360  
SSOP  
MAX4456  
NAME  
FUNCTION  
SO  
DIP  
PLCC  
Active-Low Chip Enable. WR is enabled when  
23  
24  
26  
CE = GND and CE = V . WR is disabled when  
CE  
CE  
CC  
CE = V and CE = GND.  
CC  
Active-High Chip Enable. WR is enabled when  
CE = GND and CE = V . WR is disabled when  
CC  
±6  
27  
27  
27  
CE = V  
and CE = GND.  
CC  
25, 27, 29, 28, 30, 32,  
3±, 33, 35, 35, 37, 39,  
±7, ±9, 2±, 28, 3±, 33, 28, 3±, 33,  
Buffer Outputs. Buffer inputs are internally grounded with  
a ±000 or ±00± command from the D3–D0 lines.  
OUT_  
23  
35  
35  
37, 39  
4±, 43  
Analog Ground. AGND must be at 0.0V, since the gain-  
±8  
29  
±5, 29  
28, 30, 32 3±, 33, 36  
AGND setting resistors of the buffers are connected to these  
pins.  
Parallel Data Bit when SER/PAR = GND. When  
D3 = GND, D0–D2 specify the input channel to be con-  
20  
32  
32  
36  
38  
40  
42  
D3  
nected to specified buffer. When D3 = V , D0–D2  
specify control codes. D3 is not used in serial mode  
CC  
(SER/PAR = V ).  
CC  
Parallel Data Bit D2 when SER/PAR = GND. Not used  
22  
24  
34  
36  
34  
D2  
V+  
when SER/PAR = V  
.
CC  
Positive Supply. All V+ pins must be connected to each  
other and bypassed to AGND separately (Figure 2).  
±3, 36  
±6, 26, 40 ±8, 29, 44  
_______________________________________________________________________________________  
5
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
buffers can be active and only one set of loads can be  
driven. When active, the buffer must have either ±) an  
internal load, 2) the internal load of another buffer in  
another MAX4359/MAX4360/MAX4456, or 3) an exter-  
nal load.  
Detailed Description  
Output Buffers  
The MAX4456 video crosspoint switch consists of 64  
T-switches in an 8x8 grid (Figure ±). The eight matrix  
outputs are followed by eight wideband buffers opti-  
mized for driving 400and 20pF loads. The  
MAX4359’s core is a 4x4 switch matrix with each of its  
outputs followed by a wideband buffer. The MAX4360  
has an 8x4 matrix and four output buffers. Each buffer  
has an internal active load on the output that can be  
readily shut off through the LOAD input (off when LOAD  
= 0V). The shut-off is useful when two or more cross-  
points are connected in parallel to create more input  
channels. With more input channels, only one set of  
Each output can be disabled under logic control. When  
a buffer is disabled, its output enters a high-impedance  
state. In multichip parallel applications, the disable  
function prevents inactive outputs from loading lines  
driven by other devices. Disabling the inactive buffers  
reduces power consumption.  
The outputs connect easily to MAX497 quad, gain-of-  
two buffers when back-terminated 75coaxial cable  
must be driven.  
IN4  
IN5  
IN1  
IN2  
IN3  
IN6  
IN7  
IN0  
OUTPUT  
BUFFERS  
A = +1  
OUT0  
400  
MAX4456  
8x8  
SWITCH  
MATRIX  
LOAD  
A = +1  
OUT7  
LATCH  
400Ω  
2nd-RANK REGISTERS  
1st-RANK REGISTERS  
EDGE/LEVEL  
WR  
CE  
CE  
SER/PAR  
V+ V-  
DGND  
AGND  
A0  
A1  
D3  
A2  
D2  
D1/SER OUT  
D0/SER IN  
Figure 1. MAX4456 Functional Diagram  
6
_______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
through 0±±± (D3–D0) for the MAX4360, and codes  
0000 through 00±± (D3–D0) for the MAX4359. Note that  
the MAX4359 does not use codes 0±00 through 0±±±.  
The eight codes ±000 through ±±±± control other func-  
tions, as listed in Table ±.  
Power-On RESET  
The MAX4359/MAX4360/MAX4456 have an internal  
power-on reset (POR) circuit that remains low for 5µs  
after power is applied. POR also remains low if the total  
supply voltage is less than 4V. The POR disables all  
buffer outputs at power-up, but the switch matrix is  
not preset to any initial condition. The desired switch  
state should be programmed before the buffer outputs  
are enabled.  
7-Bit Parallel-Interface Mode (MAX4456)  
In the MAX4456’s parallel-interface mode (SER/PAR =  
GND), the seven data bits specify an output channel  
(A2, A±, A0) and the input channel to which it connects  
(D3–D0). This data is loaded on the rising edge of WR.  
The input channels are selected by codes 0000  
through 0±±± (D3–D0) for the MAX4456. The remaining  
eight codes ±000 through ±±±± control other functions,  
as listed in Table ±.  
Digital Interface  
The desired switch state can be loaded in a parallel-  
interface mode or serial-interface mode (Table 3 and  
Figures 4, 5, 6). All action associated with the WR line  
occurs on its rising edge. The same is true for the  
LATCH line if EDGE/LEVEL is high. Otherwise, the sec-  
ond-rank registers update while LATCH is low (when  
EDGE/LEVEL is low). WR is logically ANDed with CE  
and CE (when present) to allow active-high or active-  
low chip enable.  
16-Bit Serial-Interface Mode  
(MAX4359/MAX4360)  
In serial mode (SER/PAR = V ), all first-rank registers  
CC  
are loaded with data, making it unnecessary to specify  
an output address (A±, A0). The input data format is  
D3–D0, starting with OUT0 and ending with OUT3 for  
±6 total bits. For the MAX4360, only codes 0000  
through ±0±0 are valid. For the MAX4359, only the  
codes 0000 through 00±± and codes ±000 through  
±0±0 are valid. Code ±0±0 disables a buffer, while  
code ±00± enables it. After data is shifted into the ±6-  
bit first-rank register, it is transferred to the second rank  
by LATCH (Table 2), which updates the switches.  
6-Bit Parallel-Interface Mode  
(MAX4359/MAX4360)  
In the MAX4359/MAX4360’s parallel-interface mode  
(SER/PAR = GND), the six data bits specify an output  
channel (A±, A0) and the input channel to which it con-  
nects (D3–D0). This data is loaded on the rising edge  
of WR. The input channels are selected by codes 0000  
Table 1. Parallel-Interface Mode Functions  
A2, A1, A0  
D3–D0  
FUNCTION  
Connect the buffer selected by A2–A0 (MAX4456) or A±–A0 (MAX4359/MAX4360) to the  
input channel selected by D3–D0.  
0000 to 0±±±  
Connect the buffer selected by A2–A0 (MAX4456) or A±–A0 (MAX4359/MAX4360) to  
DGND. Note, if the buffer output is on, its output is its offset voltage.  
±000  
±0±±  
±±00  
±±0±  
±±±0  
Shut off the buffer selected by A2–A0 (MAX4456) or A±–A0 (MAX4359/MAX4360) and  
retain 2nd-rank registers contents.  
Turn on the buffer selected by A2–A0 (MAX4456) or A±–A0 (MAX4359/MAX4360, and  
restore the previously connected channel.  
Selects  
Output  
Buffer  
Turn off all buffers, and leave 2nd-rank registers unchanged.  
Turn on all buffers, and restore the connected channels.  
Send a pulse to the 2nd-rank registers to load them with the contents of the ±st-rank  
registers. When latch is held high, this “software-LATCH” command performs the same  
function as pulsing LATCH low.  
±±±±  
Do not use these codes in the parallel-interface mode. These codes are for the serial-  
interface mode only.  
±00± and ±0±0  
0±00 and 0±±±  
For the MAX4359, unused codes.  
_______________________________________________________________________________________  
7
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
32-Bit Serial-Interface Mode (MAX4456)  
Table 2. Serial-Interface Mode Functions  
In serial mode (SER/PAR = V ), all first-rank registers  
CC  
are loaded with data, making it unnecessary to specify  
an output address (A2, A±, A0). The input data format  
is D3–D0, starting with OUT0 and ending with OUT7 for  
32 total bits. Only codes 0000 through ±0±0 are valid.  
Code ±0±0 disables a buffer, while code ±00± enables  
it. After data is shifted into the 32-bit first-rank register, it  
is transferred to the second rank by LATCH (Table 2),  
which updates the switches.  
D3–D0  
FUNCTION  
Connect the selected buffer to the input  
channel selected by D3–D0. Note that 0±00  
through 0±±± are not valid for the MAX4359.  
0000 to 0±±±  
Connect the input of the selected buffer to  
GND. Note: If the buffer output remains  
on, its input is its offset voltage.  
±000  
±00±  
Turn on the selected buffer and connect  
its input to GND. Use this code to turn on  
buffers after power is applied. The default  
power-up state is all buffers disabled.  
Shut off the selected buffer at the speci-  
fied channel, and erase data stored in the  
2nd rank of registers. The 2nd rank now  
holds the command word ±0±0.  
±0±0  
Do not use these codes in the serial-inter-  
face mode. They inhibit the latching of the  
2nd-rank registers, which prevents proper  
data loading.  
±0±± to ±±±±  
Table 3. Input/Output Line Configurations  
SERIAL /  
PARALLEL  
(A2), A1,  
D3  
D2  
D1  
D0  
COMMENT  
A0  
Serial  
Output  
H
X
X
Serial Input  
X
Serial Mode  
Output  
Buffer  
Address  
Parallel  
Input  
Parallel  
Input  
Parallel  
Input  
Parallel Mode,  
D0–D2 = Control Code  
L
L
H
L
Output  
Buffer  
Address  
Parallel  
Input  
Parallel  
Input  
Parallel  
Input  
Parallel Mode,  
D0–D2 = Input Address  
X = Don’t care, H = 5V, L = 0V  
( ) are for MAX4456 only.  
8
_______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
MAX497  
Z = 75Ω  
0
75Ω  
IN0  
OUT0  
5
39  
2
16  
OUT0  
IN0  
A = 2  
V
7
9
11  
13  
15  
17  
19  
37  
35  
33  
31  
29  
27  
25  
24  
14  
8
4
6
8
14  
12  
10  
IN1  
IN2  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
CE  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
75Ω  
8 INPUT  
VIDEO  
CHANNELS  
IN3  
IN4  
IN5  
IN6  
IN7  
MAX4456  
V
V
GND  
EE  
CC  
1, 3, 5, 7  
9,15  
11,13  
-5V  
EDGE/LEVEL  
22  
21  
LOAD  
V+  
V+  
LATCH  
WR  
1
2
40  
26  
14  
+5V  
3
4
5
6
7
8
2
1
38  
36  
6
28, 30, 32  
10, 12  
20  
34  
23  
18  
16  
AGND  
DGND  
V-  
V-  
CE  
SER/PAR  
V+  
D0/SER IN  
D1/SER OUT  
D2  
D3  
A0  
A1  
A2  
18  
19  
20  
21  
22  
23  
24  
25  
-5V  
4
3
+5V  
DB–25  
NOTE: ALL BYPASS CAPACITORS ARE 0.1µF CERAMIC.  
Figure 2. MAX4456 (plastic DIP) Typical Application Circuit  
The short BASIC program in Figure 3 loads program-  
ming data into the MAX4456 from any IBM PC or com-  
patible. It uses the computer’s “LPT±” output to interface  
to the circuit, then automatically finds the address for  
LPT± and displays a table of valid input values to be  
used. The program does not keep track of previous  
commands, but it does display the last data sent to  
LPT±, which is written and latched with each transmis-  
sion. A similar application is possible with the  
MAX4359/MAX4360.  
Typical Application  
Figure 2 shows a typical application of the MAX4456  
(PDIP) with MAX497 quad, gain-of-two buffers at the  
outputs to drive 75loads. This application shows the  
MAX4456 digital-switch control interface set up in the 7-  
bit parallel mode. The MAX4456 uses seven data lines  
and two control lines (WR and LATCH). Two additional  
lines may be needed to control CE and LOAD when  
using multiple MAX4456s.  
The input/output information is presented to the chip at  
A2, A±, A0, and D3–D0 by a parallel printer port. The  
data is stored in the ±st-rank registers on the rising  
edge of WR. When the LATCH line goes high, the  
switch configuration is loaded into the 2nd-rank regis-  
ters, and all eight outputs enter the new configuration at  
the same time. Each 7-bit word updates only one out-  
put buffer at a time. If several buffers are to be updat-  
ed, the data is individually loaded into the ±st-rank reg-  
isters. Then, a single LATCH pulse is used to reconfig-  
ure all channels simultaneously.  
Chip Information  
MAX4359 TRANSISTOR COUNT: 2372  
MAX4360 TRANSISTOR COUNT: 2372  
MAX4456 TRANSISTOR COUNT: 3820  
_______________________________________________________________________________________  
9
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Figure 3. BASIC Program for Loading Data into the MAX4456 from a PC Using Figure 2’s Circuit  
Timing Diagrams  
A0A2  
VALID DATA N-1  
VALID DATA N  
D0D3  
t
DS  
t
DH  
t
WL  
t
WH  
WR  
t
D
t
L
LATCH  
Figure 4. Write Timing for Serial- and Parallel-Interface Modes  
10 ______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Timing Diagrams (continued)  
NOTE: SEE FIGURE 4 FOR WR AND LATCH TIMING.  
DATA (N)  
DATA (N + 1)  
DATA (N + 2)  
WR  
LATCH  
1st-RANK REGISTER DATA  
DATA (N)  
DATA (N)  
DATA (N + 1)  
DATA (N + 2)  
2nd-RANK REGISTER DATA  
(EDGE/LEVEL = GND)  
DATA (N + 1)  
2nd-RANK REGISTER DATA  
DATA (N)  
DATA (N + 1)  
(EDGE/LEVEL = V  
)
CC  
Figure 5. Parallel-Interface Mode Format (SER/PAR = GND)  
NOTES: SEE TABLE 2 FOR INPUT DATA.  
SEE FIGURE 4 FOR WR AND LATCH TIMING.  
INPUT DATA FOR OUT0  
INPUT DATA FOR OUT1 TO OUT6  
INPUT DATA FOR OUT7  
0D3  
0D2  
0D1  
0D0  
1D3  
1D2  
7D3  
7D2  
7D1  
7D0  
WR  
LATCH  
2nd-RANK REGISTER DATA  
(EDGE/LEVEL = GND)  
DATA VALID  
2nd-RANK REGISTER DATA  
DATA VALID  
(EDGE/LEVEL = V  
)
CC  
Figure 6. Serial-Mode Interface Format (SER/PAR = V  
)
CC  
______________________________________________________________________________________ 11  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Dynamic Test Circuits  
IN0  
OUT0  
OUT1  
OUT2  
OUT0  
OUT1  
OUT2  
IN0  
V
V
V
OUT  
OUT  
OUT  
OUT  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
V
OUT  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
MAX4456  
OUT3  
OUT4  
OUT5  
OUT6  
OUT3  
OUT4  
OUT5  
OUT6  
MAX4456  
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT7  
LOAD  
OUT7  
LOAD  
+5V  
+5V  
V
IN  
R
S
= 2Vp-p AT 5MHz  
= 75  
V
R
= 2Vp-p, SWEEP FREQUENCY  
= 75Ω  
IN  
S
-3dB BANDWIDTH (NOTES 14)  
ALL-CHANNEL OFF-ISOLATION (NOTES 1, 58)  
IN0  
IN0  
OUT0  
OUT1  
OUT2  
V
OUT  
OUT0  
V
V
V
V
OUT  
OUT  
OUT  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
OUT1  
OUT2  
75Ω  
OUT3  
OUT4  
OUT5  
OUT6  
OUT3  
OUT4  
OUT5  
OUT6  
MAX4456  
OUT  
MAX4456  
7 x 75Ω  
V
OUT  
OUT  
OUT  
V
V
OUT7  
LOAD  
OUT7  
LOAD  
+5V  
+5V  
V
IN  
R
S
= 2Vp-p AT 5MHz  
= 75Ω  
V
IN  
R
S
= 2Vp-p AT 5MHz  
= 75Ω  
SINGLE-CHANNEL CROSSTALK (NOTES 1, 5, 911)  
ALL-HOSTILE CROSSTALK (NOTES 1, 5, 9, 11, 12)  
Note 1: Connect LOAD to +5V (internal 400loads on at all outputs).  
Note 2: Program any one input to connect to any one output. See Table ± or 2 for programming codes.  
Note 3: Turn on the buffer at the selected output (Table ± or 2).  
Note 4: Drive the selected input with V , and measure V  
at the -3dB frequency at the selected output.  
IN  
OUT  
Note 5: Program each numbered input to connect to the same numbered output (IN0 to OUT0, IN± to OUT±, etc., for the MAX4456;  
also IN4 to OUT0, IN5 to OUT±, etc., for the MAX4360.) See Table ± or 2 for programming codes.  
Note 6: Turn off all output buffers (Table ± or 2).  
Note 7: Drive all inputs with V , and measure V  
at any output.  
IN  
OUT  
Note 8: Isolation (in dB) = 20log (V  
/V ).  
±0 OUT IN  
Note 9: Turn on all output buffers (Table ± or 2).  
Note 10: Drive any one input with V , and measure V  
at any undriven output.  
OUT  
IN  
Note 11: Crosstalk (in dB) = 20log (V  
/V ).  
±0 OUT IN  
Note 12: Drive all but one input with V , and measure V  
at the undriven output.  
IN  
OUT  
12 ______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Pin Configurations  
TOP VIEW  
D1/SER OUT  
D0/SER IN  
A1  
1
2
3
4
5
6
7
8
9
36 V+  
D1/SER OUT  
D0/SER IN  
A1  
1
2
3
4
5
6
7
8
9
36 V+  
D1/SER OUT  
D0/SER IN  
A1  
1
2
3
4
5
6
7
8
9
24 V+  
35 OUT0  
34 D2  
35 OUT0  
34 D2  
23 OUT0  
22 D2  
IN0  
33 OUT1  
32 D3  
IN0  
33 OUT1  
IN0  
21 OUT1  
20 D3  
A0  
MAX4359  
A0  
32  
D3  
A0  
MAX4359  
MAX4360  
IN1  
31 OUT2  
30 V-  
IN1  
31 OUT2  
30 V-  
IN1  
19 OUT2  
18 AGND  
17 OUT3  
16 CE  
LOAD  
IN2  
LOAD  
IN2  
LOAD  
IN2  
AGND  
29  
AGND  
29  
DGND  
28 OUT3  
27 CE  
DGND  
28 OUT3  
27 CE  
DGND  
IN3 10  
EDGE/LEVEL 11  
N.C. 12  
IN3 10  
EDGE/LEVEL 11  
IN4 12  
IN3 10  
EDGE/LEVEL 11  
SER/PAR 12  
15 LATCH  
14 WR  
26 N.C.  
25 N.C.  
24 N.C.  
23 N.C.  
22 N.C.  
21 LATCH  
20 WR  
26 N.C.  
25 N.C.  
24 N.C.  
23 N.C.  
22 N.C.  
21 LATCH  
20 WR  
13 V-  
N.C. 13  
V+ 13  
SO  
N.C. 14  
IN5 14  
N.C. 15  
AGND 15  
IN6 16  
N.C. 16  
D1/SER OUT  
1
V+  
40  
SER/PAR 17  
N.C. 18  
SER/PAR 17  
IN7 18  
D0/SER IN  
2
OUT0  
39  
19 V-  
19 V-  
A2  
3
D2  
38  
A1  
4
SSOP  
SSOP  
OUT1  
37  
MAX4456  
IN0  
5
D3  
36  
A0  
6
OUT2  
V-  
35  
34  
33  
32  
31  
IN1  
7
44  
43 42 41 40  
6
5
4
3
2
1
LOAD  
8
OUT3  
AGND  
OUT4  
AGND  
OUT5  
AGND  
OUT6  
V+  
IN2  
9
A0  
IN1  
39 OUT2  
38 V-  
7
8
DGND  
10  
IN3  
11  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
LOAD  
IN2  
9
37 OUT3  
36 AGND  
DGND  
12  
10  
IN4  
13  
DGND 11  
N.C. 12  
35  
34  
33  
32  
31  
30  
OUT4  
N.C.  
MAX4456  
EDGE/LEVEL  
14  
IN3 13  
AGND  
OUT5  
AGND  
OUT6  
IN5  
15  
DGND 14  
IN4 15  
V+  
16  
OUT7  
CE  
IN6  
17  
EDGE/LEVEL 16  
IN5 17  
SER/PAR  
18  
CE  
29 V+  
IN7  
19  
LATCH  
WR  
18 19 20 21 22 23 24 25 26 27 28  
V-  
20  
DIP  
PLCC  
______________________________________________________________________________________ 13  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Package Information  
14 ______________________________________________________________________________________  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Package Information (continued)  
______________________________________________________________________________________ 15  
Low-Cost 4x4, 8x4, 8x8  
Video Crosspoint Switches  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY