MAX4488ASA+ [MAXIM]

SOT23, Low-Noise, Low-Distortion, Wide-Band, Rail-to-Rail Op Amps;
MAX4488ASA+
型号: MAX4488ASA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SOT23, Low-Noise, Low-Distortion, Wide-Band, Rail-to-Rail Op Amps

文件: 总17页 (文件大小:2484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
General Description  
Features  
● Low Input Voltage-Noise Density: 4.5nV/√Hz  
● Low Input Current-Noise Density: 0.5fA/√Hz  
Low Distortion: 0.0002% THD+N (1kload)  
Single-Supply Operation from +2.7V to +5.5V  
The MAX4475–MAX4478/MAX4488/MAX4489 wide-  
band, low-noise, low-distortion operational amplifiers  
offer rail-to-rail outputs and single-supply operation  
down to 2.7V. They draw 2.2mA of quiescent supply  
current per amplifier while featuring ultra-low distortion  
(0.0002% THD+N), as well as low input voltage-noise  
density (4.5nV/√Hz) and low input current-noise density  
(0.5fA/√Hz). These features make the devices an ideal  
choice for applications that require low distortion and/or  
low noise.  
Input Common-Mode Voltage Range Includes  
Ground  
Rail-to-Rail Output Swings with a 1kLoad  
10MHz GBW Product, Unity-Gain Stable  
(MAX4475–MAX4478)  
● 42MHz GBW Product, Stable with AV ≥ +5V/V  
(MAX4488/MAX4489)  
For power conservation, the MAX4475/MAX4488 offer  
a low-power shutdown mode that reduces supply cur-  
rent to 0.01µA and places the amplifiers’ outputs into a  
high-impedance state. These amplifiers have outputs  
which swing rail-to-rail and their input common-mode  
voltage range includes ground. The MAX4475–MAX4478  
are unity-gain stable with a gain-bandwidth product  
of 10MHz. The MAX4488/4489 are internally compen-  
sated for gains of +5V/V or greater with a gain-band-  
width product of 42MHz. The single MAX4475/MAX4476/  
MAX4488 are available in space-saving, 6-pin SOT23  
and TDFN packages.  
Excellent DC Characteristics  
V
= 70µV  
= 1pA  
OS  
I
BIAS  
Large-Signal Voltage Gain = 120dB  
Low-Power Shutdown Mode:  
Reduces Supply Current to 0.01µA  
Places Output in High-Impedance State  
Available in Space-Saving SOT23, TDFN, µMAX®,  
and TSSOP Packages  
AEC-Q100 Qualified, Refer to Ordering Information  
for the List of /V Parts  
Applications  
● ADC Buffers  
Ordering Information at end of data sheet.  
● DAC Output Amplifiers  
● Low-Noise Microphone/Preamplifiers  
Digital Scales  
● Strain Gauges/Sensor Amplifiers  
Medical Instrumentation  
Automotive  
Typical Operating Characteristic  
INPUT VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
25  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
20  
15  
10  
5
0
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
19-2137; Rev 11; 4/19  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Absolute Maximum Ratings  
Power-Supply Voltage (V  
to V )....................-0.3V to +6.0V  
8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW  
14-Pin SO (derate 8.33mW/°C above +70°C).............667mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C)........727mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
DD  
SS  
Analog Input Voltage (IN_+, IN_-).(V - 0.3V) to (V  
+ 0.3V)  
SS  
DD  
SHDN Input Voltage..................................(V - 0.3V) to +6.0V  
Output Short-Circuit Duration to Either Supply .........Continuous  
Continuous Input Current (IN+, IN-).................................±10mA  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 5.4mW/°C above +70°C) .......431.3mW  
6-Pin TDFN (derate 18.2mW/°C above 70°C) ..........1454mW  
8-Pin µMAX (derate 4.5mW/°C above +70°C)............362mW  
SS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
SOT23-6  
PACKAGE CODE  
U6F+6  
Outline Number  
21-0058  
90-0175  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
185.5°C/W  
75°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
134.4°C/W  
39°C/W  
JA  
Junction to Case (θ  
)
JC  
µMAX-8  
PACKAGE CODE  
U8+4  
Outline Number  
21-0036  
90-0092  
Land Pattern Number  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
206°C/W  
42  
JA  
Junction to Case (θ  
)
JC  
µMAX-8  
PACKAGE CODE  
U8+1  
Outline Number  
21-0036  
90-0092  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
221°C/W  
42°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
206°C/W  
42°C/W  
JA  
Junction to Case (θ  
)
JC  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Package Information (continued)  
TSSOP-14  
PACKAGE CODE  
U14+2  
Outline Number  
21-0066  
90-0113  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
110°C/W  
30°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
100.4°C/W  
30°C/W  
JA  
Junction to Case (θ  
)
JC  
SO-8  
PACKAGE CODE  
S8+4  
Outline Number  
21-0041  
90-0096  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
170°C/W  
40  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
132°C/W  
38  
JA  
Junction to Case (θ  
)
JC  
SO-14  
PACKAGE CODE  
S14+4  
Outline Number  
21-0041  
90-0112  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
120°C/W  
37°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
84°C/W  
34°C/W  
JA  
Junction to Case (θ  
)
JC  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Package Information (continued)  
TDFN-6  
PACKAGE CODE  
T633+2  
Outline Number  
21-0137  
90-0058  
Land Pattern Number  
Thermal Resistance, Single-Layer Board  
Junction to Ambient (θ  
)
55°C/W  
9°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Multi-Layer Board  
Junction to Ambient (θ  
)
42°C/W  
9°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
DC Electrical Characteristics  
(V  
= +5V, V  
= 0V, V  
= 0V, V  
= V /2, R tied to V /2, SHDN = V , T = -40°C to +125°C, unless otherwise noted.  
DD  
SS  
CM  
OUT  
DD  
L
DD  
DD  
A
Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
(Note 3)  
2.7  
5.5  
V
DD  
V
V
= 3V  
= 5V  
2.2  
2.5  
DD  
DD  
Normal mode  
mA  
µA  
µV  
Quiescent Supply Current Per  
Amplifier  
I
4.4  
1.0  
D
Shutdown mode (SHDN = V ) (Note 2)  
0.01  
±70  
SS  
T
= +25°C  
±350  
±750  
±6  
A
A
Input Offset Voltage  
V
OS  
T
= -40°C to +125°C  
Input Offset Voltage Tempco  
Input Bias Current  
TC  
±0.3  
±1  
µV/°C  
pA  
VOS  
I
(Note 4)  
(Note 4)  
±150  
±150  
B
Input Offset Current  
I
±1  
pA  
OS  
Differential Input Resistance  
R
1000  
GΩ  
IN  
T
T
= +25°C  
-0.2  
-0.1  
V
V
- 1.6  
A
DD  
Input Common-Mode Voltage  
Range  
Guaranteed by  
CMRR Test  
V
CM  
V
= -40°C to +125°C  
- 1.7  
A
DD  
(V - 0.2V) ≤  
SS  
CM  
1.6V)  
V
≤ (V  
T
= +25°C  
90  
90  
115  
DD  
A
A
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Large-Signal Voltage Gain  
CMRR  
PSRR  
dB  
dB  
dB  
(V - 0.1V) ≤  
SS  
V
≤ (V  
T
= -40°C to +125°C  
CM  
DD  
1.7V)  
V
= 2.7 to 5.5V  
90  
90  
120  
120  
DD  
R = 10kto V /2;  
L
OUT  
DD  
V
= 100mV to (V  
- 125mV)  
- 250mV)  
- 500mV)  
DD  
R = 1kto V /2;  
L
OUT  
DD  
A
85  
85  
110  
110  
VOL  
V
= 200mV to (V  
DD  
R
OUT  
= 500to V /2;  
L
DD  
V
= 350mV to (V  
DD  
V
DD  
V
OL  
V
DD  
V
OL  
V
DD  
V
OL  
- V  
10  
10  
45  
OH  
|V  
- V | ≥ 10mV,  
IN-  
IN+  
R = 10kto V /2  
L
DD  
- V  
- V  
40  
SS  
80  
200  
150  
300  
250  
OH  
SS  
|V  
IN+  
- V | ≥ 10mV,  
IN-  
Output Voltage Swing  
V
OUT  
mV  
R = 1kto V /2  
L
DD  
- V  
- V  
50  
100  
80  
OH  
SS  
|V  
IN+  
- V | ≥ 10mV,  
IN-  
R = 500to V /2  
L
DD  
- V  
Output Short-Circuit Current  
Output Leakage Current  
I
48  
mA  
µA  
SC  
Shutdown mode (SHDN = V ),  
OUT  
SS  
I
±0.001  
±1.0  
LEAK  
V
= V to V  
SS DD  
SHDN Logic-Low  
SHDN Logic-High  
SHDN Input Current  
Input Capacitance  
V
0.3 x V  
V
V
IL  
DD  
V
0.7 x V  
IH  
DD  
SHDN = V to V  
0.01  
10  
1
µA  
pF  
SS  
DD  
C
IN  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
AC Electrical Characteristics  
(V  
= +5V, V = 0V, V  
= 0V, V  
= V /2, R tied to V /2, SHDN = V , T = +25°C.)  
DD  
SS  
CM  
OUT DD L DD DD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX4475–MAX4478  
MAX4488/MAX4489  
MAX4475–MAX4478  
MAX4488/MAX4489  
MAX4475–MAX4478  
MAX4488/MAX4489  
f = 0.1Hz to 10Hz  
f = 10Hz  
A
V
A
V
A
V
A
V
A
V
A
V
= +1V/V  
= +5V/V  
= +1V/V  
= +5V/V  
= +1V/V  
= +5V/V  
10  
42  
Gain-Bandwidth Product  
Slew Rate  
GBWP  
MHz  
3
SR  
V/µs  
MHz  
10  
0.4  
1.25  
260  
21  
Full-Power Bandwidth (Note 5)  
e
Peak-to-Peak Input Noise Voltage  
nV  
P-P  
n(P-P)  
Input Voltage-Noise Density  
Input Current-Noise Density  
e
f = 1kHz  
4.5  
3.5  
0.5  
nV/√Hz  
fA/√Hz  
n
f = 30kHz  
i
f = 1kHz  
n
V
A
= 2V  
,
OUT  
V
P-P  
f = 1kHz  
f = 20kHz  
f = 1kHz  
f = 20kHz  
f = 1kHz  
f = 20kHz  
0.0002  
0.0007  
0.0002  
0.001  
= +1V/V  
(MAX4475–MAX4478),  
R = 10kto GND  
L
V
A
= 2V  
,
OUT  
V
P-P  
Total Harmonic Distortion Plus  
Noise (Note 6)  
= +1V/V  
THD + N  
%
(MAX4475–MAX4478),  
R = 1kto GND  
L
V
A
= 2V  
,
OUT  
V
P-P  
0.0004  
0.0006  
= +5V/V (MAX4488/  
MAX4489),  
R = 10kto GND  
L
V
A
= 2V  
,
f = 1kHz  
0.0005  
0.008  
OUT  
V
P-P  
Total Harmonic Distortion Plus  
Noise (Note 6)  
= +5V/V  
THD + N  
%
(MAX4488/MAX4489),  
f = 20kHz  
R = 1kto GND  
L
Capacitive-Load Stability  
Gain Margin  
No sustained oscillations  
200  
12  
70  
80  
2
pF  
dB  
GM  
MAX4475–MAX4478, A = +1V/V  
V
Phase Margin  
FM  
degrees  
MAX4488/MAX4489, A = +5V/V  
V
Settling Time  
To 0.01%, V  
= 2V step  
µs  
µs  
µs  
µs  
OUT  
Delay Time to Shutdown  
Enable Delay Time from Shutdown  
Power-Up Delay Time  
t
t
1.5  
10  
13  
SH  
EN  
V
V
= 2.5V, V  
settles to 0.1%  
OUT  
OUT  
= 0 to 5V step, V  
stable to 0.1%  
DD  
OUT  
Note 1: All devices are 100% tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 2: SHDN is available on the MAX4475/MAX4488 only.  
Note 3: Guaranteed by the PSRR test.  
Note 4: Guaranteed by design.  
Note 5: Full-power bandwidth for unity-gain stable devices (MAX4475–MAX4478) is measured in a closed-loop gain of +2V/V to  
accommodate the input voltage range, V = 4V  
.
P-P  
OUT  
Note 6: Lowpass-filter bandwidth is 22kHz for f = 1kHz and 80kHz for f = 20kHz. Noise floor of test equipment = 10nV/√Hz.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Typical Operating Characteristics  
(V  
= +5V, V  
= 0V, V  
= 0V, V  
= V /2, R tied to V /2, input noise floor of test equipment =10nV/√Hz for all distortion  
DD  
SS  
CM  
OUT DD L DD  
measurements, T = +25°C, unless otherwise noted.)  
A
INPUT OFFSET VOLTAGE  
vs. INPUT COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE DISTRIBUTION  
OFFSET VOLTAGE vs. TEMPERATURE  
18  
250  
50  
40  
30  
20  
V
COM  
= 0V  
16  
14  
12  
10  
8
200  
150  
100  
50  
0
-50  
6
V
= 3V  
-100  
-150  
-200  
-250  
DD  
4
10  
0
V
DD  
= 5V  
2
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
-50 -25  
0
25  
50  
75 100 125  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
V
(µV)  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
OS  
OUTPUT VOLTAGE  
vs. OUTPUT LOAD CURRENT  
OUTPUT VOLTAGE SWING (V  
vs. TEMPERATURE  
)
OUTPUT VOLTAGE SWING (V  
)
OL  
OH  
vs. TEMPERATURE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3V OR 5V  
DD  
= 10mV  
DIFF  
V
- V  
OH  
DD  
R = 1k  
L
V
OL  
R = 1k  
L
R = 10kΩ  
L
R = 10kΩ  
L
0
1
2
3
4
5
6
7
8
9
10  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
OUTPUT LOAD CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LARGE-SIGNAL VOLTAGE GAIN  
vs. OUTPUT VOLTAGE SWING  
LARGE-SIGNAL VOLTAGE GAIN  
vs. OUTPUT VOLTAGE SWING  
LARGE-SIGNAL VOLTAGE GAIN  
vs. OUTPUT VOLTAGE SWING  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
R = 200k  
R = 20kΩ  
L
R = 2kΩ  
L
R = 2kR = 20kR = 200kΩ  
L
L
L
L
R = 20kR = 200kΩ  
L
L
R = 2kΩ  
L
80  
80  
80  
70  
70  
70  
V
= 3V  
V
= 3V  
V
= 5V  
DD  
DD  
DD  
60  
60  
60  
R REFERENCED TO GND  
R REFERENCED TO V  
R REFERENCED TO GND  
L
L
DD  
L
50  
50  
50  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
V
SWING FROM EITHER SUPPLY (mV)  
V
OUT  
SWING FROM EITHER SUPPLY (mV)  
V
OUT  
SWING FROM EITHER SUPPLY (mV)  
OUT  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= 0V, V  
= 0V, V  
= V /2, R tied to V /2, input noise floor of test equipment =10nV/√Hz for all distortion  
DD  
SS  
CM  
OUT  
DD  
L
DD  
measurements, T = +25°C, unless otherwise noted.)  
A
LARGE-SIGNAL VOLTAGE GAIN  
vs. OUTPUT VOLTAGE SWING  
LARGE-SIGNAL VOLTAGE GAIN  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 200k  
PER AMPLIFIER  
L
R = 100k  
L
R = 10kΩ  
L
R = 20kΩ  
L
R = 2kΩ  
L
80  
80  
70  
70  
V
= 5V  
DD  
60  
60  
R REFERENCED TO V  
L
DD  
V
= 150mV TO 4.75V  
OUT  
50  
50  
0
50  
100  
150  
200  
250  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
V
OUT  
SWING FROM EITHER SUPPLY (mV)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs.OUTPUT VOLTAGE  
INPUT OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
PER AMPLIFIER  
V
= 5V  
DD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3V  
DD  
0
-5  
-10  
-15  
-20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
2
3
4
5
2.5  
3.0  
3.5  
SUPPLY VOLTAGE (V)  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
MAX4475–MAX4478  
GAIN AND PHASE vs. FREQUENCY  
MAX4488/MAX4489  
GAIN AND PHASE vs. FREQUENCY  
MAX4475 toc16  
MAX4475 toc17  
60  
180  
144  
60  
50  
40  
30  
20  
10  
0
180  
144  
108  
72  
V
= 3V OR 5V  
DD  
GAIN  
50  
40  
30  
20  
10  
0
R = 50k  
L
GAIN  
C = 20pF  
L
108  
72  
A
V
= +1000V/V  
36  
36  
0
0
-36  
-72  
-108  
-144  
-180  
-36  
-72  
-108  
-144  
-180  
-10  
-20  
-30  
-40  
-10  
-20  
V
= 3V OR 5V  
R = 50k  
DD  
PHASE  
L
PHASE  
C = 20pF  
A
L
-30  
-40  
= +1000V/V  
V
100  
1k  
10k 100k 1M  
INPUT FREQUENCY (Hz)  
10M 100M  
100  
1k  
10k 100k 1M  
10M 100M  
INPUT FREQUENCY (Hz)  
Maxim Integrated  
8
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= 0V, V  
= 0V, V  
= V /2, R tied to V /2, input noise floor of test equipment =10nV/√Hz for all distortion  
DD  
SS  
CM  
OUT DD L DD  
measurements, T = +25°C, unless otherwise noted.)  
A
MAX4475–MAX4478  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
1000  
100  
10  
0
-10  
-20  
V
DD  
= 3V OR 5V  
-30  
-40  
-50  
A
= +5  
-60  
V
-70  
1
-80  
-90  
A
= +1  
1k  
V
-100  
-110  
-120  
-130  
0.1  
0.01  
0.001  
0.1  
10  
1000  
100,000  
1
10  
100  
FREQUENCY (Hz)  
10k  
FREQUENCY (kHz)  
MAX4475  
INPUT VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
0.1Hz TO 10Hz NOISE  
P-P  
MAX4475 toc21  
vs. OUTPUT VOLTAGE SWING  
25  
10  
A
= +1  
V
V
= 3V OR 5V  
V
DD  
R = 100k  
NOISE = 260nV  
L
P-P  
P-P  
1
0.1  
20  
15  
10  
5
200nV/div  
0.01  
f
= 20kHz, FILTER BW = 80kHz  
O
0.001  
f
= 3kHz, FILTER BW = 30kHz  
O
0.0001  
0
1s/div  
10  
100  
1k  
10k  
100k  
0
1
2
3
4
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V  
)
P-P  
MAX4488/MAX4489  
MAX4488/MAX4489  
MAX4475–MAX4478  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT VOLTAGE SWING  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
0.01  
10  
0.01  
A
V
= +5  
FILTER BW = 80kHz  
R = 100k  
L
V
A
= 2V  
= +1  
OUT  
P-P  
1
0.1  
V
R = 1k  
L
V
= +3V, f = 20kHz  
O
0.01  
0.001  
DD  
0.001  
A
= +10, V = 3V  
DD  
V
FILTER BW = 80kHz  
A
V
= +10, V = 5V  
DD  
FILTER BW = 22kHz  
R TO V /2  
L
DD  
R TO GND  
L
R = 10kTO GND  
L
V
DD  
= 3V, f = 3kHz  
O
0.0001  
R1 = 5.6k, R2 = 53kΩ  
FILTER BW = 30kHz  
V
= 2V  
R TO V  
L
OUT  
P-P  
DD  
0.001  
0.00001  
0.0001  
0
1
2
3
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
OUTPUT VOLTAGE (V  
)
P-P  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= 0V, V  
= 0V, V  
= V /2, R tied to V /2, input noise floor of test equipment =10nV/√Hz for all distortion  
DD  
SS  
CM  
OUT DD L DD  
measurements, T = +25°C, unless otherwise noted.)  
A
MAX4488/MAX4489  
TOTAL HARMONIC DISTORTION PLUS NOISE  
MAX4475–MAX4478  
LARGE-SIGNAL PULSE RESPONSE  
MAX4475–MAX4478  
SMALL-SIGNAL PULSE RESPONSE  
MAX4475 toc27  
MAX4475 toc28  
vs. FREQUENCY  
1
FILTER BW = 80kHz  
R = 10kTO GND  
L
0.6V  
R = 2.43k, R = 10kΩ  
1
2
2.5V  
0.5V  
V
OUT  
= 2.75V  
0.1  
0.01  
P-P  
20mV/div  
0.5V  
A
V
= +5, V = 3V  
DD  
0.001  
0.0001  
A
= +5, V = 5V  
DD  
V
1µs/div  
4µs/div  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
V
V
= 3V, R = 10k, C = 100pF  
V
V
= 3V, R = 10k, C = 100pF  
DD L L  
DD  
L
L
= 2V  
= 100mV PULSE  
IN  
IN  
MAX4488/MAX4489  
SMALL-SIGNAL PULSE RESPONSE  
MAX4488/MAX4489  
LARGE-SIGNAL PULSE RESPONSE  
MAX4477/MAX4478/MAX4489  
CROSSTALK vs. FREQUENCY  
MAX4475 toc30  
MAX4475 toc29  
-20  
-30  
-40  
-50  
1.6V  
V
OUT  
50mV/div  
V
OUT  
1.5V  
200mV/div  
-60  
-70  
-80  
-90  
1µs/div  
1µs/div  
10 100 1000 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
V
V
= 3V, R = 10k, C = 50pF  
V
V
= 3V, R = 10k, C = 50pF  
DD  
L
L
DD  
L
L
= 20mV PULSE, A = +5V/V  
= 20mV PULSE, A = +5V/V  
IN  
V
IN  
V
Maxim Integrated  
10  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Pin Description  
PIN  
MAX4475/  
MAX4488  
MAX4475/  
MAX4488  
MAX4477/  
MAX4489  
MAX4476  
SOT23/TDFN  
MAX4478  
NAME  
FUNCTION  
SOT23/TDFN  
SO/µMAX  
SO/µMAX  
SO/TSSOP  
OUT, OUTA,  
OUTB, OUTC,  
OUTD  
1
6
1
2
3
1, 7  
1, 7, 8, 14  
11  
Amplifier Output  
Negative Supply. Connect  
to ground for single-supply  
operation  
2
3
4
3
4
V
SS  
IN+, INA+, INB+, Noninverting Amplifier  
INC+, IND+  
3, 5  
3, 5, 10, 12  
Input  
IN-, INA-, INB-,  
INC-, IND-  
4
6
2
7
4
6
2, 6  
8
2, 6, 9, 13  
4
Inverting Amplifier Input  
V
DD  
Positive Supply  
Shutdown Input. Connect  
to V  
for normal  
DD  
5
8
SHDN  
operation (amplifier(s)  
enabled).  
No Connection. Not  
internally connected.  
1, 5  
5
N.C.  
EP  
Exposed Paddle (TDFN  
EP  
EP  
Only). Connect to V  
.
SS  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Detailed Description  
The MAX4475–MAX4478/MAX4488/MAX4489 single-  
supply operational amplifiers feature ultra-low noise and  
distortion. Their low distortion and low noise make them  
ideal for use as preamplifiers in wide dynamic-range appli-  
cations, such as 16-bit analog-to-digital converters (see  
Typical Operating Circuit). Their high-input impedance and  
low noise are also useful for signal conditioning of high-im-  
pedance sources, such as piezoelectric transducers.  
C
Z
R
F
R
G
V
OUT  
V
IN  
These devices have true rail-to-rail output operation, drive  
loads as low as 1kwhile maintaining DC accuracy, and  
can drive capacitive loads up to 200pF without oscillation.  
The input common-mode voltage range extends from  
Figure 1. Adding Feed-Forward Compensation  
(V  
- 1.6V) to 200mV below the negative rail. The push-  
pull output stage maintains excellent DC characteristics,  
while delivering up to ±5mA of current.  
DD  
A
R
= +2  
= R = 100k  
G
V
F
V
IN  
100mV  
0V  
100mV/div  
The MAX4475–MAX4478 are unity-gain stable, while  
the MAX4488/MAX4489 have a higher slew rate and are  
stable for gains ≥ 5V/V. The MAX4475/MAX4488 feature  
a low-power shutdown mode, which reduces the supply  
current to 0.01µA and disables the outputs.  
V
OUT  
100mV/div  
Low Distortion  
Many factors can affect the noise and distortion that the  
device contributes to the input signal. The following guide-  
lines offer valuable information on the impact of design  
choices on Total Harmonic Distortion (THD).  
2µs/div  
Figure 2a. Pulse Response with No Feed-Forward  
Compensation  
Choosing proper feedback and gain resistor values for  
a particular application can be a very important factor in  
reducing THD. In general, the smaller the closed-loop  
gain, the smaller the THD generated, especially when  
driving heavy resistive loads. The THD of the part nor-  
mally increases at approximately 20dB per decade, as a  
function of frequency. Operating the device near or above  
the full-power bandwidth significantly degrades distortion.  
A
R
= +2  
= R = 100k  
G
V
F
V
IN  
100mV/div  
V
OUT  
100mV/div  
Referencing the load to either supply also improves the  
part’s distortion performance, because only one of the  
MOSFETs of the push-pull output stage drives the output.  
Referencing the load to midsupply increases the part’s  
distortion for a given load and feedback setting. (See  
the Total Harmonic Distortion vs. Frequency graph in the  
Typical Operating Characteristics.)  
2µs/div  
Figure 2b. Pulse Response with 10pF Feed-Forward  
Compensation  
For gains ≥ 5V/V, the decompensated devices MAX4488/  
MAX4489 deliver the best distortion performance, since  
they have a higher slew rate and provide a higher  
amount of loop gain for a given closed-loop gain setting.  
Capacitive loads below 100pF do not significantly affect  
distortion results. Distortion performance is relatively con-  
stant over supply voltages.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Low Noise  
A
= +1  
V
= +5V  
The amplifier’s input-referred noise-voltage density is  
dominated by flicker noise at lower frequencies, and by  
thermal noise at higher frequencies. Because the thermal  
noise contribution is affected by the parallel combination  
V
DD  
R
= 10k  
L
V
IN  
2V/div  
of the feedback resistive network (R || R , Figure 1),  
F
G
0V  
these resistors should be reduced in cases where the  
system bandwidth is large and thermal noise is dominant.  
This noise contribution factor decreases, however, with  
increasing gain settings.  
V
OUT  
2V/div  
For example, the input noise-voltage density of the  
40µs/div  
circuit with R = 100k, R = 11k(A = +5V/V) is  
F
G
V
e = 14nV/√Hz, e can be reduced to 6nV/√Hz by choos-  
Figure 3. Overdriven Input Showing No Phase Reversal  
n
n
ing R = 10k, R = 1.1k(A = +5V/V), at the expense  
F
G
V
of greater current consumption and potentially higher  
distortion. For a gain of 100V/V with R = 100k, R  
=
G
F
5V  
1.1k, the e is still a low 6nV/√Hz.  
n
Using a Feed-Forward Compensation  
Capacitor, CZ  
V
OUT  
1V/div  
The amplifier’s input capacitance is 10pF. If the resistance  
seen by the inverting input is large (feedback network),  
this can introduce a pole within the amplifier’s bandwidth  
resulting in reduced phase margin. Compensate the  
reduced phase margin by introducing a feed-forward  
0V  
20ms/div  
capacitor (C ) between the inverting input and the out-  
put (Figure 1). This effectively cancels the pole from the  
Z
Figure 4. Rail-to-Rail Output Operation  
inverting input of the amplifier. Choose the value of C  
as follows:  
Z
Ground-Sensing and Rail-to-Rail Outputs  
C = 10 x (R / R ) [pF]  
The common-mode input range of these devices extends  
below ground, and offers excellent common-mode rejec-  
tion. These devices are guaranteed not to undergo phase  
reversal when the input is overdriven (Figure 3).  
Z
F
G
In the unity-gain stable MAX4475–MAX4478, the use  
of a proper C is most important for A = +2V/V, and  
Z
V
A
V
= -1V/V. In the decompensated MAX4488/MAX4489,  
C is most important for A = +10V/V. Figures 2a and 2b  
Figure 4 showcases the true rail-to-rail output operation  
Z
V
show transient response both with and without C .  
of the amplifier, configured with A = 5V/V. The output  
Z
V
swings to within 8mV of the supplies with a 10kload,  
making the devices ideal in low-supply voltage applica-  
tions.  
Using a slightly smaller C than suggested by the formula  
Z
above achieves a higher bandwidth at the expense of  
reduced phase and gain margin. As a general guideline,  
consider using C for cases where R || R is greater  
than 20k(MAX4475–MAX4478) or greater than 5kΩ  
(MAX4488/MAX4489).  
Z
G
F
Power Supplies and Layout  
The MAX4475–MAX4478/MAX4488/MAX4489 operate  
from a single +2.7V to +5.5V power supply or from dual  
supplies of ±1.35V to ±2.75V. For single-supply opera-  
tion, bypass the power supply with a 0.1µF ceramic  
Applications Information  
The MAX4475–MAX4478/MAX4488/MAX4489 combine  
good driving capability with ground-sensing input and  
rail-to-rail output operation. With their low distortion and  
low noise, they are ideal for use in ADC buffers, medical  
instrumentation systems and other noise-sensitive appli-  
cations.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Typical Application Circuit  
+5V  
+2.5V  
+5V  
7
V
DD  
CS  
U2  
REF  
OUT  
U1  
3
2
MAX4475AUA  
SERIAL  
SCLK  
0 to +2.5V  
MAX5541ESA  
INTERFACE  
OUTPUT  
6
AGND  
DIN  
DGND  
8
4
SHDN  
Typical Operating Circuit  
5V  
470pF  
0.1µF  
220pF  
5
3.09kΩ  
1%  
7.87kΩ  
1%  
3
8
3.83kΩ  
1%  
13.7kΩ  
1%  
220pF  
1
7.15kΩ  
1%  
MAX4477  
1/2  
220pF  
7
2
1/2 MAX4477  
4
220pF  
6
10.0kΩ  
1%  
10.0kΩ  
1%  
15.0kΩ  
1%  
10.0kΩ  
1%  
capacitor placed close to the V  
dual supplies, bypass each supply to ground.  
pin. If operating from  
of error. In addition, the MAX4475 has excellent open-  
loop gain and common-mode rejection, making this an  
excellent output buffer amplifier.  
DD  
Good layout improves performance by decreasing the  
amount of stray capacitance and noise at the op amp’s  
inputs and output. To decrease stray capacitance, mini-  
mize PC board trace lengths and resistor leads, and place  
external components close to the op amp’s pins.  
DC-Accurate Lowpass Filter  
The MAX4475–MAX4478/MAX4488/MAX4489 offer a  
unique combination of low noise, wide bandwidth, and  
high gain, making them an excellent choice for active  
filters up to 1MHz. The Typical Operating Circuit shows  
the dual MAX4477 configured as a 5th order Chebyschev  
filter with a cutoff frequency of 100kHz. The circuit is  
implemented in the Sallen-Key topology, making this a  
DC-accurate filter.  
Typical Application Circuit  
The Typical Application Circuit shows the sin-  
gle MAX4475 configured as an output buffer for the  
MAX5541 16-bit DAC. Because the MAX5541 has an  
unbuffered voltage output, the input bias current of the  
op amp used must be less than 6nA to maintain 16-bit  
accuracy. The MAX4475 has an input bias current of  
only 150pA (max), virtually eliminating this as a source  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Pin Configurations  
TOP VIEW  
TOP VIEW  
+
+
V
SHDN  
N.C.  
8
7
6
5
OUTA  
INA-  
1
2
3
4
8
7
6
5
DD  
V
OUTB  
INB-  
INA-  
2
3
4
DD  
MAX4475  
MAX4488  
MAX4477  
MAX4489  
INA+  
OUT  
N.C.  
INA+  
V
SS  
V
SS  
INB+  
SO/MAX  
SO/MAX  
TOP VIEW  
OUT  
TOP VIEW  
TOP VIEW  
+
+
6
5
4
OUTA  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
1
2
3
6
5
4
V
DD  
INA-  
MAX4475  
MAX4488  
INA+  
V
SHDN  
IN-  
SS  
MAX4475  
MAX4488  
V
MAX4478  
11  
V
SS  
DD  
INB+  
INB-  
10 INC+  
IN+  
EP  
9
8
INC-  
SOT23-6  
+
OUTB  
OUTC  
1
2
3
SO/TSSOP  
TDFN  
TOP VIEW  
OUT  
TOP VIEW  
+
6
5
4
1
2
3
6
5
4
V
DD  
MAX4476  
N.C.  
IN-  
V
SS  
MAX4476  
IN+  
EP  
SOT23-6  
+
1
2
3
TDFN  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Ordering Information  
Chip Information  
PROCESS: BiCMOS  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX4475AUT+T  
MAX4475AUA+  
MAX4475ASA+  
MAX4475ATT+T  
-40°C to +125°C 6 SOT23  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 8 SO  
AAZV  
Selector Guide  
STABLE  
GAIN  
(V/V)  
GAIN BW  
(MHz)  
NO. OF  
AMPS  
PART  
SHDN  
-40°C to +125°C 6 TDFN-EP* +ADD  
MAX4475AUT/V+T -40°C to +125°C 6 SOT23  
+ACQQ  
AAZX  
MAX4475  
MAX4476  
MAX4477  
MAX4478  
MAX4488  
MAX4489  
10  
10  
10  
10  
42  
42  
1
1
1
1
5
5
1
1
2
4
1
2
Yes  
MAX4476AUT+T  
MAX4476ATT+T  
MAX4477AUA+  
MAX4477AUA+  
-40°C to +125°C 6 SOT23  
-40°C to +125°C 6 TDFN-EP* +ADF  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 8 µMAX  
Yes  
MAX4477AUA/V+T -40°C to +125°C 8 µMAX  
+AA/V  
MAX4477ASA+  
MAX4478AUD+  
MAX4478AUD/V+  
MAX4478ASD+  
MAX4488AUT+T  
MAX4488AUA+  
MAX4488ASA+  
MAX4488ATT+T  
MAX4489AUA+  
-40°C to +125°C 8 SO  
-40°C to +125°C 14 TSSOP  
-40°C to +125°C 14 TSSOP  
-40°C to +125°C 14 SO  
-40°C to +125°C 6 SOT23  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 8 SO  
AAZW  
-40°C to +125°C 6 TDFN-EP* +ADE  
-40°C to +125°C 8 µMAX  
MAX4489AUA/V+T -40°C to +125°C 8 µMAX  
MAX4489ASA+ -40°C to +125°C 8 SO  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad (connect to V ).  
SS  
/V denotes an automotive qualified part.  
T = Tape and reel.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX4475–MAX4478/  
MAX4488/MAX4489  
SOT23, Low-Noise, Low-Distortion,  
Wide-Band, Rail-to-Rail Op Amps  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Added lead-free designations and an automotive part to the Ordering Information  
and added input current spec in Absolute Maximum Ratings section  
4
12/09  
1, 2, 13  
5
6
7/10  
6/12  
1/18  
7/18  
7/18  
8/18  
4/19  
Added /V designation to the MAX4475 product and soldering temperature  
Added /V designation for MAX4489.  
1, 2  
13  
7
Added AEC statement to Features section  
1
8
Updated Ordering Information table  
14  
9
Updated Absolute Maximum Rating and Package Information  
Updated Package Information section  
2, 14  
2–4  
1, 16  
10  
11  
Updated General Description and Ordering Information section  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY