MAX4526ESA [MAXIM]

Phase-Reversal Analog Switches; 相位反转模拟开关
MAX4526ESA
型号: MAX4526ESA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Phase-Reversal Analog Switches
相位反转模拟开关

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总12页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1165; Rev 0; 12/96  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
10pC (max) Charge Injection  
The MAX4526/MAX4527 are CMOS analog ICs config-  
ure d a s p ha s e -re ve rs a l s witc he s . The MAX4526 is  
optimized for high-speed applications, such as chop-  
p e r a mp lifie rs , while the MAX4527 is op timize d for  
low-power applications.  
2pC (max) Charge-Injection Match  
175Signal Paths with ±15V Supplies  
Guaranteed Break-Before-Make  
The MAX4526/MAX4527 operate from a +4.5V to +36V  
single supply or ±4.5V to ±18V dual supplies. On-resis-  
tance (175max) is matched between switches to 8Ω  
maximum. Each switch can handle rail-to-rail analog  
signals. Maximum leakage current is only 0.5nA at  
+25°C and 10nA at +85°C.  
Rail-to-Rail Signal Handling  
Transition Time < 100ns with ±15V Supplies  
1µA Current Consumption (MAX4527)  
>2kV ESD Protection per Method 3015.7  
TTL/CMOS-Compatible Inputs  
All digital inputs have 0.8V to 2.4V logic thresholds,  
ensuring TTL/CMOS-logic compatibility.  
Available in Small, 8-Pin µMAX Package  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
MAX4526CPA  
MAX4526CSA  
MAX4526CUA  
MAX4526C/D  
MAX4526EPA  
MAX4526ESA  
MAX4526EUA  
Chopper-Stabilized Amplifiers  
Balanced Modulators/Demodulators  
Data Acquisition  
8 µMAX  
Dice*  
8 Plastic DIP  
8 SO  
Test Equipment  
Audio-Signal Routing  
8 µMAX  
Ordering Information continued at end of data sheet.  
*Contact factory for availability.  
_________________________P in Co n fig u ra t io n /Fu n c t io n a l Dia g ra m /Tru t h Ta b le  
MAX4526  
TOP VIEW  
MAX4527  
A
B
8
7
6
5
1
2
3
4
V+  
X
TRUTH TABLE  
IN  
O
1
A
Y
X
B
X
Y
GND  
IN  
Y
V-  
DIP/SO/µMAX  
SWITCH POSITIONS SHOWN WITH IN = LOW  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
V+ ...........................................................................-0.3V to +44V  
V- ............................................................................-25V to +0.3V  
V+ to V-...................................................................-0.3V to +44V  
All Other Pins (Note 1)..........................(V- - 0.3V) to (V+ + 0.3V)  
Continuous Current into Any Terminal..............................±20mA  
Peak Current into Any Terminal  
Continuous Power Dissipation (T = +70°C)  
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
A
SO (derate 5.88mW/°C above +70°C)..........................471mW  
µMAX (derate 4.1mW/°C above +70°C) .......................330mW  
Operating Temperature Ranges  
MAX452_C_A.......................................................0°C to +70°C  
MAX452_E_A ....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
(pulsed at 1ms, 10% duty cycle)...................................±30mA  
ESD per Method 3015.7 ..................................................>2000V  
Note 1: Signals on IN, A, B, X, or Y exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum  
current rating.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—±15V Supplies  
6/MAX4527  
(V+ = +15V, V- = -15V, V  
= 2.4V, V = 0.8V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
INH  
INL  
A
MIN  
MAX  
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
ANALOG SWITCH  
SYMBOL  
CONDITIONS  
T
UNITS  
A
V , V ,  
A
B
Analog-Signal Range  
(Note 3)  
V = V = ±10V,  
C, E  
-V  
V+  
V
V , V  
Y
X
+25°C  
C, E  
105  
0.5  
12  
175  
200  
8
A-X, A-Y, B-X, B-Y  
On-Resistance  
A
B
R
ON  
I
A
= I = 1mA  
B
+25°C  
C, E  
A-X, A-Y, B-X, B-Y  
On-Resistance Match (Note 4)  
V = V = ±10V,  
A B  
I = I = 1mA  
A B  
R  
ON  
10  
18  
30  
+25°C  
C, E  
A-X, A-Y, B-X, B-Y  
On-Resistance Flatness (Note 5)  
V = V = -5V, 0V, +5V;  
A B  
I = I = 1mA  
A B  
R
(ON)  
FLAT  
I
,
(OFF)  
A
+25°C  
C, E  
-0.5  
-10  
0.01  
0.5  
10  
V+ = 16.5V, V- = -16.5V;  
= 0V, 3V;  
I
(OFF),  
B
A, B, X, Y Leakage Current (Note 6)  
V
IN  
nA  
I
,
(OFF)  
X
V
= ±15.5V, V = ±15.5V  
B
A
I
(OFF)  
Y
LOGIC INPUT  
IN Input Logic Threshold High  
V
C, E  
C, E  
1.6  
1.6  
2.4  
1
V
V
INH  
IN Input Logic Threshold Low  
V
INL  
0.8  
1
IN Input Current Logic High or Low  
I
, I  
V _ = 0.8V or 2.4V  
IN  
C, E  
0.03  
µA  
INH INL  
2
_______________________________________________________________________________________  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
ELECTRICAL CHARACTERISTICS—±15V Supplies (continued)  
(V+ = +15V, V- = -15V, V  
= 2.4V, V = 0.8V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
INH  
INL  
A
MIN  
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
UNITS  
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
65  
95  
100  
125  
200  
250  
V = V = ±10V,  
A
B
MAX4526  
MAX4527  
V+ = 15V,  
V- = -15V,  
Figure 3  
Transition Time  
t
ns  
TRANS  
+25°C  
C, E  
V = V = ±10V, V+ = 15V,  
V- = -15V, Figure 4  
A
B
Break-Before-Make Time Delay  
Charge Injection (Note 3)  
t
+25°C  
+25°C  
+25°C  
1
5
1
ns  
pC  
pF  
BBM  
C
L
R
S
= 1.0nF, V or V = 0V,  
= 0, Figure 5  
A
B
Q
10  
V = V = GND, f = 1MHz,  
A
B
A-X, A-Y, B-X, B-Y Capacitance  
C
13  
OFF  
Figure 6  
R
= 50, C = 15pF,  
L
L
A-X, A-Y, B-X, B-Y Isolation  
(Note 7)  
V
ISO  
V = V = 1V ,  
RMS  
+25°C  
-65  
dB  
A
B
f = 1MHz, Figure 7  
POWER SUPPLY  
Power-Supply Range  
V+, V-  
I+  
C, E  
±4.5  
±20  
V
+25°C  
C, E  
0.7  
1
1.5  
1
MAX4526  
mA  
V+ = 16.5V,  
= 0V or V+  
V+ Supply Current  
V- Supply Current  
V
IN  
+25°C  
C, E  
0.05  
MAX4527  
MAX4526  
MAX4527  
µA  
µA  
10  
+25°C  
C, E  
-400  
-500  
-1  
I-  
V- = -16.5V  
+25°C  
C, E  
0.05  
-1  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: Guaranteed by design.  
Note 4: R  
= R  
- R  
ON  
(MAX) ON(MIN).  
ON  
Note 5: Resistance flatness is defined as the difference between the maximum and minimum values of on-resistance as measured  
over the specified analog-signal range.  
Note 6: Leakage current is 100% tested at maximum rated hot temperature, and is guaranteed by correlation at T = +25°C and  
A
minimum rated cold temperature.  
Note 7: Off-isolation = 20log10 [(V or V ) / (V or V )], V or V = output, V or V = input to off switch.  
X
Y
A
B
X
Y
A
B
_______________________________________________________________________________________  
3
P h a s e -Re ve rs a l An a lo g S w it c h e s  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = +15V, V- = -15V, GND = 0V, T = +25°C, unless otherwise noted.)  
A
ON-RESISTANCE vs.  
V , V , AND TEMPERATURE  
ON-RESISTANCE vs. V , V  
A
B
A
B
ON-RESISTANCE vs. V , V  
A
B
(DUAL SUPPLIES)  
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
180  
160  
140  
120  
100  
10,000  
1000  
100  
350  
300  
T = +85°C  
A
T = +125°C  
A
V- = 0V  
V± = ±5V  
250  
200  
T = +70°C  
A
V± = ±10V  
V+ = +5V  
80  
60  
40  
20  
0
150  
V+ = +10V  
V+ = +15V  
T = -40°C  
A
T = -55°C  
A
T = 0°C  
A
100  
50  
T = +25°C  
A
V+ = +20V  
V± = ±15V  
V+ = +15V  
V- = -15V  
0
-5  
-15 -10  
0
5
10  
15  
-16 -12 -8 -4  
0
4
8
12 16  
0
2
4
6
8
10 12 14 16 18 20  
V (V)  
6/MAX4527  
V
A,  
V (V)  
B
V , V (V)  
A B  
V
A,  
B
ON-RESISTANCE vs.  
CHARGE INJECTION, CHARGE-  
INJECTION MATCHING vs. V  
V , V , AND TEMPERATURE  
A
B
LEAKAGE vs. TEMPERATURE  
V
B
(SINGLE SUPPLY)  
A,  
300  
250  
200  
100  
10  
30  
20  
T = +125°C  
A
T = +85°C  
A
V+ = 15V  
V- = -15V  
V+ = 15V  
V- = -15V  
Q
YO  
T = +70°C  
A
10  
1
0.1  
Q
XO  
0
150  
Q MATCHING  
-10  
-20  
-30  
100  
50  
T = -40°C  
A
T = 0°C  
A
T = -55°C  
A
0.01  
0.001  
T = +25°C  
A
V+ = 15V  
V- = 0V  
0
-15  
-5  
-55 -35  
5
25 45 65 85 105 125  
-15 -10  
0
10  
15  
0
2
4
6
8
10 12 14 16  
5
V , V (V)  
TEMPERATURE (°C)  
V V (V)  
A,  
B
A
B
CHARGE INJECTION, CHARGE-INJECTION  
MATCHING vs. V , V  
(SINGLE SUPPLY)  
A
B
TRANSITION TIME  
vs. SUPPLY VOLTAGE  
TRANSITION TIME vs. TEMPERATURE  
300  
250  
200  
150  
100  
50  
15  
10  
5
450  
V+ = 15V  
V- = -15V  
V+ = 15V  
V- = 0V  
400  
350  
300  
250  
200  
150  
100  
50  
Q
YO  
MAX4527  
Q
XO  
MAX4527  
MAX4526  
0
MAX4526  
MATCHING Q  
0
0
-5  
-15  
2
-55 -35  
5
25 45 65 85 105 125  
0
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
V , V (V)  
A
B
V+, V- (V)  
4
_______________________________________________________________________________________  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = +15V, V- = -15V, GND = 0V, T = +25°C, unless otherwise noted.)  
A
MAX4526  
POSITIVE SUPPLY CURRENT vs. V  
MAX4527  
POSITIVE SUPPLY CURRENT vs. V  
SUPPLY CURRENT vs. TEMPERATURE  
IN  
IN  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.00  
1.75  
1000  
100  
10  
V+ = 15V  
V- = -15V  
1.50  
1.25  
1.00  
V+ = 15V  
V- = -15V  
I+ (MAX4526)  
I- (MAX4526)  
1
V+ = 5V  
V- = -5V  
V+ = 5V  
V- = -5V  
0.75  
0.50  
0.25  
0
0.1  
I+ (MAX4527)  
I- (MAX4527)  
0.01  
0.001  
-15  
0
2
4
6
8
10 12 14 16  
-55 -35  
5
25 45 65 85 105 125  
0
2
4
6
8
10 12 14 16  
V (V)  
IN  
TEMPERATURE (°C)  
V (V)  
IN  
MAX4526  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
0
100  
V± = ±15V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
600IN AND OUT  
ON - LOSS  
10  
1
0.1  
0.01  
OFF - ISOLATION  
0.1  
1
10  
100  
1000  
1k  
FREQUENCY (Hz)  
100  
10  
10k  
100k  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
P h a s e -Re ve rs a l An a lo g S w it c h e s  
__________________P in Co n fig u ra t io n  
_______________De t a ile d De s c rip t io n  
The MAX4526/MAX4527 are phase-reversal analog  
switches, consisting of two normally open and two nor-  
mally closed CMOS analog switches arranged in a  
bridge configuration. Analog signals are put into two  
input pins and taken out of two output pins. A logic-  
level signal controls whether the input signal is routed  
through normally or inverted. A low-resistance DC path  
goes from inputs to outputs at all times, yet isolation  
between the two signal paths is excellent. Analog sig-  
nals range from V- to V+.  
PIN  
NAME  
FUNCTION  
Analog-Switch Input Terminal A.  
Connected to Y when IN is low; con-  
nected to X when IN is high.  
1
A
Analog-Switch Input Terminal B.  
Connected to X when IN is low; con-  
nected to Y when IN is high.  
2
3
B
Ground. Connect GND to digital  
ground. (Analog signals have no  
ground reference; they are limited to  
V+ and V-.)  
GND  
These parts are characterized and optimized with ±15V  
supplies, and they can operate from a single supply.  
The MAX4526 is optimized for high-frequency opera-  
tion, and has a higher-speed logic-level translator and  
switch driver. The MAX4527 has identical analog switch  
characteristics, but has a slower logic-level translator  
and switch driver for lower current consumption.  
Logic-Level Control Inputs (see Truth  
Table).  
4
5
IN  
V-  
Negative Analog Supply-Voltage  
Input. Connect V- to GND for single-  
supply operation.  
6/MAX4527  
The MAX4526/MAX4527 are designed for DC and low-  
frequency-signal phase-reversal applications, such as  
chopper amplifiers, modulator/demodulators, and self-  
zeroing or self-calibrating circuits. Unlike conventional  
CMOS switches externally wired in a bridge configura-  
tion, both DC and AC symmetry are optimized with a  
small 8-pin configuration that allows simple board lay-  
out and isolation of logic signals from analog signals.  
6
7
Y
X
Analog-Switch Output Terminal Y.  
Analog-Switch Output Terminal X.  
Positive Analog/Digital Supply-Voltage  
Input. Internally connected to sub-  
strate.  
8
V+  
Note: A, B, X and Y pins are identical and interchangeable.  
Either may be considered as an input or output; signals pass  
equally well in either direction. However, AC symmetry is best  
when A and B are the input, and X and Y are the output.  
Reduce AC balance in critical applications by using A and X or  
A and Y as the input, and B and Y or B and X as the output.  
V+  
V+  
MAX4526  
MAX4527  
MAX4526  
MAX4527  
V+  
A
V+  
A
B
INPUTS  
INPUTS  
X
Y
X
Y
B
OUTPUTS  
OUTPUTS  
IN  
IN  
LOGIC LO  
LOGIC HI  
V-  
V-  
GND  
GND  
V-  
V-  
TRUTH TABLE  
IN  
O
1
A
Y
X
B
X
Y
Figure 1. Typical Application Circuits  
_______________________________________________________________________________________  
6
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
Bipolar Supplies  
The MAX4526/MAX4527 operate with bipolar supplies  
between ±4.5V and ±18V. However, since all factory  
characterization is done with ±15V supplies, specifica-  
tions at other supplies are not guaranteed. The V+ and  
V- supplies need not be symmetrical, but their sum  
cannot exceed the absolute maximum rating of 44V  
(see Absolute Maximum Ratings).  
P o w e r-S u p p ly Co n s id e ra t io n s  
Overview  
The MAX4526/MAX4527 construction is typical of most  
CMOS analog switches. It has three supply pins: V+, V-,  
and GND. V+ and V- drive the internal CMOS switches  
a nd s e t the a na log -volta g e limits on a ny s witc h.  
Reverse ESD-protection diodes are internally connect-  
ed between each analog signal pin, and both V+ and  
V-. One of these diodes conducts if any analog signal  
exceeds V+ or V-.  
Virtually all of the analog leakage current is through the  
ESD diodes to V+ or V-. Although the ESD diodes on a  
given signal pin are identical and therefore fairly well  
balanced, they are reverse biased differently. Each is  
biased by either V+ or V- and the analog signal. This  
means their leakages vary as the signal varies. The dif-  
ference in the two diode leakages from the signal path  
to the V+ and V- pins constitutes the analog-signal-path  
leakage current. All analog leakage current flows to the  
supply terminals, not to the other switch terminal. This  
explains how both sides of a given switch can show  
leakage currents of either the same or opposite polarity.  
MODULATOR/DEMODULATOR CIRCUIT  
V+  
V+  
INPUT  
A
OUTPUT  
X
Y
B
IN  
GND V-  
LOGIC (CARRIER)  
MAX4526  
MAX4527  
V+  
There is no connection between the analog-signal paths  
and GND. The analog-signal paths consist of an N-  
channel and P-channel MOSFET with their sources and  
drains paralleled and their gates driven out-of-phase to  
V+ and V- by the logic-level translators.  
TIME WAVEFORMS  
OUTPUT SPECTRUM  
LOGIC  
(CARRIER)  
V+ and GND power the internal logic and logic-level  
translator and set the input logic threshold. The logic-  
level translator converts the logic levels to switched V+  
and V- signals to drive the analog switches’ gates. This  
drive signal is the only connection between GND and  
the analog supplies. V+ and V- have ESD-protection  
diodes to GND. The logic-level input has ESD protec-  
tion to V+ and to V- but not to GND, so the logic signal  
can go below GND (as low as V-) when bipolar sup-  
plies are used.  
LOWER  
SIDEBAND  
UPPER  
SIDEBAND  
SUPPRESSED CARRIER  
A
B
X
AMPLITUDE  
Increasing V- has no effect on the logic-level thresholds,  
but it does increase the drive to the internal P-channel  
switches, reducing the overall switch on-resistance. V-  
also sets the negative limit of the analog-signal voltage.  
FREQUENCY  
The logic-level input pin, IN, has ESD-protection diodes  
to V+ and V- but not to GND, so it can be safely driven  
Y
to V+ and V-. The logic-level threshold, V , is CMOS/  
IN  
TTL compatible when V+ is between 4.5V and 36V  
(see Typical Operating Characteristics).  
X-Y  
(OUTPUT)  
Figure 2. Balanced Modulator/Demodulator  
_______________________________________________________________________________________  
7
P h a s e -Re ve rs a l An a lo g S w it c h e s  
Single Supply  
The MAX4526/MAX4527 operate from a single supply  
between +4.5V and +36V when V- is connected to  
GND. Ob s e rve a ll of the b ip ola r p re c a utions whe n  
operating from a single supply.  
MAX4526/MAX4527s internal capacitance and resis-  
tance gradually impair performance. Similarly, imbal-  
ances in external circuit capacitance and resistance to  
GND reduce overall carrier suppression.  
The carrier is applied as a logic-level square wave to  
IN. (Note that this voltage can go as negative as V-.)  
For best carrier suppression, the power-supply volt-  
ages should be equal, the square wave should have a  
precise 50% duty cycle, and both the input and output  
signals should be symmetrical about ground. Bypass  
V+ and V- to GND with 0.1µF ceramic capacitors, as  
close to the IC pins as possible. Since the logic-level  
translator/driver in the MAX4526 is faster than the one  
in the MAX4527, it g ive s b e tte r re s ults a t hig he r  
frequencies. In critical applications, carrier suppression  
can be optimized by trimming duty cycle, DC bias  
around GND, or external source and load capacitance.  
__________Ap p lic a t io n s In fo rm a t io n  
The MAX4526/MAX4527 a re d e s ig ne d for DC a nd  
low-frequency-signal phase-reversal applications. Both  
DC and AC symmetry are optimized for use with ±15V  
supplies.  
S ig n a l P h a s e /P o la rit y Re ve rs a l  
The MAX4526/MAX4527 c a n re ve rs e the p ha s e or  
polarity of a pair of signals that are out-of-phase and  
balanced to ground. This is done by routing signals  
through the MAX4526/MAX4527 and under control of  
the IN pin, reversing the two signals paths inside the  
switch before sending out to a balanced output. Figure  
1 shows a typical example. The MAX4526/MAX4527  
cannot reverse the phase or polarity of a single-  
grounded signal, as can be done with an inverting  
op amp or transformer.  
In signal lines, balancing both capacitance and resis-  
tance to GND produces the best carrier suppression.  
6/MAX4527  
Tra ns forme r c oup ling of inp ut a nd outp ut s ig na ls  
provides the best isolation and carrier suppression.  
Transformers can also provide signal filtering, imped-  
a nc e ma tc hing , or low-nois e volta g e g a in. Us e a  
center-tapped transformer or high-resistance voltage  
divider to provide a DC path to GND on either the input  
signal or output signal. This ensures a DC path to GND  
and symmetrical operation of the internal switches.  
Ba la n c e d Mo d u la t o rs /De m o d u la t o rs  
The MAX4526/MAX4527 can be used as a balanced  
modulator/demodulator at carrier frequencies up to  
100kHz (Figure 2). Higher frequencies are possible, but  
a s fre q ue nc y inc re a s e s , s ma ll imb a la nc e s in the  
______________________________________________Te s t Circ u it s /Tim in g Dia g ra m s  
V+  
V+  
0V  
V
IN  
V+  
50%  
A
B
X
-10V  
+10V  
IN  
V
IN  
50  
MAX4526  
MAX4527  
V
B
V
OUT  
90%  
GND  
V-  
V-  
300Ω  
35pF  
0V  
V
OUT  
90%  
V
A
t
t
TRANS  
TRANS  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 3. Address Transition Time  
8
_______________________________________________________________________________________  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
t
t
< 5ns  
< 5ns  
F
V+  
V+  
R
V+  
0V  
V
IN  
50%  
V
IN  
A
B
+10V  
IN  
50Ω  
MAX4526  
MAX4527  
V
OUT  
90%  
X OR Y  
V-  
V
OUT  
GND  
300Ω  
35pF  
V-  
0V  
t
BBM  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 4. Break-Before-Make Interval  
V+  
V+  
0V  
B OR A  
A OR B  
N.C.  
V OR V  
V+  
V
IN  
A
B
MAX4526  
MAX4527  
V
IN  
IN  
X OR Y  
V-  
V
OUT  
GND  
V
OUT  
V  
OUT  
50Ω  
C
L
1000pF  
V-  
V IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER  
OUT  
ERROR Q WHEN THE CHANNEL TURNS OFF.  
Q = V x C  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
OUT  
L
Figure 5. Charge Injection  
_______________________________________________________________________________________  
9
P h a s e -Re ve rs a l An a lo g S w it c h e s  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
V+  
V+  
A
B
V+  
MAX4526  
MAX4527  
X
Y
1MHz  
CAPACITANCE  
ANALYZER  
IN  
SWITCH  
SELECT  
GND  
V-  
V-  
6/MAX4527  
Figure 6. A, B, X, Y Capacitance  
V+  
10nF  
NETWORK  
ANALYZER  
VOUT  
VIN  
OFF ISOLATION = 20 log  
V
IN  
V+  
A,B  
50Ω  
50Ω  
VOUT  
VIN  
V+  
ON LOSS = 20 log  
MAX4526  
MAX4527  
V
OUT  
MEAS.  
REF  
IN  
X,Y  
V-  
SWITCH  
SELECT  
GND  
50Ω  
50Ω  
10nF  
V-  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.  
OFF ISOLATION IS MEASURED BETWEEN A, B AND "OFF" X, Y TERMINAL.  
ON LOSS IS MEASURED BETWEEN A, B AND "ON" X, Y TERMINAL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 7. Off Isolation and On Loss  
10 ______________________________________________________________________________________  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
6/MAX4527  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
V+  
MAX4527CPA  
MAX4527CSA  
MAX4527CUA  
MAX4527C/D  
MAX4527EPA  
MAX4527ESA  
MAX4527EUA  
A
8 µMAX  
X
Dice*  
8 Plastic DIP  
8 SO  
0. 077"  
B
8 µMAX  
Y
(1. 96mm)  
*Contact factory for availability.  
GND  
IN  
V-  
0. 058"  
(1. 47mm)  
TRANSISTOR COUNT: 50  
SUBSTRATE IS INTERNALLY CONNECTED TO V+  
________________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.036  
MAX  
0.044  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.91  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
1.11  
0.20  
0.36  
0.18  
3.05  
3.05  
A
C
A1 0.004  
α
A
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
0.101mm  
0.004 in  
e
B
A1  
L
0.0256  
0.65  
H
L
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.78  
0.41  
0°  
5.03  
0.66  
6°  
α
21-0036D  
E
H
8-PIN µMAX  
MICROMAX SMALL-OUTLINE  
PACKAGE  
D
______________________________________________________________________________________ 11  
P h a s e -Re ve rs a l An a lo g S w it c h e s  
_________________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
6/MAX4527  
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
21-0043A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY