MAX4528EUA+T [MAXIM]

暂无描述;
MAX4528EUA+T
型号: MAX4528EUA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

开关
文件: 总12页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1325; Rev 0; 1/98  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
5pC (max) Charge Injection  
The MAX4528 low-voltage, CMOS analog IC is config-  
ured as a phase-reversal switch and optimized for high-  
s p e e d a p p lic a tions s uc h a s c hop p e r a mp lifie rs . It  
operates from a +2.7V to +12V single supply or from  
±2.7V to ±6V dual supplies.  
110Signal Paths with ±5V Supplies  
Rail-to-Rail Signal Handling  
Transition Time <100ns with ±5V Supplies  
1.0µA (max) Current Consumption  
>2kV ESD Protection per Method 3015.7  
TTL/CMOS-Compatible Input  
On-resistance (110max) is matched between switch-  
es to 7(max). Each switch can handle Rail-to-Rail®  
analog signals. The leakage current is only 0.5nA at  
+25°C and 20nA at +85°C. All digital inputs have 0.8V  
to 2.4V log ic thre s hold s , e ns uring b oth TTL- a nd  
CMOS-logic compatibility.  
Small Packages: 8-Pin SO, DIP, and µMAX  
For hig he r volta g e op e ra tion, s e e the MAX4526/  
MAX4527 data sheet.  
________________________Ap p lic a t io n s  
_______________Ord e rin g In fo rm a t io n  
Chopper-Stabilized Amplifiers  
Balanced Modulators/Demodulators  
Data Acquisition  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX4528CPA  
MAX4528CSA  
MAX4528CUA  
MAX4528C/D  
MAX4528EPA  
MAX4528ESA  
MAX4528EUA  
8 µMAX  
Test Equipment  
Dice*  
Audio-Signal Routing  
8 Plastic DIP  
8 SO  
8 µMAX  
*Contact factory for availability.  
_________________________P in Co n fig u ra t io n /Fu n c t io n a l Dia g ra m /Tru t h Ta b le  
TOP VIEW  
MAX4528  
A
B
8
7
6
5
1
2
3
4
V+  
X
TRUTH TABLE  
IN  
O
1
A
Y
X
B
X
Y
Y
GND  
IN  
V-  
DIP/SO/µMAX  
SWITCH POSITIONS SHOWN WITH IN = LOW  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
V+ .............................................................................-0.3V to 13V  
V-...............................................................................-13V to 0.3V  
V+ to V-.....................................................................-0.3V to 13V  
All Other Pins (Note 1)..........................(V- - 0.3V) to (V+ + 0.3V)  
Continuous Current into Any Terminal..............................±20mA  
Peak Current into Any Terminal  
Continuous Power Dissipation (T = +70°C) (Note 2)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.10mW/°C above +70°C) ....................330mW  
Operating Temperature Ranges  
MAX4528C_ _ .....................................................0°C to +70°C  
MAX4528E_ _ ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
(pulsed at 1ms, 10% duty cycle)...................................±50mA  
ESD per Method 3015.7 ..................................................>2000V  
MAX4528  
Note 1: Signals on IN, A, B, X, or Y exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum  
current rating.  
Note 2: All leads are soldered or welded to PC boards.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS: ±5V Dual Supplies  
(V+ = 5V, V- = -5V, V  
= 2.4V, V = 0.8V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
INH  
INL  
A
MIN  
MIN  
TYP  
(Note 3)  
MAX  
PARAMETER  
ANALOG SWITCH  
SYMBOL  
CONDITIONS  
T
UNITS  
A
V , V ,  
A
B
Analog-Signal Range  
(Note 4)  
V = V = ±3V, I = I = 1mA  
A
C, E  
V-  
V+  
V
V , V  
X
Y
+25°C  
C, E  
70  
3
110  
130  
7
A-X, A-Y, B-X, B-Y  
On-Resistance  
R
ON  
B
A
B
+25°C  
C, E  
A-X, A-Y, B-X, B-Y  
On-Resistance Match (Note 5)  
R  
V
= V = ±3V, I = I = 1mA  
ON  
A
B
A
B
9
+25°C  
C, E  
9
15  
17  
0.5  
20  
A-X, A-Y, B-X, B-Y  
On-Resistance Flatness (Note 6)  
V
I
A
= V = 3V, 0V, -3V;  
B
= I = 1mA  
B
A
R
FLAT(ON)  
+25°C  
C, E  
-0.5  
-20  
0.01  
A-B, X-Y Leakage Current  
(Note 7)  
I , I ,  
V+ = 5.5V; V- = -5.5V; V = 0V, 3V;  
IN  
V
A
A
B
nA  
I , I  
= ±4.5V; V = +4.5V  
X
Y
B
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
V
C, E  
C, E  
1.6  
1.6  
2.4  
1
V
V
INH  
V
INL  
0.8  
-1  
IN Input Current Logic High  
or Low  
I
,
INH  
V
IN_  
= 0.8V or 2.4V  
C, E  
0.03  
µA  
I
INL  
SWITCH DYNAMIC CHARACTERISTICS  
+25°C  
C, E  
70  
20  
100  
125  
V
= V = ±3V, V+ = 5V, V- = -5V,  
B
= 300, Figure 3  
A
Transition Time  
t
ns  
ns  
TRANS  
R
L
+25°C  
C, E  
1
V
= V = ±3V, V+ = 5V, V- = -5V,  
B
= 300, Figure 4  
A
Break-Before-Make Time Delay  
t
BBM  
Q
R
L
Charge Injection (Note 4)  
C
= 1.0nF, V or V = 0V, Figure 5 +25°C  
1
5
pC  
pF  
L
A
B
A-X, A-Y, B-X, B-Y Capacitance  
C
V
A
= V = GND, f = 1MHz, Figure 6 +25°C  
13  
ON  
B
A-X, A-Y, B-X, B-Y Isolation  
(Note 8)  
R
V
A
= 50, C = 15pF, f = 1MHz,  
L
L
V
ISO  
+25°C  
-68  
dB  
= V = 1V  
, Figure 7  
B
RMS  
2
_______________________________________________________________________________________  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
ELECTRICAL CHARACTERISTICS: ±5V Dual Supplies (continued)  
(V+ = 5V, V- = -5V, V  
= 2.4V, V = 0.8V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
INH  
INL  
A
MIN  
MIN  
TYP  
(Note 3)  
MAX  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
T
UNITS  
A
Power-Supply Range  
V+, V-  
I+  
C, E  
±2.7  
-1  
±6  
1
V
+25°C  
C, E  
V+ Supply Current  
V
= 0V or V+  
= 0V or V+  
µA  
IN  
-10  
-1  
10  
1
+25°C  
C, E  
V- Supply Current  
I-  
V
IN  
µA  
-10  
10  
ELECTRICAL CHARACTERISTICS: +5V Single Supply  
(V+ = 5V, V- = 0V, V  
= 2.4V, V = 0.8V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
INH  
INL  
A
MIN  
MIN  
TYP  
(Note 3)  
MAX  
PARAMETER  
ANALOG SWITCH  
SYMBOL  
CONDITIONS  
T
UNITS  
A
V , V ,  
A
B
Analog-Signal Range  
(Note 4)  
V = V = 3V, I = I = 1mA  
A
C, E  
V-  
V+  
V
V , V  
X
Y
+25°C  
C, E  
120  
5
175  
200  
10  
A-X, A-Y, B-X, B-Y  
On-Resistance  
R
ON  
B
A
B
+25°C  
C, E  
A-X, A-Y, B-X, B-Y  
On-Resistance Match (Note 5)  
R  
V
= V = 3V, I = I = 1mA  
ON  
A
B
A
B
12  
+25°C  
C, E  
-0.5  
-20  
0.01  
0.5  
20  
A-B, X-Y Leakage Current  
(Note 9)  
I , I ,  
V+ = 5.5V; V = 0V, 3V;  
IN  
V = 4.5V, 1V; V = 1V, 4.5V  
A B  
A
B
nA  
I , I  
X
Y
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
V
C, E  
C, E  
1.6  
1.6  
2.4  
1
V
V
INH  
V
INL  
0.8  
-1  
IN Input Current Logic High  
or Low  
I
,
INH  
V
IN_  
= 0.8V or 2.4V  
C, E  
0.03  
µA  
I
INL  
SWITCH DYNAMIC CHARACTERISTICS (Note 4)  
+25°C  
C, E  
110  
20  
175  
200  
V
= V = 3V, V+ = 5V, R = 300,  
B L  
A
Transition Time  
t
ns  
ns  
TRANS  
Figure 3  
+25°C  
C, E  
1
V
= V = 3V, V+ = 5V, R = 300,  
A
B
L
Break-Before-Make Time Delay  
t
BBM  
Q
Figure 4  
Charge Injection  
C
= 1.0nF, V or V = 0V, Figure 5 +25°C  
1.5  
17  
5
pC  
pF  
L
A
B
A-X, A-Y, B-X, B-Y Capacitance  
C
V = V = GND, f = 1MHz, Figure 6 +25°C  
A B  
OFF  
A-X, A-Y, B-X, B-Y Isolation  
(Note 8)  
R
V
A
= 50, C = 15pF, f = 1MHz,  
L
L
V
ISO  
+25°C  
-70  
dB  
= V = 1V  
, Figure 7  
B
RMS  
POWER SUPPLY  
Power-Supply Range  
V+  
I+  
C, E  
2.7  
-1  
12  
1
V
+25°C  
C, E  
V+ Supply Current  
V
IN  
= 0V or V+  
µA  
-10  
10  
_______________________________________________________________________________________  
3
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
ELECTRICAL CHARACTERISTICS: +3V Single Supply  
(V+ = 2.7V to 3.6V, V- = 0V, V  
= 2.4V, V  
= 0.6V, T = T  
to T  
, unless otherwise noted. Typical values are at  
INH  
INL  
A
MIN  
MAX  
T
A
= +25°C.)  
MIN  
TYP  
(Note 3)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T
UNITS  
A
ANALOG SWITCH  
V , V ,  
A
B
Analog-Signal Range  
(Note 4)  
C, E  
V-  
V+  
V
V , V  
MAX4528  
X
Y
+25°C  
C, E  
250  
900  
A-X, A-Y, B-X, B-Y  
On-Resistance  
V+ = 3V, V = V = 1.5V,  
A
B
R
ON  
I
= I = 0.1mA  
B
A
1000  
LOGIC INPUT  
IN Input Logic Threshold High  
IN Input Logic Threshold Low  
V
V+ = 3V  
V+ = 3V  
C, E  
C, E  
0.9  
0.9  
2.4  
1
V
V
INH  
V
INL  
0.6  
-1  
IN Input Current Logic High  
or Low  
I
,
INH  
V
= 0V or V+  
C, E  
0.03  
µA  
IN_  
I
INL  
SWITCH DYNAMIC CHARACTERISTICS (Note 4)  
+25°C  
C, E  
150  
150  
1
400  
500  
V
= 1.5V, V = 0V, V+ = 3V,  
B
A
Transition Time  
t
TRANS  
ns  
V- = 0V, R = 1k, Figure 3  
L
+25°C  
C, E  
2
V
= 1.5V, V = 0V, V+ = 3V,  
B
A
Break-Before-Make Time Delay  
t
ns  
BBM  
Q
V- = 0V, R = 1k, Figure 4  
L
Charge Injection  
C
= 1.0nF, V or V = 0V, Figure 5 +25°C  
5
pC  
L
A
B
POWER SUPPLY  
Power-Supply Range  
V+, V-  
I+  
C, E  
2.7  
-1  
12  
1
V
+25°C  
C, E  
V+ Supply Current  
V
IN  
= 0V or V+  
µA  
-10  
10  
Note 3: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 4: Guaranteed by design.  
Note 5: R  
= R  
- R  
.
ON(MIN)  
ON  
ON(MAX)  
Note 6: Resistance flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured  
over the specified analog-signal range.  
Note 7: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.  
Note 8: Off isolation = 20log10 [(V or V ) / (V or V )], V or V = output, V or V = input to off switch.  
X
Y
A
B
A
B
A
B
Note 9: Leakage testing for single-supply operation guaranteed by testing with dual supplies.  
4
_______________________________________________________________________________________  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = 5V, V- = -5V, GND = 0V, T = +25°C, unless otherwise noted.)  
A
ON-RESISTANCE vs.  
ON-RESISTANCE vs. V , V  
ON-RESISTANCE vs. V , V  
V , V , AND TEMPERATURE  
A
B
A
B
A
B
(DUAL SUPPLIES)  
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
1000  
100  
10  
140  
120  
100  
1000  
100  
10  
V- = 0V  
V+ = 1.2V  
V- = -1.2V  
V+ = 2V  
T = +125°C  
V+ = 2.7V  
V- = -2.7V  
A
T = +70°C  
A
T = +85°C  
A
V+ = 2.7V  
V+ = 3.3V  
V+ = 5V  
V+ = 2V  
V- = -2V  
80  
60  
V+ = 3.3V  
V- = -3.3V  
V+ = 7.5V  
V+ = 5V  
V- = -5V  
T = -55°C  
V+ = 10V  
T = -40°C  
A
40  
20  
0
A
T = +25°C  
A
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
V , V (V)  
V , V (V)  
V V (V)  
A, B  
A
B
A
B
ON-RESISTANCE vs.  
V , V , AND TEMPERATURE  
CHARGE INJECTION, CHARGE-  
INJECTION MATCHING vs. V  
A
B
LEAKAGE vs. TEMPERATURE  
V
B
(SINGLE SUPPLY)  
A,  
200  
180  
160  
10  
5
10,000  
T = +125°C  
A
T = +85°C  
A
Q MATCHING  
T = +70°C  
A
1000  
100  
0
140  
120  
100  
80  
Q
Y
-5  
10  
1
-10  
-15  
-20  
-25  
T = +25°C  
A
T = -40°C  
A
60  
T = -55°C  
A
0.1  
40  
Q
X
0.01  
V+ = 5V  
V- = 5V  
V+ = 5V  
V- = 0V  
20  
0
0.001  
0
1
2
3
4
5
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-55  
-25  
5
35  
65  
95  
125  
V , V (V)  
V V (V)  
A, B  
TEMPERATURE (°C)  
A
B
CHARGE INJECTION, CHARGE-  
CHARGE INJECTION, CHARGE-  
INJECTION MATCHING vs. V , V  
INJECTION MATCHING vs. V , V  
A
B
A
B
TRANSITION TIME  
vs. SUPPLY VOLTAGE  
(+3V SUPPLY)  
(+5V SUPPLY)  
4
3
4
2
250  
200  
150  
100  
50  
V+ = 3V  
V- = 0V  
Q MATCHING  
2
0
Q
X
Q
X
Q
Y
1
-2  
-4  
-6  
-8  
-10  
SINGLE SUPPLY  
0
Q
Y
-1  
-2  
-3  
Q MATCHING  
V+ = 5V  
V- = 0V  
DUAL SUPPLIES  
0
0
1
2
3
4
5
0
1
2
3
4
5
6
2
4
8
10  
V , V (V)  
A B  
V , V (V)  
A
B
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
_________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V- = -5V, GND = 0V, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT AND GROUND CURRENT  
vs. INPUT VOLTAGE  
FREQUENCY RESPONSE  
TRANSITION TIME vs. TEMPERATURE  
MAX4528-12  
180  
150  
120  
90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
250  
200  
150  
100  
50  
1
V- = 0V  
-1  
ON LOSS  
OFF ISOLATION  
10  
MAX4528  
+2.7V SINGLE SUPPLY  
-2  
10  
-3  
V+ = 12V  
10  
60  
-4  
10  
30  
-5  
10  
ON PHASE  
+5V SINGLE SUPPLY  
0
-6  
10  
-30  
-60  
-90  
-120  
-7  
V+ = 5V  
10  
-8  
10  
V+ = 5V  
V- = -5V  
50IN AND OUT  
-9  
10  
-10  
10  
-150  
-180  
±5V DUAL SUPPLIES  
-11  
0
-120  
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
-55  
-25  
5
35  
65  
95  
125  
0
1
2
3
4
5
6
7
8
9
10 11 12  
TEMPERATURE (°C)  
V
(V)  
IN  
LOGIC-LEVEL THRESHOLD  
vs. SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
100  
3.0  
2.5  
2.0  
V+ = 5V  
V- = -5V  
600IN AND OUT  
10  
1
1.5  
1.0  
0.1  
0.01  
0.5  
0
0
20k  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
1
2
3
4
5
6 7 8 9 10 11 12  
V+ (V)  
6
_______________________________________________________________________________________  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
both DC and AC symmetry are optimized with a small  
8-pin configuration that allows simple board layout and  
isolation of logic signals from analog signals.  
_____________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
P o w e r-S u p p ly Co n s id e ra t io n s  
Analog-Switch Input Terminal A.  
Connected to Y when IN is low; con-  
nected to X when IN is high.  
1
A
Overview  
The MAX4528s construction is typical of most CMOS  
analog switches. It has three supply pins: V+, V-, and  
GND. V+ and V- drive the internal CMOS switches and  
set the analog-voltage limits on any switch. Reverse  
ESD-p rote c tion d iod e s a re inte rna lly c onne c te d  
between each analog-signal pin and both V+ and V-.  
One of these diodes conducts if any analog signal  
exceeds V+ or V-.  
Analog-Switch Input Terminal B.  
Connected to X when IN is low; con-  
nected to Y when IN is high.  
2
3
B
Ground. Connect GND to digital  
ground. (Analog signals have no  
ground reference; they are limited to  
V+ and V-.)  
GND  
Virtually all of the analog leakage current is through the  
ESD diodes to V+ or V-. Although the ESD diodes on a  
given signal pin are identical and therefore fairly well  
balanced, they are reverse biased differently. Each is  
biased by either V+ or V- and the analog signal. This  
means their leakages vary as the signal varies. The dif-  
ference in the two diode leakages from the signal path  
to the V+ and V- pins constitutes the analog-signal-path  
leakage current. All analog leakage current flows to the  
supply terminals, not to the other switch terminal. This  
explains how both sides of a given switch can show  
leakage currents of either the same or opposite polarity.  
Logic-Level Control Inputs (see Truth  
Table)  
4
5
IN  
V-  
Negative Analog Supply-Voltage  
Input. Connect V- to GND for single-  
supply operation.  
6
7
Y
X
Analog-Switch Output Terminal Y  
Analog-Switch Output Terminal X  
Positive Analog/Digital Supply-Voltage  
Input. Internally connected to sub-  
strate.  
8
V+  
Note: Pins A, B, X, and Y are identical and interchangeable.  
Any may be considered as an input or output; signals pass  
equally well in either direction. However, AC symmetry is best  
when A and B are the inputs and X and Y are the outputs.  
Reduce AC balance in critical applications by using A and X or  
A and Y as the input, and B and X or B and Y as the output.  
The re is no c onne c tion b e twe e n the a na log -s ig na l  
paths and GND. The analog-signal paths consist of an  
N-channel and P-channel MOSFET with their sources  
and drains paralleled and their gates driven out-of-  
phase to V+ and V- by the logic-level translators.  
V+ and GND power the internal logic and logic-level  
translator and set the input logic threshold. The logic-  
level translator converts the logic levels to switched V+  
and V- signals to drive the analog switches’ gates. This  
drive signal is the only connection between GND and  
the analog supplies. V+ and V- have ESD-protection  
diodes to GND. The logic-level input has ESD protec-  
tion to V+ and V-, but not to GND, so the logic signal  
can go below GND (as low as V-) when bipolar sup-  
plies are used.  
_______________De t a ile d De s c rip t io n  
The MAX4528 is a phase-reversal analog switch consist-  
ing of two normally open and two normally closed CMOS  
analog switches arranged in a bridge configuration.  
Analog signals are put into two input pins and taken out  
of two output pins. A logic-level signal controls whether  
the input signal is routed through normally or inverted. A  
low-resistance DC path goes from inputs to outputs at all  
times, yet isolation between the two signal paths is excel-  
lent. Analog signals range from V- to V+.  
Increasing V- has no effect on the logic-level thresholds,  
but it does increase the drive to the internal P-channel  
switches, reducing overall switch on-resistance. V- also  
sets the negative limit of the analog-signal voltage.  
These parts are characterized and optimized with ±5V  
supplies, and can operate from a single supply.  
The logic-level input pin (IN) has ESD-protection diodes  
to V+ and V- but not to GND, so it can be safely driven  
The MAX4528 is designed for DC and low-frequency-  
signal phase-reversal applications, such as chopper  
amplifiers, modulator/demodulators, and self-zeroing or  
se lf-c a libra ting c irc uits. Unlike c onve ntiona l CMOS  
switches externally wired in a bridge configuration,  
to V+ and V-. The logic-level threshold (V ) is CMOS/  
IN  
TTL compatible when V+ is between 4.5V and 12V  
(see Typical Operating Characteristics).  
_______________________________________________________________________________________  
7
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
Bipolar Supplies  
Ba la n c e d Mo d u la t o r/De m o d u la t o r  
The MAX4528 can be used as a balanced modulator/  
d e mod ula tor a t c a rrie r fre q ue nc ie s up to 100kHz  
(Figure 2). Higher frequencies are possible, but as fre-  
quency increases, small imbalances in the MAX4528s  
internal capacitance and resistance gradually impair  
performance. Similarly, imbalances in external circuit  
capacitance and resistance to GND reduce overall car-  
rier suppression.  
The MAX4528 operates with bipolar supplies between  
±2.7V and ±6.0V. The V+ and V- supplies need not be  
symme tric a l, but the ir sum c a nnot e xc e e d the 13V  
a b s olute ma ximum ra ting (s e e Ab s olute Ma ximum  
Ratings).  
Single Supply  
The MAX4528 operates from a single +2.7V to +12V  
supply when V- is connected to GND. Observe all of  
the bipolar precautions when operating from a single  
supply.  
MAX4528  
The carrier is applied as a logic-level square wave to  
IN. (Note that this voltage can go as negative as V-.)  
For best carrier suppression, the power-supply volt-  
ages should be equal, the square wave should have a  
precise 50% duty cycle, and both the input and output  
signals should be symmetrical around ground. Bypass  
V+ and V- to GND with 0.1µF ceramic capacitors, as  
close to the IC pins as possible. In critical applications,  
carrier suppression can be optimized by trimming duty  
cycle, DC bias around GND, or external source and  
load capacitance.  
__________Ap p lic a t io n s In fo rm a t io n  
The MAX4528 is designed for DC and low-frequency-  
signal phase-reversal applications. Both DC and AC  
symmetry are optimized for use with ±5V supplies.  
S ig n a l P h a s e /P o la rit y Re ve rs a l  
The MAX4528 can reverse the phase or polarity of a  
pair of signals that are out-of-phase and balanced to  
ground. This is done by routing signals through the  
MAX4528 and, under control of IN, reversing the two  
signals paths inside the switch before sending out to a  
balanced output. Figure 1 shows a typical example.  
The MAX4528 cannot reverse the phase or polarity  
of a single grounded signal, as can be done with an  
inverting op amp or transformer.  
In signal lines, balancing both capacitance and resis-  
tance to GND produces the best carrier suppression.  
Tra ns forme r c oup ling of inp ut a nd outp ut s ig na ls  
provides the best isolation and carrier suppression.  
Transformers can also provide signal filtering, imped-  
a nc e ma tc hing , or low-nois e volta g e g a in. Us e a  
center-tapped transformer or high-resistance voltage  
divider to provide a DC path to GND on either the input  
or output signal. This ensures a DC path to GND and  
symmetrical operation of the internal switches.  
V+  
V+  
MAX4528  
MAX4528  
V+  
A
V+  
A
B
INPUTS  
INPUTS  
X
Y
X
Y
B
OUTPUTS  
OUTPUTS  
IN  
IN  
LOGIC LOW  
LOGIC HIGH  
V-  
V-  
GND  
GND  
V-  
V-  
TRUTH TABLE  
IN  
O
1
A
Y
X
B
X
Y
Figure 1. Typical Application Circuits  
_______________________________________________________________________________________  
8
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
TIME WAVEFORMS  
LOGIC  
(CARRIER)  
OUTPUT SPECTRUM  
A
LOWER  
SIDEBAND  
UPPER  
SIDEBAND  
MODULATOR/DEMODULATOR CIRCUIT  
SUPPRESSED CARRIER  
V+  
B
X
V+  
NPUT  
A
OUTPUT  
X
B
Y
AMPLITUDE  
IN  
GND V-  
LOGIC (CARRIER)  
MAX4528  
V-  
Y
FREQUENCY  
X-Y  
(OUTPUT)  
Figure 2. Balanced Modulator/Demodulator  
______________________________________________Te s t Circ u it s /Tim in g Dia g ra m s  
V+  
V+  
0V  
V
IN  
V+  
50%  
A
B
X
+3V  
-3V  
IN  
V
IN  
50  
MAX4528  
GND  
V
B
V
OUT  
90%  
V-  
V-  
300Ω  
35pF  
0V  
V
OUT  
90%  
V
A
t
t
TRANS  
TRANS  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 3. Address Transition Time  
_______________________________________________________________________________________  
9
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
t
t
< 5ns  
< 5ns  
F
V+  
V+  
R
V+  
0V  
V
IN  
50%  
V
IN  
MAX4528  
A
B
+3V  
IN  
50Ω  
MAX4528  
GND  
V
OUT  
90%  
X OR Y  
V-  
V
OUT  
300Ω  
35pF  
V-  
0V  
t
BBM  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 4. Break-Before-Make Interval  
V+  
V+  
0V  
B OR A  
A OR B  
N.C.  
V OR V  
V+  
V
IN  
A
B
MAX4528  
GND  
V
IN  
IN  
X OR Y  
V-  
V
OUT  
V
OUT  
V  
OUT  
50Ω  
C
L
1000pF  
V-  
V IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER  
OUT  
ERROR Q WHEN THE CHANNEL TURNS OFF.  
Q = V x C  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
OUT  
L
Figure 5. Charge Injection  
10 ______________________________________________________________________________________  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
MAX4528  
_________________________________Te s t Circ u it s /Tim in g Dia g ra m s (c o n t in u e d )  
V+  
V+  
A
B
V+  
MAX4528  
X
Y
1MHz  
CAPACITANCE  
ANALYZER  
IN  
SWITCH  
SELECT  
GND  
V-  
V-  
Figure 6. A, B, X, Y Capacitance  
V+  
V+  
10nF  
NETWORK  
ANALYZER  
V
V
OUT  
OFF ISOLATION = 20log  
V
IN  
IN  
A, B  
50Ω  
50Ω  
V
V
OUT  
V+  
ON LOSS = 20log  
MAX4528  
GND  
IN  
V
OUT  
MEAS.  
REF  
IN  
X, Y  
V-  
SWITCH  
SELECT  
50Ω  
50Ω  
10nF  
V-  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.  
OFF ISOLATION IS MEASURED BETWEEN A, B AND "OFF" X, Y TERMINAL.  
ON LOSS IS MEASURED BETWEEN A, B AND "ON" X, Y TERMINAL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 7. Off Isolation and On Loss  
______________________________________________________________________________________ 11  
Lo w -Vo lt a g e , P h a s e -Re ve rs a l  
An a lo g S w it c h  
____________________________________________________________Ch ip To p o g ra p h y  
TRANSISTOR COUNT: 141  
V+  
SUBSTRATE IS INTERNALLY CONNECTED TO V+  
X
A
MAX4528  
0. 054"  
(1. 37mm)  
B
Y
GND  
N
V-  
0. 038  
(0. 97mm)  
________________________________________________________P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4529

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529C/D

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529CPA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529CSA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529CUA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529CUA+

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX4529CUA+T

暂无描述
MAXIM

MAX4529CUA-T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX4529CUT+

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX4529CUT+T

Audio/Video Switch, 1 Func, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX4529CUT-T

Low-Voltage, Bidirectional RF/Video Switch
MAXIM

MAX4529EPA

Low-Voltage, Bidirectional RF/Video Switch
MAXIM