MAX4588CWI [MAXIM]

Low-Voltage, High-Isolation, Dual 4-Channel RF/Video Multiplexer; 低电压,高隔离,双路4通道射频/视频多路复用器
MAX4588CWI
型号: MAX4588CWI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage, High-Isolation, Dual 4-Channel RF/Video Multiplexer
低电压,高隔离,双路4通道射频/视频多路复用器

复用器 开关 复用器或开关 信号电路 射频 光电二极管
文件: 总20页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1425; Rev 0; 1/99  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX4588 low-voltage, dual 4-channel multiplexer  
is designed for RF and video signal processing at fre-  
quencies up to 180MHz in 50and 75systems. A  
flexible digital interface allows control of on-chip func-  
tions through either a parallel interface or an SPI™/  
MICROWIRE™ serial port.  
Low Insertion Loss: -2.5dB up to 100MHz  
High Off-Isolation: -74dB at 10MHz  
Low Crosstalk: -70dB up to 10MHz  
16MHz -0.1dB Signal Bandwidth  
180MHz -3dB Signal Bandwidth  
Each channel of the MAX4588 is designed using a T”  
switch configuration, ensuring excellent high-frequency  
off-isolation. The MAX4588 has low on-resistance of  
60max, with an on-resistance match across all chan-  
ne ls of 4ma x. Ad d itiona lly, on-re s is ta nc e is fla t  
across the specified signal range (2max). The off-  
60(max) On-Resistance with ±5V Supplies  
4(max) On-Resistance Matching with ±5V  
Supplies  
2(max) On-Resistance Flatness with ±5V  
leakage current is under 1nA at T = +25°C, and less  
A
Supplies  
than 10nA at T = +85°C.  
A
+2.7V to +12V Single Supply  
The MAX4588 operates from single +2.7V to +12V or  
dual ±2.7V to ±6V supplies. When operating with a +5V  
supply, the inputs maintain TTL- and CMOS-level com-  
patibility. The MAX4588 is available in 28-pin narrow  
DIP, wide SO, and space-saving SSOP packages.  
±2.7V to ±6V Dual Supplies  
Low Power Consumption: <20µW  
Rail-to-Rail®, Bidirectional Signal Handling  
Parallel or SPI/MICROWIRE-Compatible Serial  
Ap p lic a t io n s  
Interface  
RF Switching  
Automatic Test Equipment  
>±2kV ESD Protection per Method 3015.7  
Video Signal Routing  
High-Speed Data Acquisition  
Networking  
TTL/CMOS-Compatible Inputs with V = +5V  
L
P in Co n fig u ra t io n  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 SSOP  
TOP VIEW  
MAX4588CAI  
MAX4588CWI  
MAX4588CPI  
MAX4588EAI  
MAX4588EWI  
MAX4588EPI  
GND  
COM1  
V+  
1
2
3
4
5
6
7
8
9
28 COM2  
MAX4588  
28 Wide SO  
27 V-  
28 Narrow Plastic DIP  
28 SSOP  
26 NO5  
25 GND  
24 NO6  
23 GND  
22 NO7  
21 GND  
20 NO8  
NO1  
28 Wide SO  
GND  
NO2  
28 Narrow Plastic DIP  
GND  
NO3  
GND  
NO4 10  
4/8 11  
19 V  
L
18 SER/PAR  
17 EN  
RS 12  
CONTROL  
LOGIC  
LE/CS 13  
A2/SCLK 14  
16 A0/DOUT  
15 A1/DIN  
SPI is a trademark of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
SSOP/SO/DIP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND)  
ESD per Method 3015.7.......................................................±2kV  
V+ ........................................................................-0.3V to +13.0V  
Continuous Power Dissipation (T = +70°C)  
A
V .......................-0.3V to (V+ + 0.3V) or 7V (whichever is lower)  
V- ........................................................................-13.0V to +0.3V  
V+ to V-................................................................-0.3V to +13.0V  
SSOP (derate 9.52mW/°C above +70°C) ....................762mW  
Wide SO (derate 12.50mW/°C above +70°C)................1.00W  
Plastic DIP (derate 14.29mW/°C above +70°C) ............1.14W  
Operating Temperature Ranges  
L
V
, V  
(Note 1) ..........................(V- - 0.3V) to (V+ + 0.3V)  
NO_ COM_  
MAX4588C_ I ......................................................0°C to +70°C  
MAX4588E_ I ...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
4/8, RS, LE/CS, A2/SCLK, A1/DIN,  
A0/DOUT, EN, SER/PAR to GND ...............-0.3V to (V+ + 0.3V)  
Continuous Current into Any Terminal..............................±20mA  
Peak Current into Any Terminal  
MAX458  
(pulsed at 1ms, 10% duty cycle)..................................±40mA  
Note 1: Voltages on these pins exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current  
rating.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Dual Supplies  
(V+ = V = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= +2.4V, V  
= +0.8V, T = T  
to T , unless otherwise noted. Typical val-  
MAX  
L
INH  
INL  
A
MIN  
ues are at T = +25°C, V+ = V = +5V, V- = -5V.) (Note 2)  
A
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
MIN  
TYP  
MAX  
UNITS  
A
ANALOGSWITCH  
Analog Signal Range  
(Note 3)  
V
V
,
COM_  
V-  
V+  
V
NO  
+25°C  
C, E  
40  
1
60  
75  
4
V+ = 5V, V- = -5V, V  
= ±2V,  
NO_  
On-Resistance  
R
ON  
I
= 4mA  
COM_  
+25°C  
C, E  
On-Resistance Match Between  
Channels (Note 4)  
V+ = 5V, V- = 5V, V  
= ±2V,  
NO_  
R  
ON  
I
= 4mA  
COM_  
5
+25°C  
C, E  
0.5  
2.5  
3
On-Resistance Flatness  
(Note 5)  
V+ = 5V; V- = -5V; V  
= 1V, 0, -1V;  
NO_  
R
FLAT(ON)  
I
= 1mA  
COM_  
+25°C  
C, E  
-1  
-10  
-2  
0.01  
0.01  
0.01  
1
NO_ Off-Leakage Current  
(Note 6)  
V+ = 5.5V, V- = -5.5V,  
= ±4.5V, V  
I
nA  
nA  
nA  
NO_(OFF)  
V
COM_  
=
=
4.5V  
4.5V  
NO_  
+
10  
2
+25°C  
C, E  
COM_ Off-Leakage Current  
(Note 6)  
V+ = 5.5V, V- = -5.5V,  
= ±4.5V, V  
I
COM_(OFF)  
V
COM_  
NO_  
+
-20  
-2  
20  
2
+25°C  
C, E  
COM_ On-Leakage Current  
(Note 6)  
V+ = 5.5V, V- = -5.5V, V  
= ±4.5V,  
COM_  
I
COM_(ON)  
V
NO_  
= ±4.5V or floating  
-20  
20  
LOGIC INPUTS (4/8, RS, LE/CS, A2/SCLK, A1/DIN, A0/DOUT, EN, SER/PAR)  
Input Logic Threshold High  
Input Logic Threshold Low  
Input Threshold Hysteresis  
Input Current  
V
C, E  
C, E  
2.4  
-1  
1.7  
1.5  
V
V
INH  
V
INL  
0.8  
1
0.2  
V
I
V
IN_  
= 0 or V  
L
C, E  
0.03  
µA  
IN  
LOGIC OUTPUT(SERIAL INTERFACE)  
DOUT Logic Low Output  
DOUT Logic High Output  
V
I
= 3.2mA  
C, E  
C, E  
0.4  
V
V
OL  
SINK  
V
OH  
I
= -1mA  
V - 1  
L
SOURCE  
2
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)  
(V+ = V = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= +2.4V, V  
= +0.8V, T = T  
to T  
, unless otherwise noted. Typical val-  
L
INH  
INL  
A
MIN  
MAX  
ues are at T = +25°C, V+ = V = +5V, V- = -5V.) (Note 2)  
A
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
MIN  
TYP  
380  
150  
MAX  
UNITS  
A
SWITCHDYNAMICCHARACTERISTICS  
+25°C  
C, E  
550  
600  
300  
350  
V
= 3V, V+ = 4.5V, V- = -4.5V,  
NO_  
Turn-On Time  
Turn-Off Time  
t
ns  
ns  
ON  
Figure 1  
+25°C  
C, E  
V
= 3V, V+ = 4.5V, V- = -4.5V,  
NO_  
t
OFF  
Figure 1  
Break-Before-Make Time Delay  
(Note 3)  
V
NO_  
Figure 2  
= ±3V, V+ = 5.5V, V- = -5.5V,  
t
C, E  
10  
180  
15  
ns  
BBM  
Q
C
= 1.0nF, V  
= 0, R = 0,  
S
L
NO_  
Charge Injection  
+25°C  
pC  
Figure 3  
NO_ Off-Capacitance  
COM_ Off-Capacitance  
COM_ On-Capacitance  
C
V
= 0, f = 1MHz, Figure 4  
+25°C  
+25°C  
+25°C  
2
4
7
pF  
pF  
pF  
NO_(OFF)  
NO_  
IN  
C
C
V
= 0, f = 1MHz, Figure 4  
COM_(OFF)  
COM_(ON)  
COM_ IN  
V
COM_  
= 0, f = 1MHz, Figure 4  
IN  
V
= 1V  
, f = 10MHz,  
NO_  
RMS  
Off-Isolation (Note 7)  
Channel-to-Channel Crosstalk  
-3dB Bandwidth  
V
+25°C  
+25°C  
+25°C  
-74  
dB  
dB  
ISO  
all channels off, Figure 5  
V
V
NO_  
= 1V  
RMS  
, f = 10MHz, Figure 5  
4-channel mode  
8-channel mode  
4-channel mode  
8-channel mode  
-70  
180  
140  
16  
CT  
BW  
BW  
Figure 5  
Figure 5  
MHz  
-0.1dB Bandwidth  
+25°C  
MHz  
11  
PARALLEL-INTERFACETIMING  
A_, EN to LE Rise Setup Time  
A_, EN to LE Rise Hold Time  
LE Low Pulse Width  
t
Figure 6  
Figure 6  
Figure 6  
Figure 6  
C, E  
C, E  
C, E  
C, E  
80  
0
ns  
ns  
ns  
ns  
DS  
t
DH  
t
L
80  
80  
t
RS Low Pulse Width  
RS  
SERIAL-INTERFACETIMING
Operating Frequency  
f
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
6.25  
MHz  
ns  
CLK  
SCLK Pulse Width High  
t
80  
80  
60  
0
CH  
SCLK Pulse Width Low  
t
ns  
CL  
DS  
DH  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to DOUT Valid  
CS Rise to SCLK Rise Hold Time  
t
ns  
t
ns  
t
t
50  
ns  
CSS0  
t
C
= 50pF, Figure 7  
L
150  
ns  
DO  
Figure 7  
0
ns  
CSH1  
CS Rise to SCLK Rise Setup  
Time  
t
Figure 7  
C, E  
80  
ns  
CSS1  
t
Figure 7  
Figure 6  
C, E  
C, E  
80  
80  
ns  
ns  
CS Fall to SCLK Rise Hold Time  
RS Low Pulse Width  
CSS1  
t
RS  
_______________________________________________________________________________________  
3
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)  
(V+ = V = +4.5V to +5.5V, V- = -4.5V to -5.5V, V  
= +2.4V, V  
= +0.8V, T = T  
to T  
, unless otherwise noted. Typical val-  
L
INH  
INL  
A
MIN  
MAX  
ues are at T = +25°C, V+ = V = +5V, V- = -5V.) (Note 2)  
A
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNITS  
POWERSUPPLY  
V+, V-  
±2.7  
2.7  
-1  
±6  
V+  
1
Power-Supply Range  
V+ Supply Current  
V - Supply Current  
V
V
L
+25°C  
C, E  
0.0001  
0.0001  
2
MAX458  
I+  
I-  
V+ = 5.5V, V- = -5.5V  
µA  
-10  
-1  
10  
1
+25°C  
C, E  
V+ = 5.5V, V- = -5.5V  
µA  
µA  
-10  
-10  
10  
10  
V Supply Current  
L
I
L
V = 5.5V, all V = 0 or V  
L
C, E  
L
IN_  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V+ = V = +4.5V to +5.5V, V- = 0, V  
= +2.4V, V  
= +0.8V, T = T  
to T  
, unless otherwise noted. Typical values are at T  
L
INH  
INL  
A
MIN  
MAX A  
= +25°C, V+ = V = +5V.) (Note 2)  
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
MIN  
TYP  
MAX  
UNITS  
A
ANALOGSWITCH  
V
V
,
COM_  
Analog Signal Range (Note 3)  
On-Resistance  
0
V+  
V
NO_  
+25°C  
C, E  
80  
1
120  
150  
8
R
V+ = 5V, V  
= 3V, I  
= 3V, I  
= 4mA  
= 4mA  
ON  
NO_  
COM_  
+25°C  
C, E  
On-Resistance Match Between  
Channels (Note 4)  
R  
V+ = 5V, V  
ON  
NO_  
COM_  
10  
10  
12  
1
= 4mA,  
COM_  
+25°C  
C, E  
4
On-Resistance Flatness  
(Note 5)  
V+ = 5V, I  
R
FLAT(ON)  
V
= 2V, 3V, 4V  
NO_  
+25°C  
C, E  
-1  
-10  
-2  
0.005  
0.005  
0.005  
NO_ Off Leakage Current  
(Notes 6, 9)  
V+ = 5.5V; V  
= 4.5V, 1V;  
COM_  
COM_  
COM_  
I
nA  
nA  
nA  
NO_(OFF)  
V
NO_  
= 1V, 4.5V  
10  
2
+25°C  
C, E  
COM_ Off Leakage Current  
(Notes 6, 9)  
V+ = 5.5V; V  
= 4.5V, 1V;  
= 4.5V, 1V;  
I
COM(OFF)  
V
NO_  
= 1V, 4.5V  
-20  
-2  
20  
2
+25°C  
C, E  
COM_ On Leakage Current  
(Notes 6, 9)  
V+ = 5.5V; V  
I
COM_(ON)  
V
NO_  
= 4.5V, 1V, or floating  
-20  
20  
LOGIC INPUTS (4/8, RS, LE/CS, A2/SCLK, A1/DIN, A0/DOUT, EN, SER/PAR)  
Input Logic Threshold High  
Input Logic Threshold Low  
Input Threshold Hysteresis  
Input Current  
V
C, E  
C, E  
2.4  
-1  
1.7  
1.5  
0.2  
V
V
INH  
V
INL  
0.8  
1
V
I
V
IN  
= 0 or V  
L
C, E  
µA  
IN  
LOGICOUTPUT(SERIAL INTERFACE)  
DOUT Logic Low Output  
DOUT Logic High Output  
V
I
= 3.2mA  
C, E  
C, E  
0.4  
V
V
OL  
SINK  
V
OH  
I
= -1mA  
V - 1  
L
SOURCE  
4
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)  
(V+ = V = +4.5V to +5.5V, V- = 0, V  
= +2.4V, V  
= +0.8V, T = T  
to T , unless otherwise noted. Typical values are at T  
MAX A  
L
INH  
INL  
A
MIN  
= +25°C, V+ = V = +5V.) (Note 2)  
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
MIN  
TYP  
550  
150  
MAX  
UNITS  
A
SWITCHDYNAMICCHARACTERISTICS  
+25°C  
C, E  
800  
900  
300  
350  
Turn-On Time  
Turn-Off Time  
t
V
= 3V, V+ = 4.5V, Figure 1  
= 3V, V+ = 4.5V, Figure 1  
= 3V, V+ = 5.5V, Figure 2  
NO_  
ns  
ns  
ON  
NO_  
+25°C  
C, E  
t
V
NO_  
OFF  
Break-Before-Make Time Delay  
(Note 3)  
t
V
C, E  
10  
200  
5
ns  
BBM  
Q
C
= 1.0nF, V = 2.5V, R = 0,  
NO_ S  
L
Charge Injection  
+25°C  
pC  
Figure 3  
V
= 1V  
, f = 10MHz,  
RMS  
NO_  
Off-Isolation  
V
+25°C  
+25°C  
+25°C  
-65  
dB  
dB  
ISO  
all channels off, Figure 5  
Channel-to-Channel Crosstalk  
-3dB Bandwidth  
V
V
NO_  
= 1V  
RMS  
, f = 10MHz, Figure 5  
4-channel mode  
8-channel mode  
4-channel mode  
8-channel mode  
-70  
100  
75  
10  
7
CT  
BW  
BW  
Figure 5  
Figure 5  
MHz  
-0.1dB Bandwidth  
+25°C  
MHz  
PARALLEL-INTERFACETIMING  
A_, EN to LE Rise Setup Time  
A_, EN to LE Rise Hold Time  
LE Low Pulse Width  
t
Figure 6  
Figure 6  
Figure 6  
Figure 6  
C, E  
C, E  
C, E  
C, E  
80  
0
ns  
ns  
ns  
ns  
DS  
t
DH  
t
L
80  
80  
t
RS Low Pulse Width  
RS  
SERIAL-INTERFACETIMING
Operating Frequency  
f
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
6.25  
MHz  
ns  
CLK  
SCLK Pulse Width High  
t
80  
80  
60  
0
CH  
SCLK Pulse Width Low  
t
ns  
CL  
DS  
DH  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
CS Fall to SCLK Rise Hold Time  
t
ns  
t
ns  
t
t
50  
80  
ns  
CSS0  
CSS1  
ns  
t
Figure 7  
Figure 7  
C, E  
C, E  
0
ns  
ns  
CS Rise to SCLK Rise Hold Time  
CSH1  
CS Rise to SCLK Rise Setup  
Time  
t
80  
CSS1  
SCLK Rise to DOUT Valid  
t
C
= 50pF, Figure 7  
L
C, E  
C, E  
150  
ns  
ns  
DO  
t
Figure 6  
80  
RS Low Pulse Width  
RS  
_______________________________________________________________________________________  
5
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)  
(V+ = V = +4.5V to +5.5V, V- = 0, V  
= +2.4V, V  
= +0.8V, T = T  
to T , unless otherwise noted. Typical values are at T  
MAX A  
L
INH  
INL  
A
MIN  
= +25°C, V+ = V = +5V.) (Note 2)  
L
PARAMETER  
SYMBOL  
V+  
CONDITIONS  
T
MIN  
TYP  
MAX  
UNITS  
A
POWERSUPPLY  
2.7  
2.7  
2.7  
-1  
12  
V+  
6.5  
1
Power-Supply Range  
V+ 6.5V  
V
V
L
V+ > 6.5V  
MAX458  
+25°C  
C, E  
V+ Supply Current  
I+  
V+ = 5.5V, V = 0 or V  
µA  
µA  
L
IN  
-10  
-10  
10  
10  
V Supply Current  
I
L
V = 5.5V, all V = 0 or V  
L
C, E  
2
L
L
IN_  
ELECTRICAL CHARACTERISTICS—Single +3V Supply  
(V+ = V = +2.7V to +3.6V, V- = 0, V  
= +2V, V  
= +0.5V, T = T  
to T , unless otherwise noted. Typical values are at T =  
MAX A  
L
INH  
INL  
A
MIN  
+25°C, V+ = V = +3.0V.)  
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNITS  
ANALOGSWITCH  
V
V
,
COM_  
Analog Signal Range  
On-Resistance  
0
V+  
V
NO_  
+25°C  
C, E  
240  
350  
450  
V+ = 2.7V, V  
= 1V,  
NO_  
R
ON  
I
= 1mA  
COM_  
LOGIC INPUTS (4/8, RS, LE/CS, A2/SCLK, A1/DIN, A0/DOUT, EN, SER/PAR)  
Input Logic Threshold High  
Input Logic Threshold Low  
Input Current  
V
C, E  
C, E  
C, E  
2.0  
-1  
V
V
INH  
V
INL  
0.5  
1
I
V
IN_  
= 0 or V  
µA  
L
IN  
SWITCHDYNAMICCHARACTERISTICS  
+25°C  
C, E  
700  
250  
1000  
200  
400  
500  
Turn-On Time  
Turn-Off Time  
t
V
= 1.5V, V+ = 2.7V, Figure 1  
= 1.5V, V+ = 2.7V, Figure 1  
= 1.5V, V+ = 3.6V, Figure 2  
NO_  
ns  
ns  
ns  
ON  
NO_  
+25°C  
C, E  
t
V
NO_  
OFF  
Break-Before-Make Time Delay  
(Note 3)  
t
V
+25°C  
10  
350  
BBM  
PARALLEL-INTERFACETIMING  
A_, EN to LE Rise Setup Time  
A_, EN to LE Rise Hold Time  
LE Low Pulse Width  
t
Figure 6  
Figure 6  
Figure 6  
Figure 6  
C, E  
C, E  
C, E  
C, E  
200  
0
ns  
ns  
ns  
ns  
DS  
t
DH  
t
200  
200  
L
t
RS Low Pulse Width  
RS  
SERIAL-INTERFACETIMING
Operating Frequency  
f
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 6  
C, E  
C, E  
C, E  
C, E  
C, E  
C, E  
2.1  
MHz  
ns  
CLK  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
200  
200  
100  
0
CH  
t
ns  
CL  
DS  
DH  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
RS Low Pulse Width  
t
ns  
t
ns  
t
200  
ns  
RS  
6
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)  
(V+ = V = +2.7V to +3.6V, V- = 0, V  
= +2V, V  
= +0.5V, T = T  
to T , unless otherwise noted. Typical values are at T =  
MAX A  
L
INH  
INL  
A
MIN  
+25°C, V+ = V = +3.0V.)  
L
PARAMETER  
SYMBOL  
CONDITIONS  
T
MIN  
100  
0
TYP  
MAX  
UNITS  
ns  
A
t
Figure 7  
Figure 7  
C, E  
C, E  
CS Fall to SCLK Rise Setup Time  
CS Rise to SCLK Rise Hold Time  
CSS0  
t
ns  
CSH1  
CS Rise to SCLK Rise Setup  
Time  
t
t
Figure 7  
C, E  
200  
200  
ns  
CSS1  
Figure 7  
C, E  
C, E  
ns  
ns  
CS Fall to SCLK Rise Hold Time  
SCLK Rise to DOUT Valid  
POWERSUPPLY  
CSS1  
t
C
= 50pF, Figure 7  
L
250  
DO  
I+  
+25°C  
C, E  
-1  
1
V+ Supply Current  
V+ = 3.6V, V = 0 or V  
µA  
µA  
L
IN  
-10  
-10  
10  
10  
V Supply Current  
L
I
L
V = 3.6V, all V = 0 or V  
L L  
C, E  
1
IN  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: Guaranteed by design.  
Note 4: R  
= R  
- R  
.
ON(MIN)  
ON  
ON(MAX)  
Note 5: Resistance flatness is defined as the difference between the maximum and the minimum value of on-resistance as  
measured over the specified analog-signal range.  
Note 6: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at T = +25°C.  
A
Note 7: Off isolation = 20log [V  
/ (V  
or V  
)], V  
= output, V  
or V  
= input to off switch.  
10 COM_  
NC_  
NO_  
COM_  
NC_  
NO_  
Note 8: Between any two switches.  
Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.  
_______________________________________________________________________________________  
7
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = V = +5V, V- = -5V, T = +25°C, unless otherwise noted.)  
L
A
ON-RESISTANCE vs. V  
ON-RESISTANCE vs. V  
COM  
COM  
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
250  
200  
V- = 0  
V+ = +2.5V  
±2.5V  
±3V  
MAX458  
150  
100  
50  
V+ = +3.0V  
V+ = +3.6V  
±4V  
±5V  
V+ = +5V  
±6V  
V+ = +9V  
V+ = +12V  
10 12  
0
0
2
4
6
8
-6  
-4  
-2  
0
2
4
6
V
COM  
(V)  
V
COM  
(V)  
ON-RESISTANCE vs. V  
ON-RESISTANCE vs. V  
COM  
COM  
AND TEMPERATURE (DUAL SUPPLIES)  
AND TEMPERATURE (SINGLE SUPPLY)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
140  
130  
120  
110  
100  
90  
V- = 0  
T = +85°C  
A
T = +85°C  
A
T = +50°C  
A
T = +50°C  
A
T = +25°C  
A
T = +25°C  
A
80  
T = 0°C  
A
T = 0°C  
A
70  
T = -40°C  
A
60  
T = -40°C  
A
50  
40  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V
COM  
(V)  
V
COM  
(V)  
ON/OFF-LEAKAGE CURRENT  
vs. TEMPERATURE  
CHARGE INJECTION vs. V  
COM  
35  
30  
25  
20  
15  
10  
5
10n  
1n  
DUAL SUPPLIES  
100p  
10p  
1p  
ON-LEAKAGE  
OFF-LEAKAGE  
SINGLE SUPPLY  
0
0.1p  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
V
(V)  
COM  
8
_______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = V = +5V, V- = -5V, T = +25°C, unless otherwise noted.)  
L
A
ON/OFF TIME vs. TEMPERATURE  
ON/OFF TIME vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
500  
400  
300  
200  
10µ  
1µ  
600  
500  
400  
300  
200  
100  
0
I
L
t
ON  
100n  
10n  
1n  
t
ON  
t
OFF  
t
OFF  
100p  
10p  
1p  
I+  
100  
0
I-  
-40-30 -20 -10 0 10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (±V)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INSERTION LOSS, OFF-ISOLATION,  
AND CROSSTALK vs. FREQUENCY  
(DUAL SUPPLIES)  
INSERTION LOSS, OFF-ISOLATION,  
AND CROSSTALK vs. FREQUENCY  
(SINGLE SUPPLY)  
10  
0
10  
0
ON LOSS  
INSERTION LOSS  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R = 75Ω  
R = 600Ω  
L
R = 75Ω  
R = 600Ω  
L
S
S
CROSSTALK  
OFF-ISOLATION  
CROSSTALK  
1M  
OFF-ISOLATION  
100k  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
_______________________________________________________________________________________  
9
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1, 5, 7,  
9, 21,  
GND  
Ground. Connect all ground pins to a ground plane. See Grounding section.  
23, 25  
2
3
COM1  
V+  
Analog Switch Common Terminal. See Truth Table.  
Analog Positive Supply Voltage Input  
MAX458  
4
NO1  
NO2  
NO3  
NO4  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
6
8
10  
Multiplexer Configuration Control. Connect to V to select dual 2-channel mode. Connect to GND for single  
L
4-channel multiplexer operation. See Truth Tables.  
11  
12  
4/8  
Active-Low Reset Input. In serial mode, drive RS low to force the latches and shift registers to the power-  
on reset state and force all switches open. In parallel mode, drive RS low to force the latches to the power-  
on reset state and force all switches open. See Truth Tables.  
RS  
In parallel mode, this pin is the transparent Latch Enable. In the serial mode, this pin is the Chip-Select  
Input. See Truth Tables.  
13  
14  
15  
LE/CS  
A2/SCLK  
A1/DIN  
Most Significant Address Bit in parallel mode with 4/8 low. If 4/8 pin is high, this pin is ignored. In the serial  
mode, this is the Serial Shift Clock Input. Data is loaded on the rising edge of SCLK. See Truth Tables.  
Address Input in the parallel mode. Serial Data Input in serial mode. In serial mode, data is loaded on  
SCLK’s rising edge.  
Least Significant Address Input in the parallel mode. In the serial mode this is an output from the internal  
4-bit shift register. DOUT is intended for daisy-chain cascading. DOUT is not three-stated by CS. See  
Serial Operation.  
16  
A0/DOUT  
Switch Enable. Drive EN low to force all channels off. Drive high to allow normal multiplexer operation.  
Operates asynchronously in serial mode. In parallel mode, EN is latched when LE signal is high.  
17  
18  
19  
EN  
Interface Select Input. Drive low for parallel data interface operation. Drive high for serial data interface  
operation and to enable the DOUT driver.  
SER/PAR  
Logic Supply Input. Powers the DOUT driver and other digital circuitry. V sets both the digital input and  
L
output logic levels.  
V
L
20  
22  
24  
26  
27  
28  
NO8  
NO7  
NO6  
NO5  
V-  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
Normally Open Analog Input Terminal. See Truth Tables.  
Analog Negative Supply Voltage Input. Connect to ground plane for single-supply operation.  
Analog Switch Common Terminal. See Truth Tables.  
COM2  
10 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
V+  
V+  
EN  
LE/CS  
EN  
NO_  
50%  
V
50%  
NO_  
MAX4588  
90%  
90%  
COM_  
GND  
V
OUT  
V
OUT  
30pF  
300  
V-  
V-  
t
t
ON  
OFF  
Figure 1. Turn-On/Turn-Off Time  
V+  
V+  
NO_  
NO_  
A0  
LE/CS  
SER/PAR  
V
NO_  
V
OUT  
MAX4588  
90%  
A0  
COM_  
GND  
V
OUT  
30pF  
300Ω  
GND  
V-  
V-  
t
BBM  
Figure 2. Break-Before-Make Time Delay  
V+  
V+  
NO_  
V
NO_  
LE/CS  
1nF  
10µF  
EN  
SER/PAR  
MAX4588  
EN  
COM_  
GND  
V
OUT  
V
OUT  
V  
OUT  
C
L
Q = V · C  
OUT  
L
V-  
V-  
V IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER  
OUT  
ERROR Q WHEN THE CHANNEL TURNS OFF.  
Figure 3. Charge Injection  
______________________________________________________________________________________ 11  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
V+  
FLOATING  
V+  
NO_  
NO_  
1MHz  
CAPACITANCE  
ANALYZER  
MAX4588  
MAX4588  
FLOATING  
COM_  
GND  
COM_  
GND  
1MHz  
CAPACITANCE  
ANALYZER  
MAX458  
V-  
V-  
Figure 4. NO_, COM_ Capacitance  
V+  
V+  
NO_  
50Ω  
+
-
49.9Ω  
56Ω  
MAX4588  
NO_  
MEASURE  
NODE  
24.9Ω  
560Ω  
50Ω  
COM_  
MEASURE  
NODE  
V-  
V-  
50Ω  
ALL SIGNALS NORMALIZED TO V  
= 0dB.  
COM  
Figure 5. Off-Isolation, Crosstalk, and Bandwidth  
t
L
LE  
t
DS  
t
DH  
MAX4588  
A0, A1, A2, EN  
RS  
t
RS  
NOTE: ALL INPUT SIGNALS ARE SPECIFIED WITH t AND t <10ns. TIMING IS MEASURED FROM 50% OF DIGITAL SIGNAL.  
R
F
Figure 6. Parallel Timing Diagram  
12 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
CS  
t
t
CH  
t
CL  
t
CSH  
CSS  
MAX4588  
SCLK  
DIN  
t
DS  
t
DH  
A0  
A2  
DISABLE  
A1  
t
DO  
DOUT  
NOTE: ALL INPUT SIGNALS ARE SPECIFIED WITH t AND t < 10ns.  
R
F
TIMING IS MEASURED FROM 50% OF DIGITAL SIGNAL.  
Figure 7. Serial Timing Diagram  
De t a ile d De s c rip t io n  
NORMALLY OPEN SWITCH CONSTRUCTION  
N1  
Lo g ic -Le ve l Tra n s la t o rs  
The MAX4588 is constructed of high-frequency T”  
switches, as shown in Figure 8. The logic-level inputs  
are translated by amplifier A1 into a V+ to V- logic sig-  
nal that drives amplifier A2. Amplifier A2 drives the  
gates of N-channel MOSFETs N1 and N2 from V+ to V-,  
turning them fully on or off. The same signal drives  
inverter A3 (which drives the P-channel MOSFETs P1  
and P2, turning them fully on or off) from V+ to V-, and  
turns the N-channel MOSFET N3 on and off. The logic-  
N2  
COM_  
NO_  
P1  
P2  
V+  
V
CC  
A1  
A2  
A3  
INPUT  
N3  
level threshold is determined by V and GND.  
L
GND  
V-  
S w it c h On Co n d it io n  
V+  
V+  
When the switch is on, MOSFETs N1, N2, P1, and P2  
are on and MOSFET N3 is off (Figure 8). The signal  
path is COM_ to NO_, and because both N-channel  
and P-channel MOSFETs act as pure resistances, it is  
symmetrical (i.e., signals may pass in either direction).  
The off MOSFET, N3, has no DC conduction, but has a  
s ma ll a mount of c a p a c ita nc e to GND. The four on  
MOSFETs a ls o ha ve c a p a c ita nc e to g round tha t,  
together with the series resistance, forms a lowpass fil-  
ter. All of these capacitances are distributed evenly  
along the series resistance, so they act as a transmis-  
sion line rather than a simple R-C filter. The MAX4588s  
construction allows an exceptional 180MHz bandwidth  
when the switches are on.  
ESD DIODES  
ON GND, NO_,  
AND COM_  
Figure 8. T-Switch Construction  
Typical attenuation in 75systems is 2.5dB and is rea-  
sonably flat up to 50MHz. Higher-impedance circuits  
s how e ve n lowe r a tte nua tion (a nd vic e ve rs a ), b ut  
slightly lower bandwidth due to the increased effect of  
the internal and external capacitance and the switchs  
internal resistance.  
______________________________________________________________________________________ 13  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
The MAX4588 is optimized for ±5V operation. Using  
lower supply voltages or a single supply increases  
switching time, on-resistance (and therefore on-state  
attenuation), and nonlinearity.  
analog switches. This drive signal is the only connec-  
tion between the logic supplies and the analog sup -  
plies.  
Bipolar-Supply Operation  
The MAX4588 operates with bipolar supplies between  
±2.7V and ±6V. The V+ and V- supplies are not required  
to be symmetrical, but their sum cannot exceed the  
absolute maximum rating of 13.0V. Do not connect the  
MAX4588 V+ pin to +3V and connect the logic-level  
input pins to +5V logic-level signals. This level  
exceeds the absolute maximum ratings, and may  
cause damage to the part and/or external circuits.  
S w it c h Off Co n d it io n  
When the switch is off, MOSFETs N1, N2, P1, and P2  
are off and MOSFET N3 is on (Figure 8). The signal  
path is through the parasitic off-capacitances of the  
series MOSFETs, but it is shunted to ground by N3.  
This forms a highpass filter whose exact characteristics  
are dependent on the source and load impedances. In  
75systems, and below 10MHz, the attenuation can  
exceed 80dB. This value decreases with increasing fre-  
quency and increasing circuit impedances. External  
capacitance and board layout have a major role in  
determining overall performance.  
MAX458  
CAUTION: The absolute maximum V+ to V- differen-  
tial voltage is 13.0V. Typical “±6-Volt” or “12-Volt”  
supplies with ±10% tolerances can be as high as  
13.2V. This voltage can damage the MAX4588. Even  
±5% tolerance supplies may have overshoot or  
noise spikes that exceed 13.0V.  
Ap p lic a t io n s In fo rm a t io n  
P o w e r-S u p p ly Co n s id e ra t io n s  
Single-Supply Operation  
The MAX4588 operates from a single supply between  
+ 2.7V a nd + 12V whe n V- is c onne c te d to GND.  
Observe all of the precautions listed in the Bipolar-  
Supply Operation section. Note, however, that these  
parts are optimized for ±5V operation, and AC and DC  
characteristics are degraded significantly when operat-  
ing at less than ±5V. As the overall supply voltage (V+  
to V-) is reduced, switching speed, on-resistance, off-  
isolation, and distortion are degraded (see Typical  
Operating Characteristics).  
Overview  
The MAX4588 construction is typical of many CMOS  
analog switches. It has four supply pins: V+, V-, V , and  
L
GND. V+ and V- are used to drive the internal CMOS  
switches and set the limits of the analog voltage on any  
switch. Reverse ESD-protection diodes are internally  
connected between each analog signal pin and both  
V+ and V-. If the voltage on any pin exceeds V+ or V-,  
one of these diodes will conduct. During normal opera-  
tion these reverse-biased ESD diodes leak, forming the  
only current drawn from V- and V+.  
Single-supply operation also limits signal levels and  
interferes with grounded signals. When V- = 0, AC sig-  
nals are limited to -0.3V. Voltages below -0.3V can be  
clipped by the internal ESD-protection diodes, and the  
parts can be damaged if excessive current flows.  
Virtually all the analog leakage current is through the  
ESD diodes. Although the ESD diodes on a given sig-  
nal pin are identical, and therefore fairly well balanced,  
they are reverse-biased differently. Each is biased by  
either V+ or V- and the analog signal. This means their  
leakages vary as the signal varies. The difference in the  
two diode leakages from the signal path to the V+ and  
V- pins constitutes the analog signal-path leakage cur-  
rent. All analog leakage current flows to the supply ter-  
minals, not to the other switch terminal. This explains  
how both sides of a given switch can show leakage  
currents of either the same or opposite polarity.  
Power Off  
When power to the MAX4588 is off (i.e., V+ = 0 and V-  
= 0), the Absolute Maximum Ratings still apply. This  
means that none of the MAX4588 pins can exceed  
±0.3V. Voltages beyond ±0.3V cause the internal ESD-  
protection diodes to conduct, with potentially cata -  
strophic consequences.  
The re is no c onne c tion b e twe e n the a na log s ig na l  
paths and GND. The analog signal paths consist of an  
N-channel and P-channel MOSFET with their sources  
and drains paralleled and their gates driven out of  
phase with V+ and V- by the logic-level translators.  
Power-Supply Sequencing  
Whe n a p p lying p owe r to the MAX4588, follow this  
se que nc e : V+, V- (if bia se d to p ote ntia l othe r tha n  
ground), V , then logic inputs. Apply signals on the  
L
analog NO_ and COM_ pins any time after V+, V-, and  
GND voltages are set. Turning on all pins simultaneous-  
ly is acceptable only if the circuit design guarantees  
concurrent power-up.  
V and GND power the internal logic and logic-level  
L
translators, and set the input logic thresholds. The  
log ic -le ve l tra ns la tors c onve rt the log ic le ve ls to  
switched V+ and V- signals to drive the gates of the  
14 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
The p owe r-d own s e q ue nc e is the op p os ite of the  
turability requirements. Again, do not use the through-  
hole pads as the current path for any other components.  
power-up sequence. That is, the V and logic inputs  
L
must go to zero potential before (or simultaneously  
with) the V- then V+ supplies. The Absolute Maximum  
Ratings must always be observed in order to ensure  
proper operation.  
Bypass all V+ and V- pins to the ground plane with sur-  
face-mount 0.01µF capacitors. Locate these capacitors  
as close as possible to the pins on the same side of the  
board as the device. Do not use feedthroughs or vias  
for bypass capacitors. If board layout dictates that the  
bypass capacitors are mounted on the opposite side of  
the PC board, use short feedthroughs or vias, directly  
under the V+ and V- pins. Use multiple vias if possible.  
If V- is 0, connect it directly to the ground plane with  
solid copper. Keep all traces short.  
Gro u n d in g  
DC Ground Considerations  
Satisfactory high-frequency operation requires that  
careful consideration be given to grounding. For most  
applications, a ground plane is strongly recom-  
mended, and all GND pins must connect to it with  
solid copper. While the V+ and V- power-supply pins  
are common to all switches in a given package, each  
input is separated with ground pins that are not inter-  
nally connected to each other. This contributes to the  
overall high-frequency performance by reducing chan-  
nel-to-channel crosstalk. All the GND pins have ESD  
diodes to V+ and V-.  
S ig n a l Ro u t in g  
Keep all signal leads as short as possible. Separate all  
signal leads from each other, and keep them away from  
a ny othe r tra c e s tha t c ould ind uc e inte rfe re nc e .  
Separating the signal traces with generously sized  
ground wires also helps minimize interference. Routing  
signals via coaxial cable, terminated as close to the  
MAX4588 as possible, provides the highest isolation.  
In systems that have separate digital and analog (sig-  
nal) grounds, connect all GND pins to analog signal  
ground. Preserving a good signal ground is much more  
important than preserving a digital ground. Ground cur-  
rent is only a few nanoamperes.  
Bo a rd La yo u t  
IC sockets degrade high-frequency performance and  
should not be used if signal bandwidth exceeds 5MHz.  
Surfa c e -mount p a rts , ha ving s horte r inte rna l le a d  
frames, provide the best high-frequency performance.  
Keep all bypass capacitors close to the device, and  
separate all signal leads with ground planes. Such  
grounds tend to be wedge-shaped as they get closer to  
the device. Use vias to connect the ground planes on  
each side of the board, and place the vias in the apex of  
the wedge-shaped grounds that separate signal leads.  
Logic-level signal lead placement is not critical.  
The digital inputs have voltage thresholds determined by  
V and GND (V- does not influence the logic-level thresh-  
L
old). With +5V applied to V , the threshold is about 1.6V,  
L
ensuring compatibility with TTL- and CMOS-logic drivers.  
AC Ground and Bypassing  
A ground plane is mandatory for satisfactory high-  
frequency operation. Prototyping using hand wiring or  
wire-wrap boards is not recommended. Connect all  
GND pins to the ground plane with solid copper. (The  
GND pins extend the high-frequency ground through  
the package wire-frame, into the silicon itself, thus  
improving isolation.) Make the ground plane solid metal  
underneath the device, without interruptions. There  
should be no traces under the device itself. For DIP  
packages, this applies to both sides of a two-sided  
board. Failure to observe this has a minimal effect on  
the “on” characteristics of the switch at high frequen-  
cies, but will degrade the off-isolation and crosstalk.  
Im p e d a n c e Ma t c h in g  
The MAX4588 is inte nd e d for us e in 75s ys te ms ,  
where the inputs are terminated external to the IC and  
the COM terminals see an impedance of 600or high-  
er. The MAX4588 can operate in 50and 75systems  
with terminations through the IC. However, variations in  
R
and R  
flatness cause nonlinearities.  
ON  
ON  
Cro s s t a lk a n d Off-Is o la t io n  
The graphs shown in Typical Operating Characteristics  
for crosstalk and off-isolation are taken on adjacent  
channels. The adjacent channel is the worst-case con-  
dition. For example, NO1 has the worst off-isolation to  
COM1 due to their proximity. Furthermore, NO1 has the  
most crosstalk to NO2, and the least crosstalk to NO4.  
Choosing channels wisely necessitates separating the  
mos t s e ns itive c ha nne ls from the mos t offe ns ive .  
Conversely, the above information also applies to the  
NO5–NO8 inputs to the COM2 pin.  
When using the MAX4588s SO package on PC boards  
with a buried ground plane, connect each GND pin to the  
ground plane with a separate via. Do not share this via  
with any other ground path. Providing a ground via on  
both sides of the SMT land further enhances the off-isola-  
tion by lowering the parasitic inductance. The DIP pack-  
age can have the through-holes directly tied to the buried  
plane, or thermally relieved as required to meet manufac-  
______________________________________________________________________________________ 15  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
This allows cascading of multiple MAX4588s using only  
P o w e r-On Re s e t (P OR)  
The MAX4588 ha s inte rna l c irc uitry to g ua ra nte e a  
known state on power-up. In the default state, A0 = A1  
= A2 = 0, disable = 1, and all switches are off. This  
state is equivalent to asserting RS during normal opera-  
tion.  
one chip-select line. For example, one 16-bit write could  
load the shift registers of four cascaded MAX4588s. The  
data from the shift register is moved to the internal con-  
trol latches only upon the rising edge of CS, so all four  
MAX4588s change state simultaneously.  
P a ra lle l Op e ra t io n  
The parallel mode is activated by driving SER/PAR to a  
logic low. The MAX4588 is programmed by a latched  
parallel bus scheme. Refer to Figure 6 for a detailed  
diagram of the parallel-interface logic. Note that 4/8 is  
not latched. It is best to hard-wire 4/8 to a known state  
for the desired mode of operation, or to use a dedicat-  
ed microcontroller port pin.  
S e ria l Op e ra t io n  
The serial mode is activated by driving the SER/PAR  
input pin to a logic high. The data is then entered using a  
normal SPI/MICROWIRE write operation. Refer to Figure  
7 for a detailed diagram of the serial-interface logic.  
There are four flip-flops in the shift register, with the out-  
put of the fourth shift register being output on the DOUT  
pin. Note: DOUT changes on the rising edge of SCLK.  
MAX458  
Tru t h Ta b le s  
Parallel Operation  
A2  
A1  
A0  
EN  
4/8  
SWITCH STATES  
Maintain previous state.  
SER/PAR  
LE  
RS  
0
x
x
x
x
x
x
x
x
x
1
x
1
0
x
x
All switches off, latches are cleared.  
Serial Mode. Refer to Serial Operation  
Truth Table.  
1
x
x
x
x
x
1
x
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
1
1
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
x
0
0
0
0
0
0
0
0
1
1
1
1
All switches off.  
Connects NO1 to COM1  
Connects NO2 to COM1  
Connects NO3 to COM1  
Connects NO4 to COM1  
Connects NO5 to COM2  
Connects NO6 to COM2  
Connects NO7 to COM2  
Connects NO8 to COM2  
Connect NO1 to COM1 and NO5 to COM2  
Connect NO2 to COM1 and NO6 to COM2  
Connect NO3 to COM1 and NO7 to COM2  
Connect NO4 to COM1 and NO8 to COM2  
x = Dont Care  
Note: 4/8 is not latched when LE is high. When LE is low, all latches are transparent. A2, A1, A0, and EN are latched.  
Connect COM1 to COM2 externally for 1-of-8 single-ended operation.  
16 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
Tru t h Ta b le s (c o n t in u e d )  
Serial Operation  
SCLK  
DIN  
x
EN  
x
DOUT  
0
ON SWITCHES/STATES  
SER/PAR  
CS  
x
RS  
0
All switches off. Latches and shift register are  
cleared. This is the power-on reset (POR) state.  
1
0
x
x
Parallel Mode. Refer to Parallel Operation Truth  
Table.  
x
x
x
x
High-Z  
1
1
x
1
x
x
x
x
0
1
1
1
*
*
All switches off.  
Chip unselected.  
Input shift register loads one bit from DIN. DOUT  
updates on SCLK’s rising edge.  
1
1
0
0
0
1
x
1
1
1
1
1
1
*
*
*
Input shift register loads one bit from DIN. DOUT  
updates on SCLK’s rising edge.  
Contents of shift register transferred to control  
latches.  
1
x
x = Dont Care  
*DOUT is delayed by 4 clock cycles from DIN.  
Control Bit and 4/8 Logic  
DISABLE  
BIT  
A2  
BIT  
A1  
BIT  
A0  
BIT  
4/  
8
PIN  
ON SWITCHES/STATES  
1
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
1
1
0
0
1
1
0
0
1
1
x
x
All switches off.  
0
0
Connect NO1 to COM1  
1
0
Connect NO2 to COM1  
0
0
Connect NO3 to COM1  
1
0
Connect NO4 to COM1  
0
0
Connect NO5 to COM2  
1
0
Connect NO6 to COM2  
0
0
Connect NO7 to COM2  
1
0
Connect NO8 to COM2  
0
1
Connect NO1 to COM1 and NO5 to COM2  
Connect NO2 to COM1 and NO6 to COM2  
Connect NO3 to COM2 and NO7 to COM2  
Connect NO4 to COM2 and NO8 to COM2  
1
1
0
1
1
1
x = Dont Care  
Note: DISABLE, A2, A1, and A0 are the 4 bits latched into the MAX4588 with a MICROWIRE/SPI write. A0 is the LSB (first bit in  
time). DISABLE is the MSB (last bit in time).  
______________________________________________________________________________________ 17  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
____________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1033  
P a c k a g e In fo rm a t io n  
MAX458  
18 ______________________________________________________________________________________  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
MAX458  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 19  
Lo w -Vo lt a g e , Hig h -Is o la t io n ,  
Du a l 4 -Ch a n n e l RF/Vid e o Mu lt ip le x e r  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
MAX458  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY