MAX477 [MAXIM]

300MHz High-Speed Op Amp; 300MHz的高速运算放大器
MAX477
型号: MAX477
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

300MHz High-Speed Op Amp
300MHz的高速运算放大器

运算放大器
文件: 总12页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0467; Rev 2; 5/97  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX477 is a ±5V wide-bandwidth, fast-settling,  
unity-gain-stable op amp featuring low noise, low differ-  
ential gain and phase errors, high slew rate, high preci-  
sion, and high output current. The MAX477s archi-  
tecture uses a standard voltage-feedback topology that  
can be configured into any desired gain setting, as with  
other general-purpose op amps.  
High Speed:  
300MHz -3dB Bandwidth (A = +1)  
200MHz Full-Power Bandwidth (A = +1, V = 2Vp-p)  
1100V/µs Slew Rate  
130MHz 0.1dB Gain Flatness  
V
V
o
Drives 100pF Capacitive Loads Without Oscillation  
Low Differential Phase/Gain Error: 0.01°/0.01%  
8mA Quiescent Current  
Unlike high-speed amplifiers using current-mode feed-  
back architectures, the MAX477 has a unique input  
stage that combines the benefits of the voltage-feed-  
back design (flexibility in choice of feedback resistor,  
two high-impedance inputs) with those of the current-  
feedback design (high slew rate and full-power band-  
width). It also has the precision of voltage-feedback  
amplifiers, characterized by low input-offset voltage  
and bias current, low noise, and high common-mode  
and power-supply rejection.  
Low Input-Referred Voltage Noise: 5nV/ Hz  
Low Input-Referred Current Noise: 2pA/ Hz  
Low Input Offset Voltage: 0.5mV  
8000V ESD Protection  
Voltage-Feedback Topology for Simple Design  
Configurations  
The MAX477 is ideally suited for driving 50or 75Ω  
loads. Available in DIP, SO, space-saving µMAX, and  
SOT23 packages.  
Short-Circuit Protected  
Available in Space-Saving SOT23 Package  
______________Ord e rin g In fo rm a t io n  
________________________Ap p lic a t io n s  
SOT  
PIN-  
PART  
TEMP. RANGE  
TOP  
Broadcast and High-Definition TV Systems  
Video Switching and Routing  
Communications  
PACKAGE  
MARK  
MAX477EPA  
MAX477ESA  
MAX477EUA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
Medical Imaging  
8 µMAX  
5 SOT23  
Precision DAC/ADC Buffer  
MAX477EUK-T -40°C to +85°C  
MAX477MJA  
ABYW  
-55°C to +125°C 8 CERDIP  
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
TOP VIEW  
V
IN  
MAX477  
MAX477  
75  
V
OUT  
75Ω  
MAX477  
1
2
3
4
8
7
6
5
N.C.  
OUT  
1
2
3
5
4
V
N.C.  
IN-  
CC  
75Ω  
V
CC  
500Ω  
500Ω  
V
EE  
OUT  
N.C.  
IN+  
V
EE  
IN+  
IN-  
DIP/SO/µMAX  
VIDEO/RF CABLE DRIVER  
SOT23-5  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
3 0 0 MHz Hig h -S p e e d Op Am p  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )..................................................12V  
CERDIP (derate 8.00mW/°C above +70°C)..................640mW  
SOT23 (derate 7.1mW/°C above +70°C)......................571mW  
Operating Temperature Ranges  
CC  
EE  
Differential Input Voltage..................(V + 0.3V) to (V - 0.3V)  
CC  
EE  
Common-Mode Input Voltage ..........(V + 0.3V) to (V - 0.3V)  
CC  
EE  
Output Short-Circuit Duration to GND........................Continuous  
MAX477E_A......................................................-40°C to +85°C  
MAX477EUK .....................................................-40°C to +85°C  
MAX477MJA ...................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C)..............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
µMAX (derate 4.1mW/°C above +70°C) .......................330mW  
MAX47  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V  
= 0V, R = , T = T  
to T unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX, A  
CC  
EE  
OUT  
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.5  
MAX  
2.0  
UNITS  
MAX477ESA/EPA/EUA/MJA  
MAX477EUK  
T
= +25°C  
A
0.5  
2.0  
Input Offset Voltage  
V
OS  
mV  
MAX477ESA/EPA/EUA/MJA  
MAX477EUK  
3.0  
T
= T  
to  
A
MIN  
T
MAX  
5.0  
Input Offset-Voltage Drift  
Input Bias Current  
TCV  
2
1
µV/°C  
µA  
OS  
T
= +25°C  
3
A
I
B
T
A
= T  
to T  
5.0  
1.0  
2.0  
MIN  
MAX  
T
A
= +25°C  
0.2  
Input Offset Current  
I
OS  
µA  
MΩ  
V
T
A
= T  
to T  
MIN  
MAX  
Differential-Mode Input  
Resistance  
R
Either input  
= +25°C  
1
IN(DM)  
T
±3.0  
±2.5  
70  
±3.5  
A
Common-Mode Input Voltage  
Range  
V
CM  
T
A
= T  
to T  
MIN  
MAX  
MAX  
T
A
= +25°C  
V
= ±3V  
90  
CM  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
dB  
dB  
dB  
T
A
= T  
to T  
V = ±2.5V  
CM  
60  
MIN  
V = ±4.5V to ±5.5V  
70  
85  
65  
S
Open-Loop Voltage Gain  
MAX477E_A/477MJA  
MAX477EUK  
55  
V
V
= ±2.0V,  
OUT  
A
VOL  
= 0V, R = 50Ω  
CM  
L
50  
65  
T
= +25°C  
R = ∞  
±3.5  
±3.0  
±2.5  
70  
±3.9  
A
L
Output Voltage Swing  
V
OUT  
R = 100Ω  
L
V
T
A
= T to T  
MIN MAX  
R = 50Ω  
L
Minimum Output Current  
I
T
A
= -40 °C to +85 °C  
100  
150  
0.1  
8
mA  
mA  
OUT  
Short-Circuit Output Current  
Open-Loop Output Resistance  
I
Short to ground  
V = 0, f = DC  
OUT  
SC  
R
OUT  
T
A
= +25°C  
10  
12  
14  
mA  
Quiescent Supply Current  
I
SY  
MAX477E_ _, T = T  
to T  
A
MIN MAX  
mA  
MAX477MJA, T = T  
to T  
MAX  
A
MIN  
2
_______________________________________________________________________________________  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, R = 100, A  
= +1, T = +25°C, unless otherwise noted.)  
A
CC  
EE  
L
VCL  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Small-Signal, -3dB Bandwidth  
(Note 2)  
BW  
V
0.1Vp-p  
0.1Vp-p  
OUT  
220  
300  
MHz  
-3dB  
OUT  
Small-Signal, ±0.1dB  
Gain Flatness (Note 2)  
BW  
V
30  
130  
MHz  
0.1dB  
Full-Power Bandwidth  
Slew Rate (Note 2)  
FPBW  
SR  
V
= 2Vp-p  
200  
1100  
10  
MHz  
V/µs  
OUT  
V
OUT  
= ±2Vp-p  
700  
to 0.1%  
to 0.01%  
Settling Time  
t
S
V
= 2V Step  
V = 2V Step  
OUT  
ns  
OUT  
12  
Rise Time, Fall Time  
t , t  
R
2
ns  
F
Input Voltage Noise Density  
e
f = 10MHz  
5
nV/Hz  
n
Input Current Noise Density  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
i
f = 10MHz, either input  
f = 3.58MHz  
2
pA/Hz  
%
n
DG  
DP  
0.01  
0.01  
f = 3.58MHz  
degrees  
Differential-Mode Input  
Capacitance  
C
Either input  
f = 10MHz  
1
pF  
IN(DM)  
Output Impedance  
Z
2.5  
-58  
-74  
36  
OUT  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Third-Order Intercept  
THD  
f = 10MHz, V  
c
= 2Vp-p  
dB  
OUT  
SFDR  
IP3  
f = 5MHz, V  
= 2Vp-p  
dBc  
dBm  
OUT  
f = 10MHz, V  
= 2Vp-p  
OUT  
Note 1: Specifications for the MAX477EUK (SOT23 package) are 100% tested at T = +25°C, and guaranteed by design over  
A
temperature.  
Note 2: Maximum AC specifications are guaranteed by sample test on the MAX477ESA only.  
Note 3: Tested with a 3.58MHz video test signal with an amplitude of 40IRE superimposed on a linear ramp (0 to 100IRE). An IRE is  
a unit of video-signal amplitude developed by the Institute of Radio Engineers. 140IRE = 1V.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = -5V, R = 100, C = 0pF, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
L
SMALL-SIGNAL GAIN  
vs. FREQUENCY (A = +1V/V)  
SMALL-SIGNAL GAIN vs.  
FREQUENCY (A = +2V/V)  
SMALL-SIGNAL GAIN vs.  
FREQUENCY (A = +10V/V)  
VCL  
VCL  
VCL  
2
1
0
8
7
6
5
22  
21  
20  
19  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
4
3
2
1
0
18  
17  
16  
15  
14  
13  
12  
-1  
-2  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
3
3 0 0 MHz Hig h -S p e e d Op Am p  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, C = 0pF, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
L
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL GAIN  
GAIN FLATNESS  
(A = +1V/V)  
VCL  
vs. FREQUENCY (A = +1V/V)  
VCL  
vs. FREQUENCY (A = +1V/V)  
VCL  
3
2
0.2  
0.1  
MAX47  
1
0
0
-0.1  
-0.2  
GND  
GND  
IN  
VOLTAGE  
(100mV/div)  
-1  
-2  
-3  
-4  
-5  
-6  
OUT  
-0.3  
-0.4  
-0.5  
-0.6  
TIME (10ns/div)  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(A = +2V/V)  
VCL  
(A = +10V/V)  
VCL  
(A = +1V/V)  
VCL  
GND  
GND  
GND  
GND  
IN  
(50mV/  
div)  
IN  
(50mV/  
div)  
IN  
VOLTAGE  
(2V/div)  
VOLTAGE  
VOLTAGE  
OUT  
(100mV/  
div)  
GND  
OUT  
(500mV/  
div)  
GND  
OUT  
TIME (10ns/div)  
TIME (50ns/div)  
TIME (10ns/div)  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
(A = +1V/V, C = 50pF)  
(A = +10V/V)  
VCL  
(A = +2V/V)  
VCL  
VCL  
L
GND  
GND  
GND  
GND  
IN  
(200mV/  
div)  
IN  
(1V/div)  
GND  
GND  
IN  
VOLTAGE  
(100mV/div)  
VOLTAGE  
VOLTAGE  
OUT  
(2V/div)  
OUT  
(2V/div)  
OUT  
TIME (50ns/div)  
TIME (10ns/div)  
TIME (20ns/div)  
4
_______________________________________________________________________________________  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, C = 0pF, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
L
LARGE-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(A = +1V/V, C = 50pF)  
(A = +1V/V, C = 100pF)  
VCL  
L
(A = +1V/V, C = 100pF)  
VCL  
L
VCL  
L
GND  
GND  
GND  
GND  
GND  
GND  
IN  
IN  
IN  
VOLTAGE  
(100mV/div)  
VOLTAGE  
(2V/div)  
VOLTAGE  
(2V/div)  
OUT  
OUT  
OUT  
TIME (20ns/div)  
TIME (20ns/div)  
TIME (20ns/div)  
QUIESCENT SUPPLY CURRENT (I  
)
SY  
INPUT BIAS CURRENT (I )  
B
INPUT OFFSET VOLTAGE (V  
)
OS  
vs. TEMPERATURE  
vs. TEMPERATURE  
vs. TEMPERATURE  
14  
12  
3.5  
3.0  
400  
300  
V
CM  
= 0V  
V
CM  
= 0V  
10  
8
2.5  
2.0  
1.5  
1.0  
200  
100  
0
6
4
-100  
-200  
-300  
2
0.5  
0
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
INPUT COMMON-MODE RANGE (V )  
CM  
vs. TEMPERATURE  
4.2  
4.0  
R =  
L
4.0  
3.8  
3.6  
3.5  
3.0  
2.5  
R = 100  
L
3.4  
3.2  
3.0  
2.8  
R = 50Ω  
L
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
_______________________________________________________________________________________  
5
3 0 0 MHz Hig h -S p e e d Op Am p  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, C = 0pF, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
L
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
-20  
1k  
100  
10  
-30  
-40  
-50  
-60  
MAX47  
-70  
-80  
1
-90  
-100  
-110  
0.1  
30k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OPEN-LOOP  
GAIN AND PHASE vs. FREQUENCY  
HARMONIC DISTORTION  
vs. FREQUENCY  
MAX477-16  
10  
-20  
-40  
-60  
-80  
8
6
360  
180  
4
2
GAIN  
TOTAL HARMONIC DISTORTION  
SECOND HARMONIC  
0
0
-2  
PHASE  
THIRD HARMONIC  
-180  
-4  
-6  
-8  
-360  
-10  
-100  
1k  
10k  
100k  
1M  
10M 100M  
50M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DIFFERENTIAL GAIN AND PHASE  
(A = +1, R = 150)  
DIFFERENTIAL GAIN AND PHASE  
(A = +2, R = 150)  
VCL  
L
VCL  
L
0.006  
0.004  
0.000  
0.004  
0.002  
0.000  
-0.002  
-0.004  
-0.004  
-0.008  
-0.012  
0
100  
0
100  
IRE  
IRE  
0.006  
0.004  
0.002  
0.000  
-0.002  
-0.004  
0.003  
0.002  
0.001  
0.000  
-0.001  
-0.002  
0
100  
0
100  
IRE  
IRE  
6
_______________________________________________________________________________________  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
Ou t p u t S h o rt -Circ u it P ro t e c t io n  
_____________________P in De s c rip t io n  
Under short-circuit conditions, the output current is typi-  
cally limited to 150mA. This is low enough that a short to  
ground of any duration will not cause permanent dam-  
age to the chip. However, a short to either supply will  
significantly increase the power dissipation and may  
c a us e p e rma ne nt d a ma g e . The hig h outp ut-  
current capability is an advantage in systems that trans-  
mit a signal to several loads. See High-Performance  
Vid e o Dis trib ution Amp lifie r in the Ap p lic a tions  
Information section.  
PIN  
SO/µMAX/DIP  
SOT23 NAME  
FUNCTION  
No Connect. Not inter-  
nally connected.  
1, 5, 8  
N.C.  
2
3
4
3
IN-  
Inverting Input  
IN+  
Noninverting Input  
Negative Power  
Supply  
4
6
7
2
1
5
V
EE  
__________Ap p lic a t io n s In fo rm a t io n  
OUT  
Amplifier Output  
Positive Power  
Supply  
Gro u n d in g , Byp a s s in g ,  
a n d P C Bo a rd La yo u t  
V
CC  
To obtain the MAX477s full 300MHz bandwidth, Micro-  
strip and Stripline techniques are recommended in  
most cases. To ensure the PC board does not degrade  
the amplifiers performance, design the board for a fre-  
quency greater than 1GHz. Even with very short traces,  
use these techniques at critical points, such as inputs  
and outputs. Whether you use a constant-impedance  
board or not, observe the following guidelines when  
designing the board:  
_______________De t a ile d De s c rip t io n  
The MAX477 allows the flexibility and ease of a classic  
voltage-feedback architecture while maintaining the  
high-speed benefits of current-mode feedback (CMF)  
amplifiers. Although the MAX477 is a voltage-feedback  
op amp, its internal architecture provides an 1100V/µs  
slew rate and a low 8mA supply current. CMF ampli-  
fiers offer high slew rates while maintaining low supply  
current, but use the feedback and load resistors as part  
of the amplifiers frequency compensation network. In  
addition, they have only one input with high imped-  
ance.  
Do not use wire-wrap boards. They are too inductive.  
Do not us e IC s oc ke ts . The y inc re a s e p a ra s itic  
capacitance and inductance.  
In general, surface-mount components have shorter  
leads and lower parasitic reactance, giving better  
high-frequency performance than through-hole com-  
ponents.  
The MAX477 has speed and power specifications like  
those of current-feedback amplifiers, but has high input  
impedance at both input terminals. Like other voltage-  
fe e d b a c k op a mp s , its fre q ue nc y c omp e ns a tion is  
independent of the feedback and load resistors, and it  
exhibits a constant gain-bandwidth product. However,  
unlike standard voltage-feedback amplifiers, its large-  
signal slew rate is not limited by an internal current  
source, so the MAX477 exhibits a very high full-power  
bandwidth.  
The PC board should have at least two layers, with  
one side a signal layer and the other a ground plane.  
Keep signal lines as short and straight as possible.  
Do not make 90° turns; round all corners.  
The ground plane should be as free from voids as  
possible.  
R
G
R
F
R
G
R
F
V
IN  
V
OUT  
V
OUT  
MAX477  
MAX477  
V
IN  
V
OUT  
= -(R /R ) V  
V
= [1 + (R /R )] V  
F
G
IN  
OUT F G IN  
Figure 1a. Inverting Gain Configuration  
Figure 1b. Noninverting Gain Configuration  
_______________________________________________________________________________________  
7
3 0 0 MHz Hig h -S p e e d Op Am p  
Table 1. Resistor and Bandwidth Values for  
Various Closed-Loop Gain Configurations  
R
G
R
F
V
IN  
-3dB  
BANDWIDTH  
(MHz)  
GAIN  
(V/V)  
R
()  
R
f
()  
g
+1  
+2  
+5  
+10  
-1  
Open  
500  
125  
50  
Short  
500  
500  
450  
300  
300  
500  
500  
300  
120  
25  
V
C
OUT  
MAX477  
MAX47  
R
L
12  
300  
150  
100  
50  
114  
64  
-2  
Figure 2. Effect of High-Feedback Resistor Values and  
Parasitic Capacitance on Bandwidth  
-5  
42  
-10  
23  
S e t t in g Ga in  
that the MAX477s voltage-feedback architecture pro-  
vides a precision amplifier with significantly lower DC  
errors and lower noise compared to CMF amplifiers.  
The MAX477 can be configured as an inverting or non-  
inverting gain block in the same manner as any other  
voltage-feedback op amp. The gain is determined by  
the ratio of two resistors and does not affect amplifier  
frequency compensation. This is unlike CMF op amps,  
which have a limited range of feedback resistors, typi-  
cally one resistor value for each gain and load setting.  
This is because the -3dB bandwidth of a CMF op amp  
is set by the feedback and load resistors. Figure 1a  
shows the inverting gain configuration and its gain  
equation, while Figure 1b shows the noninverting gain  
configuration.  
1) In Figure 3, total output offset error is given by:  
R
f
V
= 1+  
V
OUT  
R
g
+I R I R ||R +I  
R
+ R ||R  
(
)
(
)
)
OS  
B
S
B
f
g
OS  
S
f
g
(
For the special case in which R is arranged to be  
S
equal to R || Rg, the I terms cancel out. Note also,  
f
S
B
Choosing Resistor Values  
The feedback and input resistor values are not critical  
in the inverting or noninverting gain configurations (as  
with current-feedback amplifiers). However, be sure to  
select resistors that are small and noninductive.  
for I  
(R + (R || Rg) << V , the I  
term also  
OS  
OS  
OS  
f
drops out of the equation for total DC error. In prac-  
tic e , hig h-s p e e d c onfig ura tions for the MAX477  
necessitate the use of low-value resistors for R , R ,  
S
f
and Rg. In this case, the V  
term is the dominant  
OS  
Surface-mount resistors are best for high-frequency cir-  
cuits. Their material is similar to that of metal-film resis-  
tors, but to minimize inductance, it is deposited in a flat,  
linear manner using a thick film. Their small size and  
lack of leads also minimize parasitic inductance and  
capacitance.  
DC error source.  
2) The MAX477s total input-referred noise in a closed-  
loop feedback configuration can be calculated by:  
2
2
2
e
=
e
+ e  
+ i R  
(
)
T
n
R
n
EQ  
The MAX477s input capacitance is approximately 1pF.  
In either the inverting or noninverting configuration,  
excess phase resulting from the pole frequency formed  
where e  
= inp ut-re fe rre d nois e volta g e of the  
n
MAX477 (5nV Hz)  
by R || R and C can degrade amplifier phase margin  
f
g
i
n
= inp ut-re fe rre d nois e c urre nt of the  
and cause oscillations (Figure 2). Table 1 shows the  
recommended resistor combinations and measured  
bandwidth for several gain values.  
MAX477 (2pA Hz)  
R
= tota l e q uiva le nt s ourc e re s is ta nc e a t  
the two inputs, i.e., R = R + R || R  
EQ  
EQ  
S
f
g
DC a n d No is e Erro rs  
The s ta nd a rd volta g e -fe e d b a c k top olog y of the  
MAX477 allows DC error and noise calculations to be  
done in the usual way. The following analysis shows  
e
=
resistor noise voltage due to R , i.e.,  
R
EQ  
e
=
4KT R  
EQ  
R
8
_______________________________________________________________________________________  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
As an example, consider R = 75, R = R = 500.  
Then:  
S
f
g
R
g
R
f
R
= 75Ω + 500||500Ω = 325Ω  
(
)
EQ  
I
B-  
e
e
=
=
4KT x 325 = 2.3nV/ Hz at 25°C  
R
T
V
OUT  
MAX477  
2
2
2
R
S
I
B+  
5nV + 2.3nV + 2pA x 325 = 5.5nV Hz  
(
)
(
)
(
)
V
IN  
3) The MAX477s output-referred noise is simply total  
Figure 3. Output Offset Voltage  
inp ut-re fe rre d nois e , e , multip lie d b y the g a in  
T
factor:  
R
f
e
= e 1+  
T
15  
OUT  
R
g
10  
5
C = 22pF  
L
C = 100pF  
L
In the above example, with e = 5.5nV Hz, and assum-  
ing a s ig na l b a nd wid th of 300MHz (471MHz nois e  
bandwidth), total output noise in this bandwidth is:  
T
C = 41pF  
L
0
-5  
500  
e
= 5.5nV x 1+  
x
471MHz = 239µV  
RMS  
OUT  
-10  
-15  
-20  
500  
C = 0pF  
L
Note that for both DC and noise calculations, errors are  
dominated by offset voltage (V ) and input noise volt-  
OS  
1M  
10M  
100M  
1G  
age (e ). For a current-mode feedback amplifier with  
offset and noise errors significantly higher, the calcula-  
tions are very different.  
n
FREQUENCY (Hz)  
Figure 4. Effect of C  
on Frequency Response  
LOAD  
Drivin g Ca p a c it ive Lo a d s  
The MAX477 provides maximum AC performance with  
no output load capacitance. This is the case when the  
MAX477 is driving a correctly terminated transmission  
line (i.e., a back-terminated 75cable). However, the  
MAX477 is capable of driving capacitive loads up to  
100pF without oscillations, but with reduced AC perfor-  
mance.  
(A  
VCL  
= +1V/V)  
The MAX477 drives capacitive loads up to 100pF with-  
out oscillation. However, some peaking (in the frequen-  
cy domain) or ringing (in the time domain) may occur.  
This is shown in Figure 4 and the in the Small and  
Large-Signal Pulse Response graphs in the Typical  
Operating Characteristics.  
Driving large capacitive loads increases the chance of  
oscillations in most amplifier circuits. This is especially  
true for circuits with high loop gain, such as voltage fol-  
lowers. The amplifiers output resistance and the load  
capacitor combine to add a pole and excess phase to  
the loop response. If the frequency of this pole is low  
enough and phase margin is degraded sufficiently,  
oscillations may occur.  
To drive larger-capacitance loads or to reduce ringing,  
add an isolation resistor between the amplifiers output  
and the load, as shown in Figure 5.  
The value of R  
depends on the circuit’s gain and the  
ISO  
capacitive load. Figure 6 shows the Bode plots that  
result when a 20isolation resistor is used with a volt-  
age follower driving a range of capacitive loads. At the  
higher capacitor values, the bandwidth is dominated by  
A s e c ond p rob le m whe n d riving c a p a c itive loa d s  
results from the amplifiers output impedance, which  
looks induc tive a t hig h fre que nc y. This ind uc ta nc e  
forms an L-C resonant circuit with the capacitive load,  
which causes peaking in the frequency response and  
degrades the amplifiers gain margin.  
the RC network, formed by R  
and C ; the bandwidth  
ISO  
L
of the amplifier itself is much higher. Note that adding  
an isolation resistor degrades gain accuracy. The load  
and isolation resistor form a divider that decreases the  
voltage delivered to the load.  
_______________________________________________________________________________________  
9
3 0 0 MHz Hig h -S p e e d Op Am p  
Fla s h ADC P re a m p  
The MAX477s high output-drive capability and ability  
Hig h -P e rfo rm a n c e Vid e o  
Dis t rib u t io n Am p lifie r  
to drive capacitive loads make it well suited for buffer-  
ing the low-impedance input of a high-speed flash  
ADC. With its low output impedance, the MAX477 can  
drive the inputs of the ADC while maintaining accuracy.  
Figure 7 shows a preamp for digitizing video, using the  
250Ms p s MAX100 a nd the 500Ms p s MAX101 fla s h  
ADCs. Both of these ADCs have a 50input resistance  
and a 1.2GHz input bandwidth.  
In a gain of +2 configuration, the MAX477 makes an  
excellent driver for back-terminated 75video coaxial  
cables (Figure 8). The high output-current drive allows  
the attachment of up to six ±2Vp-p, 150loads to the  
MAX477 at +25°C. With the output limited to ±1Vp-p,  
the number of loads may double. The MAX4278 is a  
similar amplifier configured for a gain of +2 without the  
need for external gain-setting resistors. For multiple  
gain-of-2 video line drivers in a single package, see the  
MAX496/MAX497 data sheet.  
MAX47  
V
IN  
Wid e -Ba n d w id t h Be s s e l Filt e r  
Two high-impedance inputs allow the MAX477 to be  
used in all standard active filter topologies. The filter  
design is straightforward because the component val-  
ues can be chosen independently of op amp bias.  
Figure 9 shows a wide-bandwidth, second-order Bessel  
filter using a multiple feedback topology. The compo-  
nent values are chosen for a gain of +2, a -3dB band-  
width of 10MHz, and a 28ns delay. Figure 10a shows a  
square-wave pulse response, and Figure 10b shows the  
filters frequency response and delay. Notice the flat  
delay in the passband, which is characteristic of the  
Bessel filter.  
R
ISO  
V
OUT  
MAX477  
C
L
R
L
Figure 5. Capacitive-Load Driving Circuit  
1
C = 0pF  
L
C = 22pF  
L
0
-1  
-2  
-3  
-4  
-5  
-6  
R
ISO  
= 20Ω  
500Ω  
500Ω  
C = 100pF  
L
C = 47pF  
L
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
OUT1  
75Ω  
MAX477  
1M  
10M  
100M  
1G  
VIDEO IN  
FREQUENCY (Hz)  
Figure 6. Effect of C  
Isolation Resistor  
on Frequency Response With  
LOAD  
OUT2  
75Ω  
500Ω  
500Ω  
OUTN  
75Ω  
MAX477  
FLASH ADC  
(MAX100/MAX101)  
VIDEO IN  
Figure 7. Preamp for Video Digitizer  
Figure 8. High-Performance Video Distribution Amplifier  
10 ______________________________________________________________________________________  
3 0 0 MHz Hig h -S p e e d Op Am p  
MAX47  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 175  
SUBSTRATE CONNECTED TO V  
EE  
20pF  
602Ω  
110Ω  
301Ω  
V
IN  
V
OUT  
100pF  
MAX477  
Figure 9. 8MHz Bessel Filter  
IN  
(100mV/div)  
GND  
GND  
0.2V  
VOLTAGE (V)  
OUT  
(200mV/div)  
-0.2V  
TIME (50ns/div)  
Figure 10a. 5MHz Square Wave Input  
48  
38  
28  
10  
8
6
DELAY  
4
2
18  
8
-2  
0
-2  
-4  
-6  
-8  
-10  
-12  
-22  
-32  
-42  
-52  
GAIN  
1M  
10M  
FREQUENCY (MHz)  
100M  
Figure 10b. Gain and Delay vs. Frequency  
______________________________________________________________________________________ 11  
3 0 0 MHz Hig h -S p e e d Op Am p  
________________________________________________________P a c k a g e In fo rm a t io n  
MAX47  
12 ______________________________________________________________________________________  

相关型号:

MAX4772

200mA/500mA Selectable Current-Limit Switches
MAXIM

MAX4772ETT

200mA/500mA Selectable Current-Limit Switches
MAXIM

MAX4772ETT+

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO229-WEEA, QFN-6
MAXIM

MAX4772ETT+T

暂无描述
MAXIM

MAX4772ETT-T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, QFN-6
MAXIM

MAX4772EUK

200mA/500mA Selectable Current-Limit Switches
MAXIM

MAX4772EUK-T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO6, MO-178AB, SOT23-6
MAXIM

MAX4772EUT

200mA/500mA Selectable Current-Limit Switches
MAXIM

MAX4772EUT+T

暂无描述
MAXIM

MAX4772EUT-T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, PDSO6, MO178-AB, SOT-23, 6 PIN
MAXIM

MAX4772|MAX4773

200mA/500mA Selectable Current-Limit Switches
MAXIM

MAX4773ETT

200mA/500mA Selectable Current-Limit Switches
MAXIM