MAX5043ETN-T [MAXIM]

暂无描述;
MAX5043ETN-T
型号: MAX5043ETN-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

开关 控制器
文件: 总22页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3046; Rev 2; 6/04  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
General Description  
Features  
The MAX5042/MAX5043 isolated multimode PWM power  
ICs feature integrated switching power MOSFETs con-  
nected in a voltage-clamped, two-transistor, power-circuit  
configuration. These devices operate from a wide 20V to  
76V input voltage range. The MAX5042 includes a hot-  
swap controller for use with an external power MOSFET to  
limit inrush current for applications where the power sup-  
ply is plugged into a live power backplane. The MAX5043  
does not include a hot-swap controller.  
Reliable Single-Stage Clamped Two-Switch Power  
ICs for High Efficiency  
No Reset Winding Required  
Up to 50W Output Power  
Integrated High-Voltage 75mPower MOSFETs  
20V to 76V Wide Input Voltage Range  
Feed-Forward Voltage or Current-Mode Control  
Programmable Brownout Undervoltage Lockout  
The voltage-clamped power topology of the MAX5042/  
MAX5043 enables full recovery of stored magnetizing  
and leakage inductive energy for enhanced efficiency  
and reliability. Operating at up to 500kHz switching fre-  
quency, these devices provide up to 50W of output  
power. The MAX5042/MAX5043 allow the implementa-  
tion of both forward and flyback voltage or current-mode  
converter topologies. A dedicated latched external shut-  
down provides protection in addition to internal thermal  
shutdown.  
Integrated Current Signal Amplifier for High-  
Efficiency, Current-Mode Control  
Internal Overtemperature Shutdown  
Indefinite Short-Circuit Protection  
Integrated Thermally Protected High-Voltage  
Startup Linear Regulator  
The MAX5042/MAX5043 achieve higher efficiency when  
used with secondary-side synchronous rectification.  
These devices generate a look-ahead signal for driving  
secondary-side synchronous rectifiers.  
Integrated Hot-Swap Controller (MAX5042)  
Integrated Look-Ahead Signal Output Drives  
High-Speed Optocoupler for Secondary-Side  
Synchronous Rectification  
The MAX5042/MAX5043 are rated for operation over the  
-40°C to +125°C and -40°C to +85°C temperature  
range, respectively, and are available in a small surface-  
mount 56-pin thin QFN package.  
>90% Efficiency with Synchronous Rectification  
Up to 500kHz Switching Frequency  
Warning: The MAX5042/MAX5043 are designed to  
work with high voltages. Exercise caution.  
High-Power, Small-Footprint 56-Pin Thermally  
Enhanced QFN Package  
Applications  
Ordering Information  
High-Efficiency Telecom/Datacom Power  
Supplies  
PART  
MAX5042ATN  
MAX5043ETN  
TEMP RANGE  
-40°C to +125°C  
-40°C to +85°C  
PIN-PACKAGE  
56 Thin QFN  
56 Thin QFN  
Router/Switch Cards with 48V Backplane Power  
Systems  
Servers with 48V Backplane Power Systems  
xDSL Line Cards  
Selector Guide  
xDSL Line-Driver Power Supplies  
Distributed Power Systems with 48V Bus  
42V Automotive Power Supplies  
Power-Supply Modules  
PART  
DESCRIPTION  
Two-Switch Power IC with Integrated Power  
MOSFETs and Hot-Swap Controller for Isolated  
Power Supplies  
MAX5042  
Two-Switch Power IC with Integrated Power  
MOSFETs for Isolated Power Supplies  
MAX5043  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
ABSOLUTE MAXIMUM RATINGS  
(See the Absolute Maximum Ratings Diagram below to better understand the absolute maximum ratings of the various blocks.)  
PWMNEG, POSINPWM, DRNH,  
XFRMRH Continuous Average Current (all pins combined)  
T = +125°C.........................................................................2A  
XFRMRH, XFRMRL, SRC to NEGIN....................-0.3V to +80V  
BST to NEGIN.........................................................-0.3V to +95V  
BST to XFRMRH .....................................................-0.3V to +12V  
SRC to PWMNEG .....................................................-0.3V to +6V  
REG15 to PWMNEG ...............................................-0.3V to +40V  
REG15 to POSINPWM............................................-80V to +0.3V  
REG9, DRVIN to PWMNEG ....................................-0.3V to +12V  
REG5 to PWMNEG ...................................................-0.3V to +6V  
REG15 Current.................................................................. 80mA  
REG9 Current......................................................................40mA  
REG5 Current......................................................................20mA  
UVLO, RAMP, CSS, FLTINT, CSOUT,  
J
T = +150°C......................................................................1.4A  
J
XFRMRL Continuous Average Current (all pins combined)  
T = +125°C.........................................................................2A  
J
T = +150°C......................................................................1.4A  
J
SRC Continuous Current (all pins combined)  
T = +125°C.........................................................................2A  
J
T = +150°C......................................................................1.4A  
J
POSINHS to NEGIN................................................-0.3V to +80V  
HSEN to NEGIN........................................................-0.3V to +4V  
DEN to PWMNEG .....................................................-0.3V to +4V  
HSGATE to NEGIN .................................................-0.3V to +12V  
HSDRAIN, HSOK to NEGIN....................................-0.3V to +80V  
HSOK Current .....................................................................20mA  
RCFF, RCOSC to PWMNEG...............................-0.3V to +12V  
OPTO, PWMSD, SYNC, CSP, CSN,  
DRVDEL to PWMNEG...........................................-0.3V to +6V  
PPWM to PWMNEG .................................-0.3V to (REG5 + 0.3V)  
PPWM Current ................................................................. 20mA  
PWMPNEG to PWMNEG .......................................-0.3V to +0.3V  
DRNH Continuous Average Current (all pins combined)  
Continuous Power Dissipation (T = +70°C)  
56-Pin Thin QFN (derate 47.6mW/°C above +70°C) .......3.8W  
A
Junction to Ambient Thermal Resistance, θ ...............+21°C/W  
JA  
Operating Temperature Range  
MAX5042ATN ................................................-40°C to +125°C  
MAX5043ETN ..................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
T = +125°C.........................................................................2A  
J
T = +150°C......................................................................1.4A  
J
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings Diagram  
POSINHS,  
POSINPWM  
BST  
12V  
XFRMRH, DRNH  
XFRMRL  
REG15  
REG9, UVLO, RAMP, CSS, FLTINT,  
CSOUT, RCFF, RCOSC, DRVIN  
80V  
80V  
80V  
REG5, OPTO, PWMSD, SYNC, CSP,  
CSN, DRVDEL, SRC, PPWM  
95V  
40V  
12V  
80V  
DEN  
6V  
PWMNEG,  
PWMPNEG,  
HSDRAIN,  
HSOK  
4V  
80V  
80V  
12V  
HSGATE  
HSEN  
4V  
IC SUBSTRATE, NEGIN  
2
_______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
ELECTRICAL CHARACTERISTICS  
(V  
= 20V to 76V, V  
= 18V, C  
= 4.7µF, C  
= 1µF, C  
= 1µF, R  
PWMNEG  
= 24k, C  
= 100pF, C  
=
POSINPWM  
REG15  
DRVDEL  
REG15  
REG9  
REG5  
= V  
RCOSC  
= V  
RCOSC  
= 0, T = T  
BST  
0.22µF, R  
= 10k, C  
= 0.22µF, V  
= V  
= V  
= V  
to T  
, unless  
DRVDEL  
CSS  
CSP  
CSN  
RAMP  
NEGIN  
A
MIN  
MAX  
otherwise noted. Typical values are at V  
unless otherwise noted.)  
= 48V, T = +25°C, unless otherwise noted. All voltages are referred to PWMNEG,  
POSINPWM  
A
PARAMETER  
Input Supply Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
20  
76  
V
POSINPWM  
REG15 REGULATOR  
REG15 Output Voltage Range  
V
V
V
= 20V to 76V  
13.0  
16.6  
1.5  
80  
V
V
REG15  
POSINPWM  
POSINPWM  
REG15 Output Voltage Load  
Regulation  
= 20V, I  
= 0 to 80mA  
REG15  
REG15 Output Current  
REG15 Current Limit  
Inferred from load regulation test  
mA  
mA  
REG15 shorted to PWMNEG with 10  
140  
REG15 Overdrive Voltage  
18  
40  
V
REG9 REGULATOR  
REG9 Output Voltage Range  
V
= 18V to 40V  
8.3  
10.1  
0.35  
40  
V
V
REG15  
REG9 Output Voltage Load  
Regulation  
I
= 0 to 40mA  
REG9  
REG9 Output Current  
REG9 Current Limit  
Inferred from load regulation test  
mA  
mA  
REG9 shorted to PWMNEG with 10Ω  
100  
REG5 REGULATOR  
REG5 Output Voltage Range  
V
= 18V to 40V  
4.5  
5.5  
0.35  
20  
V
V
REG15  
REG5 Output Voltage Load  
Regulation  
I
= 0 to 20mA  
REG5  
REG5 Output Current  
REG5 Current Limit  
Inferred from load regulation test  
mA  
mA  
REG5 shorted to PWMNEG with 10Ω  
40  
PWM COMPARATOR  
Common-Mode Range  
Input Offset Voltage  
Input Bias Current  
V
0
5.5  
V
CM-PWM  
10  
70  
mV  
µA  
ns  
-2.5  
+2.5  
Propagation Delay  
50mV overdrive, 0 V  
5.5V  
CM-PWM  
RCOSC OSCILLATOR  
PWM Period  
t
3.9  
47  
µs  
%
OSC-PWM  
Maximum Duty Cycle  
Maximum RCOSC Frequency  
RCOSC Peak Trip Level  
RCOSC Valley Trip Level  
RCOSC Input Bias Current  
f
1.2  
MHz  
V
RCOSC  
V
2.55  
0.2  
TH  
V
-0.3  
µA  
RCOSC Discharge MOSFET  
Sinking 10mA  
60  
50  
120  
0.8  
R
DS(ON)  
RCOSC Discharge Pulse Width  
SYNC High Level  
ns  
V
3.5  
SYNC Low Level  
V
_______________________________________________________________________________________  
3
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 20V to 76V, V  
= 18V, C  
= 4.7µF, C  
= 1µF, C  
= 1µF, R  
PWMNEG  
= 24k, C  
= 100pF, C  
=
POSINPWM  
REG15  
DRVDEL  
REG15  
REG9  
REG5  
= V  
RCOSC  
= V  
RCOSC  
= 0, T = T  
BST  
0.22µF, R  
= 10k, C  
= 0.22µF, V  
= V  
= V  
= V  
to T  
, unless  
MAX  
DRVDEL  
CSS  
CSP  
CSN  
RAMP  
NEGIN  
A
MIN  
otherwise noted. Typical values are at V  
unless otherwise noted.)  
= 48V, T = +25°C, unless otherwise noted. All voltages are referred to PWMNEG,  
POSINPWM  
A
PARAMETER  
SYNC Leakage Current  
SYNC Maximum Frequency  
SYNC On-Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
1
f
2.4  
MHz  
ns  
SYNC  
50  
SYNC Off-Time  
200  
ns  
PWM LOGIC  
PWM Comparator Propagation  
Delay  
70  
ns  
PPWM to XFRMRL Delay  
DRVDEL Reference Voltage  
PPWM Output High  
PPWM Output Low  
PPWM rising  
120  
ns  
V
1.14  
2.8  
1.38  
0.4  
Sourcing 2mA  
Sinking 2mA  
V
V
PWMSD Logic High  
PWMSD Logic Low  
PWMSD Leakage Current  
SOFT-START  
3.5  
V
0.8  
1
V
µA  
Soft-Start Current  
I
33  
µA  
V
CSS  
Minimum OPTO Voltage  
RAMP GENERATOR  
Minimum RCFF Voltage  
RCFF Leakage  
CSS = 0, sinking 2mA  
RCFF sinking 2mA  
1.4  
2.1  
0.1  
V
1
µA  
OVERLOAD FAULT  
FLTINT Pulse Current  
FLTINT Trip Point  
I
80  
2.7  
µA  
V
FLTINT  
2.0  
3.5  
FLTINT Hysteresis  
0.75  
V
INTERNAL POWER FETs  
V
= V  
= 190mA  
= 9V, V  
= V  
= 0,  
SRC  
DRVIN  
BST  
XFRMRH  
On-Resistance  
R
DSON  
75  
45  
80  
200  
10  
mΩ  
I
DS  
Off-State Leakage Current  
Total Gate Charge Per FET  
HIGH-SIDE DRIVER  
µA  
nC  
Inferred from supply current with V = 50V  
DS  
Driver delay until FET V reaches 0.9 x  
(V  
GS  
Low-to-High Latency  
High-to-Low Latency  
ns  
- V  
)
BST  
XFRMRH  
Driver delay until FET V reaches 0.1 x  
(V  
GS  
45  
8
ns  
V
- V  
)
BST  
XFRMRH  
Output Drive Voltage  
BST to XFRMRH with high side on  
LOW-SIDE DRIVER  
Driver delay until FET V reaches 0.9 x  
GS  
Low-to-High Latency  
80  
ns  
V
DRVIN  
4
_______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 20V to 76V, V  
= 18V, C  
= 4.7µF, C  
= 1µF, C  
= 1µF, R  
PWMNEG  
= 24k, C  
= 100pF, C  
=
POSINPWM  
REG15  
DRVDEL  
REG15  
REG9  
REG5  
= V  
RCOSC  
= V  
RCOSC  
= 0, T = T  
BST  
0.22µF, R  
= 10k, C  
= 0.22µF, V  
= V  
= V  
= V  
to T  
, unless  
DRVDEL  
CSS  
CSP  
CSN  
RAMP  
NEGIN  
A
MIN  
MAX  
otherwise noted. Typical values are at V  
unless otherwise noted.)  
= 48V, T = +25°C, unless otherwise noted. All voltages are referred to PWMNEG,  
POSINPWM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Driver delay until FET V reaches  
MIN  
TYP  
MAX  
UNITS  
GS  
High-to-Low Latency  
45  
ns  
0.1 x V  
DRVIN  
CURRENT-SENSE COMPARATOR  
Current-Limit-Comparator  
Threshold Voltage  
140  
156  
40  
172  
mV  
ns  
Current-Limit-Comparator  
Propagation Delay  
10mV overdrive  
CURRENT-SENSE AMPLIFIER  
Current Amplifier Gain  
V
V
= 0, V  
= 0 to 0.35V  
9.75  
185  
-0.3  
10  
10.25  
230  
V/V  
mV  
V
CSN  
CN  
CSP  
Input Voltage Offset  
= V  
= -0.3V to +0.3V  
200  
CSP  
Input Common-Mode Range  
Input Differential-Mode Range  
CSP Input Bias Current  
+0.3  
0.35  
-40  
Inferred from current amplifier gain test  
V
V
V
V
= -0.3V to +0.3V, V  
= -0.3V to +0.3V, V  
= 0  
= 0  
-160  
-160  
µA  
µA  
CSP  
CSP  
CSN  
CSN  
CSN Input Bias Current  
-30  
= 0, V  
steps from 0 to 0.2V, 10%  
CSN  
CSP  
Settling Time  
70  
7
ns  
settling time, C = 20pF  
L
3dB Bandwidth  
MHz  
BOOST VOLTAGE CIRCUIT  
QB R  
Sinking 100mA  
10  
20  
DS(ON)  
ns  
Driver Output Delay  
200  
300  
One-Shot Pulse Width  
THERMAL SHUTDOWN  
Shutdown Temperature  
Thermal Hysteresis  
ns  
Temperature rising  
150  
°C  
°C  
14.5  
PWM CONVERTER UNDERVOLTAGE LOCKOUT (UVLO)  
Preset UVLO Threshold  
UVLO Threshold Hysteresis  
UVLO Resistance  
Measured at POSINPWM rising  
28  
31  
3
34  
V
V
Looking into UVLO  
30  
75  
kΩ  
V
UVLO Trip Point  
Measured at UVLO rising  
1.15  
1.27  
1.39  
UVLO Hysteresis  
+127  
mV  
MAX5043 only, measured at POSINPWM  
rising  
Preset DEN Threshold  
27  
34  
V
DEN Threshold Hysteresis  
DEN Startup Delay  
MAX5043 only  
MAX5043 only  
MAX5043 only  
3.1  
12  
V
3.5  
0.2  
27.0  
1.5  
ms  
ms  
DEN Turn-Off Delay  
0.7  
MAX5043 only, rising with respect to  
PWMNEG  
DEN Trip Point  
1.11  
1.35  
V
_______________________________________________________________________________________  
5
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 20V to 76V, V  
= 18V, C  
= 4.7µF, C  
= 1µF, C  
= 1µF, R  
PWMNEG  
= 24k, C  
= 100pF, C  
=
POSINPWM  
REG15  
DRVDEL  
REG15  
REG9  
REG5  
= V  
RCOSC  
= V  
RCOSC  
= 0, T = T  
BST  
0.22µF, R  
= 10k, C  
= 0.22µF, V  
= V  
= V  
= V  
to T  
, unless  
DRVDEL  
CSS  
CSP  
CSN  
RAMP  
NEGIN  
A
MIN  
MAX  
otherwise noted. Typical values are at V  
unless otherwise noted.)  
= 48V, T = +25°C, unless otherwise noted. All voltages are referred to PWMNEG,  
POSINPWM  
A
PARAMETER  
DEN Hysteresis  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
MAX5043 only  
MAX5043 only, looking into DEN  
124  
DEN Input Resistance  
18  
55  
kΩ  
SUPPLY CURRENT  
From V  
= V  
= 76V,  
POSINPWM  
POSINHS  
2
6
3
CSS shorted to PWMNEG, REG15 = 18V  
From REG15 = 18V, V  
=
POSINHS  
V
= 76V, CSS shorted to  
8.5  
POSINPWM  
Supply Current  
mA  
PWMNEG  
From REG15 = 18V, V  
=
POSINHS  
20  
V
= 76V, V  
= V  
=
XFRMRH  
POSINPWM  
DRNH  
V
= V  
= 0V  
XFRMRL  
SRC  
MAX5042 only, V  
= V  
=
POSINPWM  
POSINHS  
Standby Supply Current  
0.6  
1
mA  
V
V
= V  
= V  
= 76V,  
HSDRAIN  
PWMNEG  
PWMPNEG  
HSEN = NEGIN  
HOT-SWAP CONTROLLER (MAX5042 Only)  
POSINHS with respect to NEGIN, voltage  
rising  
Hot-Swap UVLO Threshold  
27  
34  
Hot-Swap UVLO Hysteresis  
Hot-Swap UVLO Resistance  
Startup Delay  
3.1  
V
Looking into HSEN  
18  
50  
3
55  
350  
25  
k  
ms  
ms  
From HSEN rising to HSOK falling  
From HSEN falling to HSOK rising  
165  
10  
HSEN Turn-Off Delay  
HSOK Output-High Leakage  
Current  
1
µA  
HSEN Reference Threshold  
HSEN Hysteresis  
Rising with respect to NEGIN  
Sinking 5mA  
1.11  
7.5  
1.35  
V
mV  
V
124  
10  
HSOK Output Low Voltage  
HSGATE Voltage High  
Hot-Swap Slew Rate  
0.4  
10.0  
V
C = 10µF, from HSDRAIN to NEGIN  
L
V/ms  
6
_______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Typical Operating Characteristics  
(V  
= 20V, T = +25°C, unless otherwise noted.)  
A
POSINPWM  
HOT-SWAP UNDERVOLTAGE LOCKOUT  
THRESHOLD vs. TEMPERATURE  
HOT-SWAP GATE VOLTAGE  
vs. INPUT VOLTAGE  
HOT-SWAP STARTUP DELAY  
vs. TEMPERATURE  
32  
31  
30  
29  
28  
27  
26  
8.73  
8.72  
8.71  
8.70  
8.69  
175  
170  
165  
160  
155  
150  
V
RISING  
POSINHS  
V
FALLING  
POSINHS  
-50 -25  
0
25  
50  
75 100 125  
20  
30  
40  
50  
60  
70  
80  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
PWM UNDERVOLTAGE LOCKOUT  
THRESHOLD vs. TEMPERATURE  
HOT-SWAP STARTUP WAVEFORM  
MAX5042 toc04  
32  
V
HSGATE  
5V/div  
31  
30  
29  
28  
27  
26  
OV  
V
RISING  
POSINPWM  
V
HSDRAIN  
20V/div  
OV  
V
FALLING  
V
POSINPWM  
HSOK  
20V/div  
100kΩ  
PULLUP  
OV  
-50 -25  
0
25  
50  
75 100 125  
10ms/div  
TEMPERATURE (°C)  
POSINPWM INPUT CURRENT, REG15  
INPUT CURRENT vs. INPUT VOLTAGE  
OPERATING FREQUENCY  
vs. TEMPERATURE  
POSINPWM INPUT CURRENT, REG15  
INPUT CURRENT vs. TEMPERATURE  
6
5
4
3
2
1
0
350  
330  
310  
290  
270  
250  
230  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
I
REG15  
R
= 25k, C  
= 100pF  
RCOSC  
RCOSC  
I
, V  
= 76V  
REG15 POSINPWM  
I
POSINPWM  
I
, V  
= 76V  
POSINPWM POSINPWM  
R
= 19k, C  
= 100pF  
RCOSC  
RCOSC  
50  
V = 18V, CSS = 0,  
REG15  
V
= 18V, CSS = 0,  
REG15  
XFRMRH = 0, NO SWITCHING  
50 60 70  
INPUT VOLTAGE (V)  
XFRMRH = 0, NO SWITCHING  
25 50 75 100 125  
TEMPERATURE (°C)  
20  
30  
40  
80  
-50 -25  
0
25  
75 100 125  
-50 -25  
0
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Typical Operating Characteristics (continued)  
(V  
= 20V, T = +25°C, unless otherwise noted.)  
A
POSINPWM  
REG15 VOLTAGE  
vs. REG15 LOAD CURRENT  
MAXIMUM DUTY CYCLE  
vs. TEMPERATURE  
15.0  
REG15 VOLTAGE vs. INPUT VOLTAGE  
15.0  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
14.3  
50  
49  
48  
47  
46  
14.8  
14.6  
14.4  
14.2  
MEASURED AT XFRMRL  
14.0  
0
20  
40  
60  
80  
20  
30  
40  
50  
60  
70  
80  
-50 -25  
0
25  
50  
75 100 125  
REG15 LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
REG9 OUTPUT VOLTAGE  
vs. REG15 VOLTAGE  
REG9 VOLTAGE  
vs. REG9 LOAD CURRENT  
REG5 VOLTAGE  
vs. REG5 LOAD CURRENT  
9.4  
9.3  
9.2  
9.1  
9.0  
9.30  
9.25  
9.20  
9.15  
9.10  
9.05  
9.00  
5.1  
V
= 48V  
V
= 20V  
POSINPWM  
V
= 20V  
REG15  
REG15  
5.0  
4.9  
4.8  
4.7  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
0
4
8
12  
16  
20  
REG15 VOLTAGE (V)  
REG9 LOAD CURRENT (mA)  
REG5 LOAD CURRENT (mA)  
SOFT-START CURRENT  
vs. TEMPERATURE  
MINIMUM RCFF LEVEL, MINIMUM OPTO  
LEVEL vs. TEMPERATURE  
REG5 OUTPUT VOLTAGE  
vs. REG15 VOLTAGE  
33  
32  
31  
30  
29  
28  
27  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
V
= 48V  
POSINPWM  
V
RCFF  
V
OPTO  
I
INTO OPTO AND  
PULLUP  
RCFF = 2mA, CSS = 0  
-50 -25 25  
TEMPERATURE (°C)  
-50 -25  
0
25  
50  
75 100 125  
0
50  
75 100 125  
20  
25  
30  
REG15 VOLTAGE (V)  
35  
40  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Typical Operating Characteristics (continued)  
(V  
= 20V, T = +25°C, unless otherwise noted.)  
A
POSINPWM  
CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
CURRENT-LIMIT PROPAGATION DELAY  
CPWM PROPAGATION DELAY  
vs. TEMPERATURE  
vs. TEMPERATURE  
160  
158  
156  
154  
152  
150  
170  
160  
150  
140  
130  
120  
110  
100  
180  
160  
140  
120  
100  
80  
MEASURED FROM RAMP RISING  
TO XFRMRL RISING  
MEASURED FROM CSP RISING  
TO XFRMRL RISING  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PPWM TO XFRMRL SKEW  
FAULT INTEGRATION CURRENT  
vs. TEMPERATURE  
vs. R  
CSA OFFSET vs. TEMPERATURE  
DRVDEL  
300  
260  
220  
180  
140  
100  
80  
79  
78  
77  
76  
75  
220  
215  
210  
205  
200  
MEASURED FROM PPWM RISING  
TO XFRMRL FALLING  
10  
20  
30  
40  
50  
60  
70  
80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
R
(k)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRVDEL  
FAULT INTEGRATION SHUTDOWN VOLTAGE  
vs. TEMPERATURE  
FAULT INTEGRATION RESTART VOLTAGE  
vs. TEMPERATURE  
POWER FETs ON-RESISTANCE  
vs. TEMPERATURE  
2.8  
2.7  
2.6  
2.5  
2.4  
2.00  
1.95  
1.90  
1.85  
1.80  
140  
120  
100  
80  
HIGH-SIDE FET  
LOW-SIDE FET  
60  
40  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5042  
MAX5043  
1, 2, 14, 15,  
40, 42–45, 56 40, 42–45, 56  
1, 2, 14, 15,  
N.C.  
No Connection. Not internally connected.  
Voltage-Mode PWM Ramp. Connect a resistor to the input supply and a capacitor to  
PWMNEG for input voltage feed-forward. Input voltage feed-forward provides  
instantaneous input-voltage transient rejection and constant loop gain with varying  
input voltage.  
3
4
3
4
RCFF  
PWM Ramp Input. For voltage-mode control, connect RAMP to RCFF. For current-  
mode control, connect RAMP to CSOUT, the output of the current-sense amplifier.  
RAMP  
Inverting Input of the PWM Comparator. Connect OPTO to the collector of the  
optotransistor. Connect a pullup resistor from OPTO to REG5.  
5
6
7
5
6
7
OPTO  
CSS  
Soft-Start. Connect a capacitor from CSS to PWMNEG to soft-start the converter.  
Boost-Capacitor Bypass for High-Side MOSFET Gate Drive. Connect a 0.1µF  
capacitor from BST to XFRMRH for the internal high-side MOSFET driver.  
BST  
Low-Side MOSFET Driver Supply. Bypass DRVIN with a 0.22µF capacitor to  
PWMPNEG.  
8
9
8
9
DRVIN  
Low-Side MOSFET Driver Return. Connect PWMPNEG externally to PWMNEG with a  
short trace.  
PWMPNEG  
Oscillator Timing Resistor and Capacitor Connection. Connect a capacitor from  
RCOSC to PWMNEG and a resistor from RCOSC to REG5. The switching frequency  
is half the frequency of the sawtooth signal at this connection.  
10  
10  
RCOSC  
Fault Integration Input. Use FLTINT in addition to cycle-by-cycle current limit. During  
persistent current-limit faults, a capacitor connected to FLTINT charges with an  
internal 80µA current source. Switching terminates when the voltage reaches 2.7V.  
An external resistor connected in parallel discharges the capacitor. Switching  
resumes when the voltage drops to 1.8V.  
11  
12  
13  
11  
12  
13  
FLTINT  
SYNC  
Synchronization Input. The switching frequency of the power supply is half the  
synchronization frequency, ensuring less than 50% maximum duty cycle.  
Latched Shutdown Input. Pull PWMSD low with respect to PWMNEG to stop  
switching. To restart, release PWMSD and cycle the input supply. Do not leave  
PWMSD unconnected. Use PWMSD to prevent catastrophic secondary rectifier  
overheating by monitoring the temperature and issuing a shutdown command with  
an optocoupler. Connect PWMSD to REG5 when not used.  
PWMSD  
16, 17, 20,  
21, 24  
16, 17, 20,  
21, 24  
Source Connection for the Internal Low-Side Power MOSFET. Connect SRC to  
PWMPNEG with a low-value resistor for current limiting.  
SRC  
18, 19, 22, 23 18, 19, 22, 23  
XFRMRL  
POSINHS  
Low-Side Connection for the Isolation Transformer  
Hot-Swap Controller Positive Input Supply (MAX5042 Only). Connect POSINHS  
along with POSINPWM to the most positive rail of the input supply.  
25  
10 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX5042  
MAX5043  
Hot-Swap OK (MAX5042 Only). HSOK’s open-drain output is forced to NEGIN upon  
hot-swap completion.  
26  
HSOK  
Hot-Swap Enable (MAX5042 Only). HSEN is the center point of the internal hot-swap  
UVLO divider. Use an external voltage-divider or a 100kpullup resistor to the most  
positive rail to override.  
27  
HSEN  
Negative Supply Input (MAX5042 Only). NEGIN connects to the most negative input  
supply rail. NEGIN provides the hot-swap circuit’s most negative connection. NEGIN  
is at the same potential as the IC substrate.  
28, 29  
NEGIN  
Hot-Swap Gate (MAX5042 Only). Connect HSGATE to the gate of the external hot-  
swap MOSFET.  
30  
31  
32  
33  
34  
35  
32  
33  
34  
HSGATE  
HSDRAIN  
CSOUT  
CSP  
Hot-Swap MOSFET Drain Sense (MAX5042 Only). Connect HSDRAIN to the drain of  
the external hot-swap MOSFET.  
Current-Sense Amplifier Output. The amplifier has a gain of 10. Connect CSOUT to  
RAMP for current-mode control.  
Positive Current-Sense Connection. Place the current-sense resistor as close as  
possible to the device and use a Kelvin connection.  
Negative Current-Sense Connection. Place the current-sense resistor as close as  
possible to the device and use a Kelvin connection.  
CSN  
26, 28, 29,  
31, 35  
PWMNEG  
Analog Signal Return for the PWM Section  
Driver Delay Adjust Connection. Connect a resistor and a 0.22µF capacitor from  
DRVDEL to PWMNEG. The resistor at DRVDEL controls the skew between the  
PPWM signal and the power pulse applied to the internal power MOSFETs. Use in  
conjunction with a secondary-side synchronous-rectifier controller. The skew allows  
for the optimization of the synchronous-rectifier drive pulse.  
36  
36  
DRVDEL  
PWM Pulse Output. PPWM leads the internal power MOSFET pulse by an amount  
determined with the resistor value at DRVDEL.  
37  
38  
39  
41  
37  
38  
39  
41  
PPWM  
REG9  
REG5  
REG15  
9V Internal Regulator Output. Use primarily as a source for the internal gate drivers.  
Bypass REG9 to PWMNEG with a 1µF ceramic capacitor.  
5V Internal Regulator Output. Bypass REG5 to PWMNEG with a 1µF ceramic  
capacitor.  
15V Startup Regulator Output. A voltage greater than 18V on REG15 disables the  
regulator. Bypass REG15 to PWMNEG with at least one 1µF ceramic capacitor.  
PWM Undervoltage Lockout. UVLO is the center point of the PWM undervoltage  
lockout divider. Use an external divider or a 100kpullup resistor to POSINPWM to  
override. Connect the external resistor-divider network from POSINPWM to  
PWMNEG.  
46  
46  
UVLO  
______________________________________________________________________________________ 11  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX5042  
MAX5043  
PWM Analog Positive-Supply Input. Connect POSINPWM to the most positive input  
supply rail.  
47  
25, 47  
POSINPWM  
Drain Connection of the Internal High-Side PWM Power MOSFET. Connect DRNH to  
the most positive rail of the input supply.  
48, 51, 54, 55 48, 51, 54, 55  
49, 50, 52, 53 49, 50, 52, 53  
DRNH  
XFRMRH  
High-Side Connection for the Isolation Transformer  
Delayed Enable Input (MAX5043 Only). DEN is the center point of the delayed  
enable divider. Use an external voltage-divider or a 100kpullup resistor to the  
most positive rail to override.  
27  
30  
DEN  
N.C.  
No Connection (MAX5043 Only). Leave unconnected.  
Detailed Description  
+V  
POSINPWM  
The MAX5042/MAX5043 PWM multimode power ICs  
are designed for the primary side of voltage or current-  
mode isolated, forward or flyback power converters.  
These devices provide a high degree of integration  
aimed at reducing the cost and PC board area of isolat-  
ed output power supplies. Use the MAX5042/MAX5043  
primarily for 24V, 42V, or 48V power bus applications.  
MAX5042  
BULK STORAGE CAPACITOR  
(HOT-SWAPPED CAPACITOR)  
QH  
C
IN  
L
T1  
PWM  
CIRCUIT  
WITH  
V
OUT  
C
OUT  
INTEGRATED  
FETs  
QL  
The MAX5042/MAX5043 provide a complete system  
capable of delivering up to 50W of output power. The  
MAX5042 contains a hot-swap controller in addition to  
the PWM and power MOSFETs. The hot-swap section  
requires an external MOSFET (QHS). Figure 1 details  
PWMNEG, PWMPNEG  
QHS  
INTEGRATED  
HOT-SWAP  
CONTROLLER  
EXTERNAL  
HOT-SWAP FET  
the MAX5042 conceptual block diagram. C represents  
IN  
NEGIN  
the input bulk storage capacitance of the PWM circuit  
that requires the soft-start to reduce the inrush current  
from the backplane. When input power is applied,  
Figure 1. Simplified Diagram of a MAX5042-Based Isolated  
Power Supply  
capacitor C is completely discharged and QHS is off.  
IN  
The MAX5043, detailed in Figure 2, does not contain an  
integrated hot-swap controller. The MAX5043 begins  
operating when the input voltage exceeds both of the  
undervoltage lockout voltages (at UVLO and DEN pins)  
for 10ms.  
An applied voltage higher than the default undervoltage  
lockout threshold of the hot-swap controller (30.5V) for  
more than 165ms (internal turn-on delay) causes the  
gate voltage of QHS to start gradually increasing. This  
results in a controlled slew-rate turn-on. The drain volt-  
age of QHS falls at a rate of approximately 10V/ms,  
drawing a current load from the backplane of approxi-  
The MAX5042/MAX5043 support both forward and fly-  
back power topologies. In forward mode, the maximum  
output power is approximately 50W. In flyback mode,  
the maximum output power is approximately 20W. The  
amount of power dissipated by the package limits the  
output power. The MAX5042/MAX5043’s QFN package  
features an exposed metal pad on the bottom of the  
package. Solder the exposed pad directly to the most  
negative supply in the system. Use a large copper area  
to improve heat dissipation. Facilitate heat transfer with  
thermal vias.  
mately 1A for each 100µF of C capacitance. The  
IN  
MAX5042’s PWM block is prevented from starting up  
until the QHS MOSFET is fully enhanced. After QHS  
completely turns on and the voltage across capacitor  
C
is above the default startup voltage (31V) of the  
IN  
PWM section, the hot swap enables the PWM block and  
the soft-start cycle begins. Soft-start limits the amount of  
current initially drawn from the primary during startup  
and also prevents possible output-voltage overshoots.  
12 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Power Topology  
The two-switch forward-converter topology offers out-  
standing robustness against faults and transformer satu-  
ration while affording efficient use of the integrated  
75mpower MOSFETs. Voltage-mode control with feed-  
forward compensation allows the rejection of input sup-  
ply disturbances within a single cycle similar to that of  
current-mode controlled topologies. This control method  
offers some significant benefits when compared with  
current-mode control. These benefits include:  
+V  
POSINPWM  
MAX5043  
QH  
BULK STORAGE CAPACITOR  
L
C
IN  
T1  
PWM  
CIRCUIT  
WITH  
V
OUT  
C
OUT  
INTEGRATED  
FETs  
QL  
• No minimum duty-cycle requirement due to current-  
signal filtering or blanking.  
• Clean modulator ramp and higher amplitude for  
increased stability.  
PWMNEG  
• Stable bias point of the optocoupler LED and photo-  
transistor for maximized control-loop bandwidth (in  
current-mode applications, the optocoupler bias  
point is output-load dependent).  
Figure 2. Simplified Diagram of a MAX5043-Based Isolated  
Power Supply  
• Predictable loop dynamics simplifying the design of  
the control loop.  
Set the switching frequency with a resistor and a  
capacitor at RCOSC. Switching at 250kHz ensures  
switching losses are minimal and external power pas-  
sives are small enough for a compact circuit.  
The two-switch power topology recovers energy stored  
in both the magnetizing and parasitic leakage induc-  
tances of the transformer. Figure 7 shows the schemat-  
ic diagram of a 48V input and 5V, 8A output isolated  
power supply built with the MAX5042.  
The MAX5042/MAX5043 incorporate an advanced set of  
protection features that make them uniquely suitable  
when high reliability and comprehensive fault protection  
are required, as in telecommunication equipment power-  
supply applications. The MAX5042/MAX5043 15V linear  
regulator output powers the 9V and 5V regulators used to  
drive the gates and internal circuitry. A tertiary winding  
connects to REG15 through a rectifier to power the  
device after startup and reduces power dissipation in the  
MAX5042/MAX5043 package. When REG15 is externally  
powered, the internal 15V regulator is disabled.  
The MAX5042/MAX5043 also support current-mode con-  
trol. Current-mode control has advantages such as a sin-  
gle-pole power circuit and a small-signal transfer  
function that simplify the design of power supplies with  
widely varying output capacitors.  
Undervoltage Lockout  
The MAX5042 has two UVLO functions. Both the hot-  
swap section and the PWM section contain their own  
undervoltage lockout comparators (HSEN and UVLO,  
respectively). The MAX5043 lacks the hot-swapping  
function, but retains the PWM UVLO and the deglitched  
undervoltage lockout/power-on reset. In both cases,  
internal resistors set a default input-voltage enable  
threshold of 31V (typ).  
Figures 3 and 4 show the block diagrams of the MAX5042  
and MAX5043, respectively. The power-OK signals from  
the hot-swap section, regulators, thermal shutdown, and  
UVLO combine to generate the internal shutdown signal  
SHDN. When asserted, SHDN disables the comparators  
and oscillator. Deasserting SHDN releases the compara-  
tors and oscillators. The falling edge of SHDN is delayed  
allowing the internal signals to settle before the PWM puls-  
es appear. During the time between the falling edge of  
SHDN and its delayed signal, the 10internal MOSFET  
(QB) from XFRMRH to PWMPNEG turns on, charging the  
BST capacitor. After startup, this MOSFET also turns on  
for approximately 300ns at each half period to help  
charge the BST capacitor.  
The PWM default input voltage threshold value can be  
adjusted by using an external divider in parallel with the  
internal divider. The tolerances of the external divider  
resistors dominate the precision of the UVLO trip point if  
their values are smaller than those of the internal divider.  
Override the default threshold by using:  
R
×R ×R × V -V  
(
)
Le  
Li  
Hi  
IN REF  
R
=
He  
V
×R  
R
+R -R ×R × V -V  
(
)
(
)
REF  
Hi  
Li  
Le  
Le  
Li  
IN REF  
______________________________________________________________________________________ 13  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
MAX5042  
REG15 OK  
OVT  
41  
47  
46  
REG15  
(15V)  
REG15  
POSINPWM  
UVLO  
1.2M  
REG9 OK  
39  
38  
REG5  
(5V)  
REG9  
(9V)  
REF  
(1.25V)  
REG5  
REG9  
REG5 OK  
REF OK  
REG15 OK  
REG5 OK  
UVLO  
CUVLO  
1.25V  
1.125V  
7.5V  
50kΩ  
3
RCFF  
PWMNEG  
5V  
7.5V  
"1"  
D
37  
36  
PPWM  
IFLT  
DRVDEL  
80µA  
Q
7
BST  
48  
OVRLD  
PWMNEG  
QH  
0.1Ω  
11  
DRNH (51, 54, 55)  
FLTINT  
LEVEL  
SHIFT  
R
2.3V/1.6V  
LEADING-  
EDGE  
DELAY  
RES  
4
5
R
S
Q
RAMP  
OPTO  
49  
XFRMRH (50, 52, 53)  
CPWM  
5V  
CLK  
R
SHDN  
OSC  
Q
32µA  
T-FF  
QB  
10Ω  
6
CSS  
LEADING-  
EDGE  
DELAY  
ONE  
SHOT  
OVT  
UVLO  
7.5V  
REFOK  
35  
13  
8
THERMAL  
PWMNEG  
PWMSD  
REG15OK  
REG9OK  
REG5OK  
OVRLD  
DRVIN  
SHUTDOWN  
+150°C  
12°C HYSTERESIS  
OVT  
QL  
0.1Ω  
18  
XFRMRL (19, 22, 23)  
PWMNEG  
R
S
Q
16  
9
SRC (17, 20, 21, 24)  
PWMPNEG  
UVLO  
10  
12  
RCOSC  
SYNC  
33  
34  
CSP  
CSN  
ILIM  
10MHz  
150mV  
GAIN = 10  
IAMP  
32  
CSOUT  
200mV  
LEVEL SHIFT  
TO PWM  
HOT-SWAP SECTION  
25  
27  
28  
31  
30  
26  
POSINHS  
HSEN  
HSDRAIN  
HSGATE  
HSOK  
HOT-SWAP  
CONTROL  
LOGIC  
840kΩ  
35kΩ  
40Ω  
80V, DMOS  
460kΩ  
3V  
NEGIN (29)  
Figure 3. Block Diagram of the MAX5042 Power IC  
14 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
MAX5043  
REG15 OK  
OVT  
41  
47  
46  
REG15  
(15V)  
REG15  
POSINPWM  
UVLO  
1.2MΩ  
REG9 OK  
39  
38  
REG5  
(5V)  
REG9  
(9V)  
REF  
(1.25V)  
REG5  
REG9  
REG5 OK  
REF OK  
REG5 OK  
REG15 OK  
UVLO  
CUVLO  
1.25V  
1.125V  
7.5V  
50kΩ  
3
RCFF  
PWMNEG  
5V  
7.5V  
"1"  
D
37  
36  
PPWM  
IFLT  
3Ω  
DRVDEL  
80µA  
Q
7
BST  
48  
OVRLD  
PWMNEG  
QH  
0.1Ω  
11  
DRNH (51, 54, 55)  
FLTINT  
LEVEL  
SHIFT  
R
2.3V/1.6V  
LEADING-  
EDGE  
DELAY  
RES  
4
5
R
S
Q
RAMP  
OPTO  
49  
XFRMRH (50, 52, 53)  
CPWM  
5V  
CLK  
R
SHDN  
OSC  
Q
32µA  
T-FF  
QB  
10Ω  
6
CSS  
LEADING-  
EDGE  
DELAY  
ONE  
SHOT  
OVT  
UVLO  
7.5V  
REFOK  
35  
13  
50Ω  
8
THERMAL  
PWMNEG (26)  
PWMSD  
REG15OK  
REG9OK  
REG5OK  
OVRLD  
DRVIN  
SHUTDOWN  
+150°C  
12°C HYSTERESIS  
OVT  
QL  
0.1Ω  
18  
XFRMRL (19, 22, 23)  
PWMNEG  
R
S
Q
16  
9
SRC (17, 20, 21, 24)  
PWMPNEG  
UVLO  
10  
12  
RCOSC  
SYNC  
33  
34  
CSP  
CSN  
ILIM  
10MHz  
150mV  
GAIN = 10  
IAMP  
32  
CSOUT  
200mV  
25  
27  
28  
POSINPWM  
DEN  
840kΩ  
10ms  
DELAY  
CDEN  
1.25V  
1.125V  
35kΩ  
3V  
PWMNEG (29, 31)  
Figure 4. Block Diagram of the MAX5043 Power IC  
______________________________________________________________________________________ 15  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
where R  
is the external high-side resistor, R is the  
Le  
He  
external low-side resistor, R is the internal high-side  
Hi  
resistor (1.2M, typ), R is the internal low-side resistor  
Le  
MAX5042/MAX5043  
DRVDEL  
R1  
(50k, typ), V  
is 1.27V (typ), and V is the desired  
IN  
REF  
threshold.  
C1  
0.22µF  
5V  
Use an external 100kpullup resistor to POSINPWM to  
override UVLO functionality for either lockout.  
R2  
PPWM  
Internal Regulators  
An internal high-voltage linear regulator provides a 15V  
output at REG15. This serves as the input to the 9V reg-  
ulator that provides bias for the internal MOSFET dri-  
vers. The 15V regulator also provides the bias for REG5,  
a 5V supply used both by internal as well as external cir-  
cuitry. Bypass the REG15, REG9, and REG5 regulators  
with 1µF ceramic capacitors. A voltage greater than 18V  
and less than 40V on REG15 disables the internal high-  
voltage startup regulator. The REG9 regulator steps  
down the voltage on REG15 to an output of 9V with a  
current limit of 100mA. The REG5 regulator steps down  
the voltage on REG15 to an output of 5V with a current  
limit of 40mA. Disabling the REG15 regulator by power-  
ing REG15 with an external power supply considerably  
reduces the internal power dissipation in the  
MAX5042/MAX5043. The voltage and power necessary  
to override the REG15 internal regulator can be generat-  
ed with a rectifier and an extra winding from the main  
transformer.  
C2  
PS9715  
OR EQUIVALENT  
HIGH-SPEED  
PWMNEG  
OPTOCOUPLER  
Figure 5. Secondary-Side Synchronous Rectifier Driver Using a  
High-Speed Optocoupler  
required to set the delay between the PPWM and the  
power pulse applied to the transformer:  
kΩ  
2ns  
R
=
t
100ns  
(
)
)
(
DRVDEL  
DRVDEL  
where t  
is the required delay from the rising edge  
of PPWM to the switching of the internal power MOSFETs.  
DRVDEL  
PWM Regulation  
The MAX5042/MAX5043 are multimode PWM power  
ICs supporting both voltage and current-mode control.  
Voltage-Mode Control and the PWM Ramp  
For voltage-mode control, the feed-forward PWM ramp  
is generated at RCFF. From RCFF connect a capacitor  
to PWMNEG and a resistor to POSINPWM. The ramp  
generated is applied to the noninverting input of the  
PWM comparator at RAMP and has a minimum voltage  
of 1.5V to 2.5V. The slope of the ramp is determined by  
the voltage at POSINPWM and affects the overall loop  
gain. The ramp peak must remain below the dynamic  
range of RCFF (0 to 5.5V). Assuming the maximum duty  
cycle approaches 50% at a minimum input voltage  
(PWM UVLO turn-on threshold), use the following for-  
mula to calculate the minimum value of either the ramp  
capacitor or resistor:  
Soft-Start  
Program the MAX5042/MAX5043 soft-start with an  
external capacitor between CSS and PWMNEG. When  
the device turns on, the soft-start capacitor (C  
)
CSS  
charges with a constant current of 33µA, ramping up to  
7.3V. During this time, OPTO is clamped to CSS + 0.6V.  
This initially holds the duty cycle lower than the value  
the regulator tries to impose, limiting the current inrush  
and the voltage overshoot at the secondary. When the  
MAX5042/MAX5043 turn off, the soft-start capacitor  
internally discharges to PWMNEG.  
Secondary-Side Synchronization  
The MAX5042/MAX5043 provide convenient synchro-  
nization of the secondary-side synchronous rectifiers.  
Figure 5 shows the connection diagram with a high-  
speed optocoupler. Choose an optocoupler with a  
propagation delay of less than 50ns.  
V
INUVLO  
R
× C  
RCFF  
RCFF  
2f × V  
S
rP-P  
where:  
For optimum results, adjust the resistor connected to  
DRVDEL to provide the required amount of delay  
between the leading edge of the PPWM signal and the  
turn-on of the power MOSFETs. Use the following formu-  
V
= the minimum input supply voltage (typically  
INUVLO  
the PWM UVLO turn-on voltage),  
f = the switching frequency,  
s
la to calculate the approximate resistance (R  
)
DRVDEL  
V
r
P-P  
= the peak-to-peak ramp voltage (2V, typ).  
16 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Maximize the signal-to-noise ratio by setting the ramp  
Oscillator and Synchronization  
Program the MAX5042/MAX5043 oscillator using an RC  
network at RCOSC with the resistor connected to REG5  
and the capacitor connected to PWMNEG. The PWM  
frequency is half the frequency at RCOSC.  
peak as high as possible. Calculate the low-frequency,  
small-signal gain of the power stage (the gain from the  
inverting input of the PWM comparator to the output)  
using the following formula:  
G
= N R  
SP RCFF  
C f  
RCFF S  
Use the following formula to calculate the oscillator  
components:  
PS  
where N = the secondary to primary power transformer  
SP  
turns ratio.  
1
R
=
RCOSC  
Current-Sense Amplifier and Current-Mode Control  
The MAX5042/MAX5043 can also be programmed for  
current-mode control (see Figure 6). This control  
method offers beneficial advantages for certain appli-  
cations. Current-mode control reduces the order of the  
output filter, allowing easier control-loop compensation.  
In current-mode control, the voltage across the current-  
sense resistor at SRC is amplified by the internal gain-  
of-10 amplifier IAMP. The cycle-by-cycle current-limit  
threshold is 156mV. This is the peak voltage amplified  
by IAMP. A 200mV offset is added to this voltage. The  
voltage at the output of the current-sense amplifier is:  
V
REG5  
V  
2f C  
+ C  
ln  
(
)
S
RCOSC  
PCB  
V
REG5  
TH  
where C  
= 14pF,  
PCB  
REG5 = 5V,  
f = switching frequency,  
S
V
TH  
= RCOSC peak trip level.  
The delay programmed by the resistor at DRVDEL lim-  
its the power MOSFET’s maximum duty cycle to less  
than 50 percent.  
SYNC allows synchronization of the MAX5042/MAX5043  
to an external clock. For proper synchronization, set the  
external SYNC frequency 15% to 20% higher than the  
programmed free-running frequency of the MAX5042/  
MAX5043’s internal oscillator. The actual switching  
frequency will be half the synchronizing frequency.  
V
= 2 + 10(V  
- V  
)
CSN  
CSOUT  
CSP  
The low-frequency, small-signal gain of the power  
stage (the gain from the inverting input of the PWM  
comparator to the output) can be calculated using the  
following formula:  
R
L
Integrating Fault Protection  
The integrating fault protection feature allows the  
MAX5042/MAX5043 to ignore transient overcurrent  
conditions for a programmable amount of time, giving  
the power supply time to behave like a current source  
to the load. This can happen, for example, under load-  
current transients when the control loop requests maxi-  
mum current to keep the output voltage from going out  
of regulation. Program the ignore time externally by  
connecting a capacitor to FLTINT. Under sustained  
overcurrent faults, the voltage across this capacitor  
ramps up toward the FLTINT shutdown threshold (typi-  
cally 2.7V). When FLTINT reaches the threshold, the  
power supply shuts down. A high-value bleed resistor  
connected in parallel with the FLTINT capacitor allows  
the capacitor to discharge toward the restart threshold  
(typically 1.8V). Crossing the restart threshold soft-  
starts the supply again.  
G
= N  
×
PS  
PS  
R
SENSE  
where N  
= the primary to secondary power trans-  
PS  
former turns ratio,  
R = the low-frequency output impedance,  
L
R
= the primary current-sense resistor value.  
SENSE  
MAX5042/MAX5043  
SRC  
RAMP  
CSP  
RS  
50mΩ  
(APPROXIMATELY  
35W TO 40W)  
CSOUT  
OPTO  
CSN  
PWMPNEG  
PWMNEG  
The ILIM comparator provides cycle-by-cycle current  
limiting with a typical threshold of 156mV. The fault inte-  
gration circuit works by forcing an 80µA current out of  
FLTINT for one clock cycle every time the current-limit  
comparator (Figures 3 and 4, ILIM) trips. Use the fol-  
lowing formula to calculate the approximate capaci-  
Figure 6. Simplified Connection Diagram for Current-Mode  
Control  
tance (C ) needed for the desired shutdown time.  
FLTINT  
______________________________________________________________________________________ 17  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Thermal Shutdown  
The MAX5042/MAX5043 feature internal thermal shut-  
down. Internal sensors monitor the high-power areas.  
Thermal faults arise from excessive dissipation in the  
power FETs or in the regulators. When the temperature  
limit is reached, switching is terminated and the regulator  
shuts down. The integration of thermal shutdown and the  
power MOSFETs result in a very robust power circuit.  
I
× t  
FLTINT SH  
1.4  
C
FLTINT  
where I  
= 80µA,  
FLTINT  
t
sh  
is the desired ignore time during which current-limit  
events from the current-limit comparator are ignored.  
Some testing may be required to fine tune the actual  
value of the capacitor.  
MAX5042 Hot-Swap Controller  
The MAX5042 integrates a PWM power IC with a hot-  
swap controller. The design allows a power supply built  
around the MAX5042 to be safely hot-plugged into a  
live backplane without causing a glitch on the power-  
supply rail. The hot-swap section operates from  
POSINHS to NEGIN. The MAX5042 only requires an  
external N-channel MOSFET to provide hot-swap con-  
trol. Figures 1 and 3 detail hot-swap functionality.  
Calculate the approximate bleed resistance (R  
needed for the desired recovery time using the follow-  
ing formula:  
)
FLTINT  
t
RT  
R
FLTINT  
2.3  
1.6  
C
ln  
FLTINT  
where t is the desired recovery time.  
RT  
Choose at least t = 10 x t . Typical values for t  
SH  
range from a few hundred microseconds to a few mil-  
liseconds.  
The MAX5042 controls an external N-channel power  
MOSFET placed in the negative power-supply pathway.  
When power is applied, the MAX5042 keeps the MOS-  
FET off. The MOSFET remains off indefinitely if HSEN is  
below 1.26V, POSINHS is below the undervoltage lock-  
out level (31V), or the die temperature exceeds  
+150°C. If none of these conditions exist for 165ms, the  
MAX5042 gradually turns on the MOSFET, allowing the  
voltage on HSDRAIN to fall no faster than 10V/ms.  
During this period, the PWM block remains in shut-  
down. The inrush current through the external MOSFET  
RT  
SH  
Shutdown Modes  
Latched Shutdown  
The MAX5042/MAX5043 feature a latched shutdown that  
terminates switching in the event of a serious fault.  
External faults in synchronously rectified power supplies  
cause a loss of control for the rectifiers. Either the body or  
the external Schottky diodes conduct, resulting in a very  
high power dissipation and a quick rise of the power-sup-  
ply temperature. A thermal sensor placed on the same  
ground plane as the secondary-side rectifiers can sense  
this catastrophic increase in temperature and issue a  
shutdown signal to PWMSD. Asserting PWMSD stops  
switching and latches the fault until the power is cycled.  
Connect PWMSD to REG5 to disable latched shutdown.  
(and therefore through the capacitor C ) is limited to a  
IN  
level proportional to its capacitance, and the constant  
HSDRAIN slew rate. After the MOSFET completely turns  
on, and HSDRAIN falls to its final value, the hot-swap  
period is terminated and the PWM section of the IC  
powers up.  
HSEN offers external control of the MAX5042, facilitat-  
ing power-supply sequencing. HSEN can also be used  
to change the undervoltage lockout level using an  
external divider network, if necessary. Undervoltage  
lockout keeps the external hot-swap MOSFET switched  
off as long as the magnitude of the input voltage is  
below the desired level. There is a 10ms turn-off delay  
on the HSEN signal.  
Functional Shutdown  
Shut down the MAX5042/MAX5043 by pulling UVLO to  
PWMNEG using an open-collector or open-drain transis-  
tor connected to PWMNEG. Pulling HSEN to NEGIN also  
shuts down the MAX5042 after a 10ms turn-off delay.  
Pulling DEN low also shuts down the MAX5043 with a  
1ms turn-off delay. When HSEN is used, the MAX5042  
goes through a full hot-swap startup sequence with a  
165ms startup delay. The MAX5043 also has a 10ms  
delay from when DEN asserts.  
A power-good output, HSOK, asserts when the external  
MOSFET completely turns on. HSOK is an open-drain  
output referenced to NEGIN, and can withstand up to  
80V above NEGIN.  
18 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Determining Hot-Swap Inrush Current  
Table 1. MAX5042 Suggested External  
Hot-Swap MOSFETs  
Calculate the hot-swap inrush current using the follow-  
ing formula:  
MAXIMUM I  
(A)  
SUGGESTED EXTERNAL MOSFET  
LOAD  
dV  
HSDRAIN  
dt  
0.25  
0.5  
1
IRFL110  
IRFL4310  
IRFR3910  
IRF540NS  
IRF1310NS  
IRF1310NS  
I
= C  
= C S  
IN HSLR  
C
IN  
IN  
where:  
2
C
IN  
= the load capacitance,  
3
S
is the MAX5042 hot-swap slew rate magnitude  
given in the Electrical Characteristics table.  
HSLR  
4
For example, assuming an input bulk capacitance of  
100µF, and using the typical value of 10V/ms for the  
slew rate, the calculated inrush current is 1A. See Table  
1 for suggested external hot-swap MOSFETs.  
Typical Application Circuits  
V
IN+  
32V TO 72V  
C1  
220µF  
100V  
R12  
200kΩ  
1%  
L1  
4.4µH  
POSINPWM  
DRNH  
UVLO  
D3  
BST  
D1  
5V  
8A  
RAMP  
RCFF  
REG9  
DRVIN  
FLTINT  
DRVDEL  
SYNC  
C6  
0.1µF  
T1  
XFRMRH  
R11  
20Ω  
1%  
C17  
150µF  
6.3V  
C18  
150µF  
6.3V  
C4  
0.1µF  
U1  
MAX5042  
C16  
0.001µF  
XFRMRL  
REG15  
R9  
D2  
SGND  
R22  
10kΩ  
15Ω  
D4  
C5  
0.0047µF  
R13  
1MΩ  
PWMSD  
C30  
0.68µF  
100V  
C7  
1µF  
C25  
0.22µF  
C3  
1µF  
CSP, SRC  
R14  
10kΩ  
R20  
10kΩ  
R4  
10Ω  
REG5  
PWMNEG,  
NEGIN HSGATE HSDRAIN CSN PWMPNEG OPTO  
C9  
C12  
RCOSC HSEN CSS  
220pF 0.1µF  
R15  
24.9kΩ  
1%  
C11  
0.1µF  
R10  
33mΩ  
1%  
C13  
C14  
R3  
150Ω  
1%  
R1  
25.5kΩ  
1%  
1µF  
100pF  
C19  
0.15µF  
C8  
0.33µF  
C20  
0.1µF  
100V  
N1  
E
LED  
FB  
R2  
8.25kΩ  
1%  
(HOT-SWAP MOSFET)  
R6  
200Ω  
1%  
C15  
0.1µF  
U2  
FOD2712  
R21  
1.24kΩ  
1%  
NEGIN  
COMP  
GND  
C
R5  
10Ω  
1%  
Figure 7. MAX5042 Typical Application Circuit (48V Power Supply with Hot-Swap Capability)  
______________________________________________________________________________________ 19  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Typical Application Circuits (continued)  
V
IN+  
32V TO 72V  
C1  
220µF  
100V  
R12  
200kΩ  
1%  
L1  
4.4µH  
POSINPWM  
DRNH  
UVLO  
D3  
BST  
D1  
5V  
10A  
RAMP  
RCFF  
REG9  
C6  
0.1µF  
T1  
XFRMRH  
C17  
150µF  
6.3V  
C18  
150µF  
6.3V  
DRVIN  
FLTINT  
DRVDEL  
SYNC  
C4  
0.1µF  
U1  
XFRMRL  
REG15  
R9  
15Ω  
D2  
MAX5043  
SGND  
R22  
D4  
10kΩ  
R13  
PWMSD  
C7  
0.68µF  
100V  
C13  
1µF  
1MΩ  
C25  
0.22µF  
1µF  
R14  
10kΩ  
R20  
10kΩ  
R4  
10Ω  
REG5  
PWMNEG,  
CSN  
C9  
C12  
RCOSC  
CSS  
PWMNEG  
OPTO SRC, CSP  
220pF 0.1µF  
R15  
24.9kΩ  
1%  
C11  
0.1µF  
R10  
33mΩ  
1%  
C13  
C14  
R3  
150Ω  
1%  
R1  
25.5kΩ  
1%  
1µF  
100pF  
C19  
0.15µF  
PWMNEG  
C8  
0.33µF  
E
LED  
FB  
R2  
8.25kΩ  
1%  
R6  
200Ω  
1%  
C15  
0.1µF  
U2  
FOD2712  
R21  
1.24kΩ  
1%  
COMP  
GND  
C
R5  
10Ω  
1%  
Figure 8. MAX5043 Typical Application Circuit (48V Power Supply without Hot-Swap Capability, this Circuit has not been Tested)  
20 ______________________________________________________________________________________  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Pin Configurations  
TOP VIEW  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
9
42 N.C.  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
9
42 N.C.  
41 REG15  
40 N.C.  
41 REG15  
40 N.C.  
RCFF  
RCFF  
RAMP  
OPTO  
39 REG5  
RAMP  
OPTO  
39 REG5  
38 REG9  
38 REG9  
CSS  
37 PPWM  
36 DRVDEL  
35 PWMNEG  
34 CSN  
CSS  
37 PPWM  
36 DRVDEL  
35 PWMNEG  
34 CSN  
BST  
BST  
MAX5042ATN  
MAX5043ETN  
DRVIN  
PWMPNEG  
DRVIN  
PWMPNEG  
RCOSC 10  
33 CSP  
RCOSC 10  
FLTINT 11  
SYNC 12  
PWMSD 13  
N.C. 14  
33 CSP  
FLTINT 11  
SYNC 12  
PWMSD 13  
N.C. 14  
32 CSOUT  
31 HSDRAIN  
30 HSGATE  
29 NEGIN  
32 CSOUT  
31 PWMNEG  
30 N.C.  
29 PWMNEG  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
THIN QFN  
THIN QFN  
EXPOSED PADDLE CONNECTED TO NEGIN.  
EXPOSED PADDLE CONNECTED TO PWMNEG.  
Chip Information  
TRANSISTOR COUNT: 35,247  
PROCESS: BiCMOS DMOS  
______________________________________________________________________________________ 21  
Two-Switch Power ICs with Integrated  
Power MOSFETs and Hot-Swap Controller  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5048

7.6A, 12ns, SOT23 MOSFET Driver
MAXIM

MAX5048A

7.6A, 12ns, SOT23/TDFN, MOSFET Driver
MAXIM

MAX5048AATT+

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEA, TDFN-6
MAXIM

MAX5048AATT+T

暂无描述
MAXIM

MAX5048AATT-T

7.6A, 12ns, SOT23/TDFN, MOSFET Driver
MAXIM

MAX5048AAUT

7.6 A BUF OR INV BASED MOSFET DRIVER, PDSO6, MO-178AB, SOT-23, 6 PIN
ROCHESTER

MAX5048AAUT#TG16

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX5048AAUT#TWG16

Buffer/Inverter Based MOSFET Driver
MAXIM

MAX5048AAUT+T

Buffer/Inverter Based MOSFET Driver, BICMOS, PDSO6,
MAXIM

MAX5048AAUT+TW

Buffer/Inverter Based MOSFET Driver,
MAXIM

MAX5048AAUT-T

7.6A, 12ns, SOT23 MOSFET Driver
MAXIM

MAX5048BATT

7.6A BUF OR INV BASED MOSFET DRIVER, DSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEA, TDFN-6
ROCHESTER