MAX5065 [MAXIM]

Dual-Phase, +0.6V to +3.3V Output Parallelable, Average-Current-Mode Controllers; 双相, + 0.6V至+ 3.3V输出可并联,平均电流模式控制器
MAX5065
型号: MAX5065
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Phase, +0.6V to +3.3V Output Parallelable, Average-Current-Mode Controllers
双相, + 0.6V至+ 3.3V输出可并联,平均电流模式控制器

控制器
文件: 总32页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3035; Rev 1; 11/03  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
General Description  
Features  
The MAX5065/MAX5067 dual-phase, PWM controllers  
provide high-output-current capability in a compact  
package with a minimum number of external compo-  
nents. The MAX5065/MAX5067 utilize a dual-phase,  
average-current-mode control that enables optimal use  
+4.75V to +5.5V or +8V to +28V Input Voltage  
Range  
Adjustable V  
OUT  
+0.6V to +3.3V (MAX5065)  
+0.8V to +3.3V (MAX5067)  
of low R  
MOSFETs, eliminating the need for exter-  
DS(ON)  
nal heatsinks even when delivering high output currents.  
Up to 60A Output Current  
Differential sensing enables accurate control of the out-  
put voltage, while adaptive voltage positioning provides  
optimum transient response. An internal regulator  
enables operation with input voltage ranges of +4.75V to  
+5.5V or +8V to +28V. The high switching frequency, up  
to 500kHz per phase, and dual-phase operation allow  
the use of low-output inductor values and input capacitor  
values. This accommodates the use of PC board-  
embedded planar magnetics achieving superior reliabili-  
ty, current sharing, thermal management, compact size,  
and low system cost.  
Internal Voltage Regulator for a +12V or +24V  
Power Bus  
Programmable Adaptive Output Voltage  
Positioning  
True Differential Remote Output Sensing  
Out-of-Phase Controllers Reduce Input  
Capacitance Requirement and Distribute Power  
Dissipation  
Average-Current-Mode Control  
Superior Current Sharing Between Individual  
Phases and Paralleled Modules  
The MAX5065/MAX5067 also feature a clock input  
(CLKIN) for synchronization to an external clock, and a  
clock output (CLKOUT) with programmable phase delay  
(relative to CLKIN) for paralleling multiple phases. The  
MAX5065/MAX5067 also limit the reverse current if the  
bus voltage becomes higher than the regulated output  
voltage. These devices are specifically designed to limit  
current sinking when multiple power-supply modules are  
paralleled. The MAX5065 offers an adjustable +0.6V to  
+3.3V output voltage. The MAX5067 output voltage is  
adjustable from +0.8V to +3.3V and features an overvolt-  
age protection and a power-good output signal.  
Accurate Current Limit Eliminates MOSFET and  
Inductor Derating  
Limits Reverse-Current Sinking in Paralleled  
Modules  
Integrated 4A Gate Drivers  
Selectable Fixed Frequency 250kHz or 500kHz Per  
Phase (Up to 1MHz for Two Phases)  
External Frequency Synchronization from 125kHz  
The MAX5065/MAX5067 operate over the extended  
temperature range (-40°C to +85°C). The MAX5065 is  
available in a 28-pin SSOP package. The MAX5067 is  
available in a 44-pin thin QFN package. Refer to the  
MAX5037A data sheet for a VRM 9.0/VRM 9.1-compati-  
ble, VID-controlled output voltage controller in a 44-pin  
QFN package.  
to 600kHz  
Internal PLL with Clock Output for Paralleling  
Multiple DC-DC Converters  
Thermal Protection  
28-Pin SSOP Package (MAX5065)  
44-Pin Thin QFN Package (MAX5067)  
Applications  
Servers and Workstations  
Ordering Information  
Point-of-Load High-Current/High-Density  
Telecom DC-DC Regulators  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 SSOP  
Networking Systems  
Large-Memory Arrays  
RAID Systems  
MAX5065EAI  
MAX5067ETH  
44 Thin QFN  
High-End Desktop Computers  
Selector Guide and Pin Configurations appear at end of  
data sheet.  
________________________________________________________________Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
ABSOLUTE MAXIMUM RATINGS  
IN to SGND.............................................................-0.3V to +30V  
BST_ to SGND........................................................-0.3V to +35V  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin SSOP (derate 9.5mW/°C above +70°C) ............762mW  
44-Pin Thin QFN (derate 27.0mW/°C above+70°C) ...2162mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DH_ to LX_ .................................-0.3V to [(V  
_ - V _) + 0.3V]  
BST  
LX  
DL_ to PGND..............................................-0.3V to (V  
BST_ to LX_ ..............................................................-0.3V to +6V  
+ 0.3V)  
CC  
V
V
to SGND............................................................-0.3V to +6V  
CC  
CC  
, V  
DD  
to PGND...................................................-0.3V to +6V  
SGND to PGND .....................................................-0.3V to +0.3V  
All Other Pins to SGND...............................-0.3V to (V + 0.3V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted. Typical specifications are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYSTEM SPECIFICATIONS  
8
28  
5.50  
10  
Input Voltage Range  
V
V
IN  
Short IN and V  
operation  
together for +5V input  
CC  
4.75  
Quiescent Supply Current  
Efficiency  
I
EN = V  
or SGND  
4
mA  
%
Q
CC  
η
I
= 52A (26A per phase)  
90  
LOAD  
OUTPUT VOLTAGE  
No load  
0.5952  
0.594  
0.6  
0.6  
0.8  
0.8  
0.6048  
0.6064  
0.8064  
0.808  
MAX5065  
MAX5067  
No load, V  
or V = +8V to +28V  
IN  
= +4.75V to +5.5V  
CC  
SENSE+ to SENSE- Accuracy  
(Note 4)  
V
No load  
0.7936  
0.792  
No load, V  
= +4.75V to +5.5V  
CC  
or V = +8V to +28V  
IN  
STARTUP/INTERNAL REGULATOR  
V
Undervoltage Lockout  
UVLO  
V
V
rising  
CC  
4.0  
4.15  
200  
5.1  
4.5  
V
mV  
V
CC  
V
Undervoltage Lockout  
CC  
Hysteresis  
Output Accuracy  
V
= +8V to +28V, I = 0 to 80mA  
SOURCE  
4.85  
5.30  
3
CC  
IN  
MOSFET DRIVERS  
Output Driver Impedance  
R
Low or high output  
1
4
A
ON  
Output Driver Source/Sink  
Current  
I
_, I  
DH  
_
DL  
Nonoverlap Time  
t
C
_ _ = 5nF  
DH /DL  
60  
ns  
NO  
OSCILLATOR AND PLL  
CLKIN = SGND  
CLKIN = V  
238  
475  
125  
250  
500  
262  
525  
600  
Switching Frequency  
f
kHz  
SW  
CC  
PLL Lock Range  
PLL Locking Time  
f
t
kHz  
µs  
PLL  
200  
PLL  
2
_______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted. Typical specifications are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
115  
85  
TYP  
120  
90  
60  
5
MAX  
125  
95  
UNITS  
PHASE = V  
CC  
CLKOUT Phase Shift  
(At f = 125kHz)  
φCLKOUT  
degrees  
PHASE = unconnected  
PHASE = SGND  
SW  
55  
65  
CLKIN Input Pulldown Current  
CLKIN High Threshold  
CLKIN Low Threshold  
I
3
7
µA  
V
CLKIN  
V
2.4  
CLKINH  
V
0.8  
V
CLKINL  
CLKIN High Pulse Width  
PHASE High Threshold  
PHASE Low Threshold  
PHASE Input Bias Current  
CLKOUT Output Low Level  
CLKOUT Output High Level  
CURRENT LIMIT  
t
200  
4
ns  
V
CLKIN  
V
PHASEH  
V
1
V
PHASEL  
I
-50  
4.5  
+50  
100  
µA  
mV  
V
PHASEBIAS  
V
I
= 2mA (Note 2)  
CLKOUTL  
SINK  
V
I
= 2mA (Note 2)  
CLKOUTH SOURCE  
Average Current-Limit Threshold  
Reverse Current-Limit Threshold  
Cycle-by-Cycle Current Limit  
V
CSP_ to CSN_  
45  
-3.9  
90  
48  
51  
mV  
mV  
mV  
CL  
V
CSP_ to CSN_  
-0.2  
130  
CLR  
V
CSP_ to CSN_ (Note 3)  
112  
260  
CLPK  
Cycle-by-Cycle Overload  
Response Time  
t
V
_ to V _ = +150mV  
CSN  
ns  
R
CSP  
CURRENT-SENSE AMPLIFIER  
CSP_ to CSN_ Input Resistance  
Common-Mode Range  
Input Offset Voltage  
R
_
4
k  
V
CS  
V
-0.3  
-1  
+3.6  
+1  
CMR(CS)  
V
mV  
V/V  
MHz  
OS(CS)  
Amplifier Gain  
A
V(CS)  
18  
4
3dB Bandwidth  
f
3dB  
CURRENT-ERROR AMPLIFIER (TRANSCONDUCTANCE AMPLIFIER)  
Transconductance  
Open-Loop Gain  
gm  
ca  
VOL(CE)  
550  
50  
µS  
dB  
A
No load  
DIFFERENTIAL VOLTAGE AMPLIFIER (DIFF)  
Common-Mode Voltage Range  
DIFF Output Voltage  
Input Offset Voltage  
Amplifier Gain  
V
-0.3  
+1.0  
V
V
CMR(DIFF)  
V
V
= V = 0  
SENSE-  
0.6  
CM  
SENSE+  
V
-1  
+1  
mV  
V/V  
MHz  
mA  
OS(DIFF)  
A
0.997  
1
3
1.003  
V(DIFF)  
3dB Bandwidth  
f
C
= 20pF  
DIFF  
3dB  
OUT(DIFF)  
Minimum Output Current Drive  
I
1.0  
50  
SENSE+ to SENSE- Input  
Resistance  
R
VS  
_
100  
kΩ  
_______________________________________________________________________________________  
3
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted. Typical specifications are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE-ERROR AMPLIFIER (EAOUT)  
Open-Loop Gain  
A
70  
3
dB  
MHz  
nA  
VOL(EA)  
Unity-Gain Bandwidth  
EAN Input Bias Current  
f
UGEA  
I
V
= +2.0V  
EAN  
-100  
810  
+100  
918  
B(EA)  
Error-Amplifier Output Clamping  
Voltage  
V
With respect to V  
mV  
CLAMP(EA)  
CM  
POWER-GOOD, PHASE FAILURE DETECTION, OVERVOLTAGE PROTECTION, AND THERMAL SHUTDOWN  
PGOOD goes low when V  
window  
is outside this  
OUT  
V
V
+6  
+8  
+10  
-8.5  
0.2  
1
OV  
PGOOD Trip Level (MAX5067)  
%V  
OUT  
PGOOD goes low when V  
window  
is outside this  
OUT  
-12.5  
-10  
UV  
PGOOD Output Low Level  
(MAX5067)  
V
I
= 4mA  
V
PGLO  
SINK  
PGOOD Output Leakage Current  
(MAX5067)  
I
PGOOD = V  
µA  
PG  
CC  
Phase Failure Trip Threshold  
(MAX5067)  
PGOOD goes low when CLP_ is higher  
than V  
V
2
V
V
PH  
PH  
OVPIN Trip Threshold (MAX5067)  
OVP  
With respect to SGND  
0.792  
190  
0.8  
280  
0.808  
370  
TH  
OVPIN Input Resistance  
(MAX5067)  
R
k  
OVPIN  
THERMAL SHUTDOWN  
Thermal Shutdown  
T
150  
8
°C  
°C  
SHDN  
Thermal-Shutdown Hysteresis  
EN INPUT  
EN Input Low Voltage  
EN Input High Voltage  
EN Pullup Current  
V
1
V
V
ENL  
V
3
ENH  
I
4.5  
5
5.5  
µA  
EN  
Note 1: Specifications from -40°C to 0°C are guaranteed by characterization but not production tested.  
Note 2: Guaranteed by design. Not production tested.  
Note 3: See Peak-Current Comparator section.  
Note 4: Does not include an error due to finite error amplifier gain. See the Voltage-Error Amplifier section.  
4
_______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Typical Operating Characteristics  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. OUTPUT CURRENT  
AND INPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT AND  
INTERNAL OSCILLATOR FREQUENCY  
EFFICIENCY vs. OUTPUT CURRENT  
AND INPUT VOLTAGE  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 500kHz  
f = 250kHz  
V = +12V  
IN  
V
IN  
= +12V  
V
IN  
= +5V  
V
IN  
= +5V  
V
f
= +1.8V  
OUT  
V
f
= 1V  
V
V
= +5V  
OUT  
OUT  
IN  
= 250kHz  
= 250kHz  
= +1.8V  
SW  
SW  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
(A)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
(A)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
OUTPUT CURRENT (A)  
I
I
OUT  
OUT  
EFFICIENCY vs. OUTPUT CURRENT  
AND OUTPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
AND OUTPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
OUT  
= +1.5V  
V
OUT  
= +1.5V  
V
OUT  
= +1.8V  
V
OUT  
= +1.8V  
V
OUT  
= +1V  
V
OUT  
= +1V  
V
V
f
= +24V  
OUT  
= 125kHz  
IN  
= +1.8V  
V
f
= +12V  
IN  
V
f
= +12V  
IN  
= 500kHz  
= 250kHz  
SW  
SW  
SW  
4
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
OUTPUT CURRENT (A)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
(A)  
0
8
12 16 20 24 28 32 36 40 44 48 52  
OUTPUT CURRENT (A)  
I
OUT  
SUPPLY CURRENT  
vs. LOAD CAPACITANCE PER DRIVER  
SUPPLY CURRENT  
vs. FREQUENCY AND INPUT VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE AND FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
250kHz  
125kHz  
V
= +24V  
IN  
9.0  
8.5  
V
IN  
= +12V  
8.0  
7.5  
V
C
C
= +12V  
= 22nF  
DH_  
IN  
DL_  
7.0  
V
SW  
= +12V  
V
IN  
= +5V  
IN  
EXTERNALCLOCK  
NO DRIVER LOAD  
6.5  
f
= 250kHz  
= 8.2nF  
6.0  
1
3
5
7
9
11  
13  
15  
100 150 200 250 300 350 400 450 500 550 600  
FREQUENCY (kHz)  
-40  
-15  
10  
35  
60  
85  
C
(nF)  
TEMPERATURE (°C)  
DRIVER  
_______________________________________________________________________________________  
5
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
OVERVOLTAGE THRESHOLD (PGOOD)  
vs. INPUT VOLTAGE  
UNDERVOLTAGE THRESHOLD (PGOOD)  
vs. INPUT VOLTAGE  
CURRENT-SENSE THRESHOLD  
vs. OUTPUT VOLTAGE  
10  
10  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
V
V
= +3.3V  
= +0.8V  
OUT  
V
V
= +3.3V  
= +0.8V  
OUT  
1
1
PHASE 2  
OUT  
OUT  
PHASE 1  
0.1  
0.1  
5.5  
4.7 4.8 4.9 5.0 5.1 5.2 5.3  
(V)  
5.5  
4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4  
(V)  
5.4  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  
V
V
IN  
V
OUT  
(V)  
IN  
DIFF OUTPUT ERROR  
vs. SENSE+ TO SENSE- VOLTAGE  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
AND ERROR AMP GAIN (R /R )  
DIFFERENTIAL AMPLIFIER BANDWIDTH  
F
IN  
MAX5065/67 toc14  
1.90  
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
90  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
IN  
= +12V  
NO DRIVER  
45  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
R /R = 40  
F
IN  
R /R = 20  
PHASE  
F
IN  
0
-45  
-90  
-135  
-180  
-225  
R /R = 10  
F
IN  
GAIN  
R /R = 7.5  
F
IN  
-270  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
V (V)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
(A)  
0.01  
0.1  
1
10  
I
FREQUENCY (MHz)  
SENSE  
LOAD  
V
LOAD REGULATION  
vs. INPUT VOLTAGE  
CC  
V
LINE REGULATION  
V
LINE REGULATION  
CC  
CC  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
V
= +24V  
IN  
I
= 0  
CC  
V
IN  
= +12V  
I
= 40mA  
CC  
V
IN  
= +8V  
DC LOAD  
15 30 45 60 75 90 105 120 135 150  
(mA)  
I
= 80mA  
9
CC  
0
8
10 12 14 16 18 20 22 24 26 28  
(V)  
8
10  
11  
12  
13  
I
V
IN  
V
IN  
(V)  
CC  
6
_______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
DRIVER RISE TIME  
vs. DRIVER LOAD CAPACITANCE  
HIGH-SIDE DRIVER (DH_)  
DRIVER FALL TIME  
vs. DRIVER LOAD CAPACITANCE  
SINK AND SOURCE CURRENT  
MAX5065/67 toc21  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DL_  
DH_  
DL_  
DH_  
DH_  
1.6A/div  
V
SW  
= +12V  
= 250kHz  
V = +12V  
IN  
DH_  
IN  
V
SW  
= +12V  
= 250kHz  
IN  
f
C
= 22nF  
f
1
6
11  
16  
21  
26  
31  
36  
100ns/div  
1
6
11  
16  
21  
26  
31  
36  
C
(nF)  
DRIVER  
C
(nF)  
DRIVER  
PLL LOCKING TIME  
250kHz TO 350kHz AND  
350kHz TO 250kHz  
LOW-SIDE DRIVER (DL_)  
SINK AND SOURCE CURRENT  
MAX5065/67 toc22  
MAX5065/67 toc23  
CLKOUT  
5V/div  
350kHz  
PLLCMP  
200mV/div  
DL_  
1.6A/div  
250kHz  
= +12V  
0
V
= +12V  
= 22nF  
V
IN  
IN  
C
DL_  
NO LOAD  
100ns/div  
100µs/div  
PLL LOCKING TIME  
250kHz TO 500kHz AND  
500kHz TO 250kHz  
PLL LOCKING TIME  
250kHz TO 150kHz AND  
150kHz TO 250kHz  
MAX5065/67 toc24  
MAX5065/67 toc25  
CLKOUT  
5V/div  
CLKOUT  
5V/div  
250kHz  
PLLCMP  
200mV/div  
500kHz  
PLLCMP  
200mV/div  
150kHz  
0
250kHz  
V
= +12V  
V
= +12V  
IN  
IN  
NO LOAD  
NO LOAD  
0
100µs/div  
100µs/div  
_______________________________________________________________________________________  
7
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
HIGH-SIDE DRIVER (DH_)  
FALL TIME  
HIGH-SIDE DRIVER (DH_)  
RISE TIME  
MAX5065/67 toc27  
MAX5065/67 toc26  
DH_  
2V/div  
DH_  
2V/div  
V
= +12V  
DH_  
IN  
C
V
= +12V  
DH_  
IN  
C
= 22nF  
= 22nF  
40ns/div  
40ns/div  
LOW-SIDE DRIVER (DL_)  
RISE TIME  
LOW-SIDE DRIVER (DL_)  
FALL TIME  
MAX5065/67 toc28  
MAX5065/67 toc29  
DL_  
2V/div  
DL_  
2V/div  
V
= +12V  
DL_  
V
= +12V  
DL_  
IN  
C
IN  
C
= 22nF  
= 22nF  
40ns/div  
40ns/div  
OUTPUT RIPPLE  
INPUT STARTUP RESPONSE  
MAX5065/67 toc30  
MAX5065/67 toc31  
V
PGOOD  
1V/div  
V
OUT  
1V/div  
V
OUT  
(AC-COUPLED)  
10mV/div  
V
IN  
5V/div  
V
V
= +12V  
IN  
V
= +12V  
IN  
V
= +1.75V  
OUT  
= 52A  
OUT  
= +1.75V  
OUT  
OUT  
I
I
= 52A  
500ns/div  
2ms/div  
8
_______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
REVERSE CURRENT SINK  
vs. TEMPERATURE  
ENABLE STARTUP RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX5065/67 toc32  
MAX5065/67 toc33  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
V
PGOOD  
1V/div  
V
= +3.3V  
EXTERNAL  
V
OUT  
1V/div  
V
OUT  
50mV/div  
V
EN  
V
= +2V  
V
V
I
= +12V  
EXTERNAL  
IN  
OUT  
STEP  
RISE  
2V/div  
V
V
I
= +12V  
= +1.75V  
= 8A TO 52A  
= 1µs  
IN  
= +1.75V  
= 52A  
OUT  
OUT  
V
V
= +12V  
= 1.5V  
IN  
OUT  
t
R1 = R2 = 1.5mΩ  
35 60 85  
1ms/div  
-40  
-15  
10  
TEMPERATURE (°C)  
40µs/div  
REVERSE CURRENT SINK AT INPUT TURN-ON  
REVERSE CURRENT SINK AT INPUT TURN-ON  
(V = 12V, V  
= 1.5V, V  
= 3.3V)  
EXTERNAL  
MAX5065/67 toc36  
(V = 12V, V  
= 1.5V, V  
= 2.5V)  
EXTERNAL  
MAX5065/67 toc35  
IN  
OUT  
IN  
OUT  
REVERSE  
CURRENT  
10A/div  
REVERSE  
CURRENT  
5A/div  
0A  
0A  
R1 = R2 = 1.5mΩ  
R1 = R2 = 1.5mΩ  
200µs/div  
200µs/div  
REVERSE CURRENT SINK AT ENABLE TURN-ON  
REVERSE CURRENT SINK AT ENABLE TURN-ON  
(V = 12V, V  
= 1.5V, V  
= 2.5V)  
EXTERNAL  
MAX5065/67 toc37  
(V = 12V, V  
= 1.5V, V  
= 3.3V)  
EXTERNAL  
MAX5065/67 toc38  
IN  
OUT  
IN  
OUT  
REVERSE  
CURRENT  
5A/div  
REVERSE  
CURRENT  
10A/div  
0A  
0A  
R1 = R2 = 1.5mΩ  
R1 = R2 = 1.5mΩ  
200µs/div  
200µs/div  
_______________________________________________________________________________________  
9
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5065 MAX5067  
Current-Sense Differential Amplifier Positive Inputs. Sense the inductor current. The differential  
voltage between CSP_ and CSN_ is amplified internally by the current-sense amplifier gain of  
18.  
CSP2,  
CSP1  
1, 13  
2, 14  
3
39, 16  
40, 17  
41  
CSN2,  
CSN1  
Current-Sense Differential Amplifier Negative Inputs. Together with CSP_, sense the inductor  
current.  
Phase-Shift Setting Input. Connect PHASE to V  
for 120°, leave PHASE unconnected for 90°,  
CC  
PHASE or connect PHASE to SGND for 60° of phase shift between the rising edge of CLKOUT and  
CLKIN/DH1.  
External Loop-Compensation Input. Connect compensation network for the phase-locked loop  
(see the Phase-Locked Loop section).  
4
42  
PLLCMP  
CLP2,  
CLP1  
Current-Error Amplifier Outputs. Compensate the current loop by connecting an RC network to  
ground.  
5, 7  
6
43, 7  
5, 20, 35  
SGND  
Signal Ground. Ground connection for the internal control circuitry.  
Differential Output-Voltage-Sensing Positive Input. Used to sense a remote load. The MAX5065  
and MAX5067 regulate the difference between SENSE+ and SENSE- according to the factory  
preset reference voltage of +0.6V and +0.8V, respectively.  
8
10  
SENSE+  
Differential Output Voltage-Sensing Negative Input. Used to sense a remote load. Connect  
9
11  
12  
13  
SENSE-  
DIFF  
SENSE- to V  
or PGND at the load.  
OUT-  
Differential Remote-Sense Amplifier Output. DIFF is the output of a precision unity-gain  
amplifier.  
10  
11  
Voltage-Error Amplifier Inverting Input. Receives a signal from the output of the differential  
remote-sense amplifier. Referenced to SGND.  
EAN  
Voltage-Error Amplifier Output. Connect to the external gain-setting feedback resistor. The  
12  
14  
EAOUT external error amplifier gain-setting resistors determine the amount of adaptive voltage  
positioning.  
Output Enable. A logic-low shuts down the power drivers. EN has an internal 5µA pullup  
current.  
15  
19  
EN  
BST1,  
BST2  
Boost Flying-Capacitor Connection. Reservoir capacitor connection for the high-side FET driver  
supply. Connect a 0.47µF ceramic capacitor between BST_ and LX_.  
16, 26  
17, 25  
22, 34  
23, 32  
DH1,  
DH2  
High-Side Gate-Driver Outputs. Drive the gate of the high-side MOSFET.  
Inductor Connection. Source connection for the high-side MOSFETs. Also serve as the return  
terminal for the high-side driver.  
18, 24  
19, 23  
20  
24, 31  
25, 30  
27  
LX1, LX2  
DL1, DL2 Low-Side Gate-Driver Outputs. Synchronous MOSFET gate drivers for the two phases.  
Internal +5V Regulator Output. V is derived internally from the IN voltage. Bypass to SGND  
CC  
V
CC  
with 4.7µF and 0.1µF ceramic capacitors in parallel.  
Supply Voltage Connection. Connect IN to V for a +5V system. Connect the unregulated  
CC  
21  
22  
28  
29  
IN  
power source to IN through an RC lowpass filter comprised of a 2.2resistor and a 0.1µF  
ceramic capacitor.  
Power Ground. Connect the V  
bypass capacitors, input capacitors, output capacitors, and  
CC  
PGND  
low-side synchronous MOSFET source to PGND.  
10 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX5065 MAX5067  
Oscillator Output. CLKOUT is phase-shifted from CLKIN by the amount determined by the  
PHASE input. Use CLKOUT to parallel additional MAX5065/MAX5067s.  
27  
36  
CLKOUT  
CMOS Logic Clock Input. Drive CLKIN with a frequency range between 125kHz and 600kHz or  
connect to V  
connect to V  
current.  
or SGND. Connect CLKIN to SGND to set the internal oscillator to 250kHz or  
to set the internal oscillator to 500kHz. CLKIN has an internal 5µA pulldown  
CC  
CC  
28  
38  
CLKIN  
Overvoltage Protection Circuit Input. Connect OVPIN to the center of the resistive-divider  
between V and GND. When OVPIN exceeds +0.8V with respect to SGND, OVPOUT latches  
DH_ low and DL_ high. Toggle EN low to high or recycle the power to reset the latch.  
6
8
OVPIN  
OUT  
Overvoltage Protection Output. Use the OVPOUT active-high, push-pull output to trigger a  
safety device such as an SCR.  
OVPOUT  
Power-Good Output. The open-drain, active-low PGOOD output goes low when the output  
voltage falls out of regulation or a phase failure is detected. The power-good window-  
comparator thresholds are +8% and -10% of the output voltage. Forcing EN low also forces  
PGOOD low.  
9
PGOOD  
N.C.  
1, 2, 3, 4,  
15, 18,  
21, 33,  
37, 44  
No Connection. Not internally connected.  
Supply Voltage for Low-Side and High-Side Drivers. V  
powers V . Connect a parallel  
DD  
CC  
combination of 0.1µF and 1µF ceramic capacitors to PGND and a 1resistor to V  
to filter  
26  
V
CC  
DD  
out the high peak currents of the driver from the internal circuitry.  
+3.3V (MAX5065) and +0.8V to +3.3V (MAX5067) using  
a resistive-divider at SENSE+ and SENSE-.  
Detailed Description  
The MAX5065/MAX5067 average-current-mode PWM  
controllers drive two out-of-phase buck converter chan-  
nels. Average-current-mode control improves current  
sharing between the channels while minimizing compo-  
nent derating and size. Parallel multiple MAX5065/  
MAX5067 regulators to increase the output current  
capacity. For maximum ripple rejection at the input, set  
the phase shift between phases to 90° for two paral-  
leled converters, or 60° for three paralleled converters.  
Paralleling the MAX5065/MAX5067s improves design  
flexibility in applications requiring upgrades (higher  
load).  
V
IN  
, V , V  
DD  
CC  
The MAX5065/MAX5067 accept a wide input voltage  
range of +4.75V to +5.5V or +8V to +28V. All internal  
control circuitry operates from an internally regulated  
nominal voltage of +5V (V ). For input voltages of +8V  
CC  
CC  
or greater, the internal V  
regulator steps the voltage  
down to +5V. The V  
output voltage regulates to +5V  
while sourcing up to 80mA. Bypass V  
CC  
to SGND with  
CC  
4.7µF and 0.1µF low-ESR ceramic capacitors for high-  
frequency noise rejection and stable operation (Figures  
1, 2, and 3).  
Dual-phase converters with an out-of-phase locking  
arrangement reduce the input and output capacitor  
ripple current, effectively multiplying the switching fre-  
quency by the number of phases. Each phase of the  
MAX5065/MAX5067 consists of an inner average cur-  
rent loop controlled by a common outer-loop voltage-  
error amplifier (VEA). The combined action of the two  
inner current loops and the outer voltage loop corrects  
the output voltage errors and forces the phase currents  
to be equal. Program the output voltage from +0.6V to  
Calculate power dissipation in the MAX5065/MAX5067  
as a product of the input voltage and the total V  
reg-  
CC  
ulator output current (I ). I  
includes quiescent cur-  
CC CC  
rent (I ) and gate-drive current (I ):  
Q
DD  
(1)  
(2)  
P = V x I  
D
IN CC  
I
= I + f  
x (Q + Q + Q + Q  
)
G4  
CC  
Q
SW  
G1  
G2  
G3  
______________________________________________________________________________________ 11  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Functional Diagrams  
EN  
+5V  
LDO  
REGULATOR  
UVLO  
POR  
TEMP SENSOR  
IN  
TO INTERNAL CIRCUITS  
V
CC  
DRV_V  
SHDN  
CC  
TO INTERNAL CIRCUITS  
CSP1  
CSN1  
CLP1  
BST1  
CSP1  
CSN1  
CLP1  
DH1  
LX1  
DL1  
PHASE 1  
RAMP1  
CLK  
SGND  
MAX5065  
GM  
IN  
PGND  
PHASE-  
LOCKED  
LOOP  
CLKIN  
PHASE  
CLKOUT  
PLLCMP  
RAMP  
GENERATOR  
DIFF  
SENSE-  
0.6V  
DIFF  
AMP  
PGND  
SENSE+  
EAOUT  
EAN  
ERROR  
AMP  
DRV_V  
SHDN  
PGND  
CC  
CLK  
V
REF  
= 0.6V + V  
CM  
RAMP2  
DH2  
LX2  
PHASE 2  
GM  
IN  
CLP2  
CSN2  
CSP2  
CLP2  
DL2  
CSN2  
CSP2  
BST2  
12 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Functional Diagrams (continued)  
EN  
+5V  
LDO  
REGULATOR  
UVLO  
POR  
TEMP SENSOR  
IN  
V
V
CC  
TO INTERNAL CIRCUITS  
DD  
DRV_V  
SHDN  
CC  
CSP1  
CSN1  
CLP1  
BST1  
CSP1  
CSN1  
CLP1  
DH1  
LX1  
DL1  
PHASE 1  
RAMP1  
CLK  
SGND  
MAX5067  
GM  
IN  
PGND  
PHASE-  
LOCKED  
LOOP  
CLKIN  
PHASE  
RAMP  
GENERATOR  
CLKOUT  
PLLCMP  
CLP1  
DIFF  
PGOOD  
PGND  
POWER-  
GOOD  
GENERATOR  
DIFF  
N
CLP2  
SENSE-  
+0.6V  
V
REF  
DIFF  
AMP  
SENSE+  
EAOUT  
EAN  
OVPOUT  
OVP  
COMP  
0.8V  
ERROR  
AMP  
DRV_V  
SHDN  
PGND  
CC  
CLK  
V
= 0.8V + V  
CM  
REF  
RAMP2  
DH2  
LX2  
PHASE 2  
GM  
IN  
OVPIN  
CLP2  
CSN2  
CSP2  
CLP2  
DL2  
CSN2  
CSP2  
BST2  
______________________________________________________________________________________ 13  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Figure 1. Typical Application Circuit, V = +5V  
IN  
14 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Figure 2. Typical VRM Application Circuit, V = +8V to +28V  
IN  
______________________________________________________________________________________ 15  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
9
SENSE-  
8
SENSE+  
14  
3
CSN1  
CSP1  
PHASE  
13  
V
IN  
15  
EN  
IN  
C3C7  
R1  
V
IN  
= +12V  
21  
C1,  
C2  
17  
18  
19  
C39  
DH1  
LX1  
DL1  
Q1  
R2  
L1  
V
CC  
C12  
Q2  
28  
4
CLKIN  
D1  
MAX5065  
16  
20  
BST1  
D3  
PLLCMP  
+1.8V AT 60A  
V
CC  
R4  
V
OUT  
C25  
C34  
C32  
C31  
R
R
H
C26  
R7  
R8  
10  
11  
12  
D4  
R3  
DIFF  
EAN  
V
V
CC  
IN  
C14,  
C15  
C16C24,  
C33  
C8C11  
LOAD  
L
R
X
EAOUT  
25  
24  
23  
DH2  
LX2  
DL2  
Q1  
Q2  
L2  
7
5
R6  
CLP1  
C29  
C13  
D2  
C30  
C28  
26  
BST2  
CLP2  
R5  
C27  
1
2
6
SGND  
PGND  
CSP2  
CSN2  
22  
Figure 3. MAX5065 Typical Application Circuit  
16 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
where, Q , Q , Q  
and Q  
are the total gate  
G4  
Control Loop  
The MAX5065/MAX5067 use an average-current-mode  
control scheme to regulate the output voltage (Figure  
4). The main control loop consists of an inner current  
loop and an outer voltage loop. The inner loop controls  
G1  
G2  
G3,  
charge of the low-side and high-side external  
MOSFETs, I is 4mA (typ), and f is the switching fre-  
Q
SW  
quency of each individual phase.  
For applications utilizing a +5V input voltage, disable  
the V regulator by connecting IN and V together.  
the output currents (I  
and I  
) while the  
PHASE2  
PHASE1  
CC  
CC  
outer loop controls the output voltage. The inner current  
loop absorbs the inductor pole reducing the order of  
the outer voltage loop to that of a singlepole system.  
Undervoltage Lockout (UVLO)/Soft-Start  
The MAX5065/MAX5067 include an undervoltage lock-  
out with hysteresis and a power-on reset circuit for con-  
verter turn-on and monotonic rise of the output voltage.  
The UVLO threshold is internally set between +4.0V  
and +4.5V with a 200mV hysteresis. Hysteresis at  
UVLO eliminates chatteringduring startup.  
The current loop consists of a current-sense resistor  
(R ), a current-sense amplifier (CA_), a current-error  
S
amplifier (CEA_), an oscillator providing the carrier  
ramp, and a PWM comparator (CPWM_). The precision  
CA_ amplifies the sense voltage across R by a factor  
S
of 18. The inverting input to the CEA_ senses the CA_  
output. The CEA_ output is the difference between the  
voltage-error amplifier output (EAOUT) and the gained-  
up voltage from the CA_. The RC compensation net-  
work connected to CLP1 and CLP2 provides external  
frequency compensation for the respective CEA_. The  
start of every clock cycle enables the high-side drivers  
and initiates a PWM ON cycle. Comparator CPWM_  
compares the output voltage from the CEA_ with a 0 to  
+2V ramp from the oscillator. The PWM ON cycle termi-  
nates when the ramp voltage exceeds the error voltage.  
Most of the internal circuitry, including the oscillator,  
turns on when the input voltage reaches +4V. The  
MAX5065/MAX5067 draw up to 4mA of current before  
the input voltage reaches the UVLO threshold.  
The compensation network at the current-error ampli-  
fiers (CLP1 and CLP2) provides an inherent soft-start of  
the output voltage. It includes a parallel combination of  
capacitors (C34, C36) and resistors (R5, R6) in series  
with other capacitors (C33, C35) (see Figures 1 and 2).  
The voltage at CLP_ limits the maximum current avail-  
able to charge output capacitors. The capacitor on  
CLP_ in conjunction with the finite output-drive current  
of the current-error amplifier yields a finite rise time for  
the output current and thus the output voltage.  
The outer voltage control loop consists of the differen-  
tial amplifier (DIFF AMP), reference voltage, and VEA.  
The unity-gain differential amplifier provides true differ-  
ential remote sensing of the output voltage. The differ-  
ential amplifier output connects to the inverting input  
(EAN) of the VEA. The noninverting input of the VEA is  
internally connected to an internal precision reference  
voltage. The MAX5067 reference voltage is set to +0.8V  
and the MAX5065 reference is set to +0.6V. The VEA  
controls the two inner current loops (Figure 4). Use a  
resistive feedback network to set the VEA gain as  
required by the adaptive voltage-positioning circuit  
(see the Adaptive Voltage Positioning section).  
Internal Oscillator  
The internal oscillator generates the 180° out-of-phase  
clock signals required by the pulse-width modulation  
(PWM) circuits. The oscillator also generates the 2V  
voltage ramp signals necessary for the PWM compara-  
tors. Connect CLKIN to SGND to set the internal oscillator  
P-P  
frequency to 250kHz or connect CLKIN to V  
internal oscillator to 500kHz.  
to set the  
CC  
CLKIN is a CMOS logic clock input for the phase-  
locked loop (PLL). When driven externally, the internal  
oscillator locks to the signal at CLKIN. A rising edge at  
CLKIN starts the ON cycle of the PWM. Ensure that the  
external clock pulse width is at least 200ns. CLKOUT  
provides a phase-shifted output with respect to the ris-  
ing edge of the signal at CLKIN. PHASE sets the  
amount of phase shift at CLKOUT. Connect PHASE to  
Current-Sense Amplifier  
The differential current-sense amplifier (CA_) provides a  
DC gain of 18. The maximum input offset voltage of the  
current-sense amplifier is 1mV and the common-mode  
voltage range is -0.3V to +3.6V. The current-sense ampli-  
fier senses the voltage across a current-sense resistor.  
V
CC  
for 120° of phase shift, leave PHASE unconnected  
Peak-Current Comparator  
The peak-current comparator provides a path for fast  
cycle-by-cycle current limit during extreme fault condi-  
tions such as an output inductor malfunction (Figure 5).  
Note that the average current-limit threshold of 48mV  
still limits the output current during short-circuit condi-  
tions. To prevent inductor saturation, select an output  
for 90° of phase shift, or connect PHASE to SGND for  
60° of phase shift with respect to CLKIN.  
The MAX5065/MAX5067 require compensation on  
PLLCMP even when operating from the internal oscillator.  
The device requires an active PLL to generate the proper  
clock signal required for PWM operation.  
______________________________________________________________________________________ 17  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
inductor with a saturation current specification greater  
than the average current limit (48mV). Proper inductor  
selection ensures that only extreme conditions trip the  
peak-current comparator, such as a cracked output  
inductor. The 112mV voltage threshold for triggering  
the peak-current limit is twice the full-scale average  
current-limit voltage threshold. The peak-current com-  
parator has a delay of only 260ns.  
up slope to the inverting input of the PWM comparator,  
is less than the slope of the internally generated voltage  
ramp (see the Compensation section).  
PWM Comparator and R-S Flip-Flop  
The PWM comparator (CPWM) sets the duty cycle for  
each cycle by comparing the output of the current-error  
amplifier to a 2V  
ramp. At the start of each clock  
P-P  
cycle, an R-S flip-flop resets and the high-side driver  
(DH_) turns on. The comparator sets the flip-flop as  
soon as the ramp voltage exceeds the CLP_ voltage,  
thus terminating the ON cycle (Figure 5).  
Current-Error Amplifier  
Each phase of the MAX5065/MAX5067 has a dedicated  
transconductance current-error amplifier (CEA_) with a  
typical g of 550µS and 320µA output sink and source  
m
Differential Amplifier  
The differential amplifier (DIFF AMP) facilitates output  
voltage remote sensing at the load (Figure 4). It pro-  
vides true differential output voltage sensing while  
rejecting the common-mode voltage errors due to high-  
current ground paths. Sensing the output voltage  
current capability. The current-error amplifier outputs,  
CLP1 and CLP2, serve as the inverting input to the  
PWM comparator. CLP1 and CLP2 are externally  
accessible to provide frequency compensation for the  
inner current loops (Figure 4). Compensate CEA_ so  
the inductor current down slope, which becomes the  
C
CF  
R
CF  
C
CFF  
MAX5065/  
MAX5067  
CA1  
V
IN  
I
PHASE1  
R *  
F
CEA1  
DRIVE 1  
SENSE+  
SENSE-  
CPWM1  
R
S
R
IN  
*
DIFF  
AMP  
VEA  
V
OUT  
V
IN  
C
OUT  
CEA2  
R
S
V
LOAD  
REF  
I
PHASE2  
CPWM2  
DRIVE 2  
CA2  
C
CF  
R
CF  
*R AND R ARE EXTERNAL.  
F
IN  
C
CCF  
Figure 4. MAX5065/MAX5067 Control Loop  
18 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
directly at the load provides accurate load voltage  
sensing in high-current environments. The VEA pro-  
vides the difference between the differential amplifier  
output (DIFF) and the desired output voltage. The dif-  
ferential amplifier has a bandwidth of 3MHz. The differ-  
ence between SENSE+ and SENSE- regulates to +0.6V  
for the MAX5065 and regulates to +0.8V for the  
MAX5067. Connect SENSE+ to the center of the resis-  
tive-divider from the output to SENSE-.  
(Figures 1, 2). V  
(MAX5067).  
= 0.6V (MAX5065) or 0.8V  
REF  
Some applications require V  
equal to V  
at  
OUT  
OUT(NOM)  
no load. To ensure that the output voltage does not  
exceed the nominal output voltage (V ), add a  
OUT(NOM)  
resistor R from V  
to EAN.  
CC  
X
Use the following equations to calculate the value of R .  
X
For MAX5065:  
(4)  
Voltage-Error Amplifier  
The VEA sets the gain of the voltage control loop and  
determines the error between the differential amplifier  
R
0.6V  
F
R
R
=[V 1.2]×  
CC  
X
X
output and the internal reference voltage (V  
).  
For MAX5067:  
REF  
(5)  
The VEA output clamps to +0.9V relative to V  
CM  
R
F
=[V 1.4]×  
CC  
(+0.6V), thus limiting the average maximum current  
from individual phases. The maximum average current-  
limit threshold for each phase is equal to the maximum  
clamp voltage of the VEA divided by the gain (18) of  
the current-sense amplifier. This results in accurate set-  
tings for the average maximum current for each phase.  
0.8V  
Adaptive Voltage Positioning  
Powering new-generation processors requires new  
techniques to reduce cost, size, and power dissipation.  
Voltage positioning reduces the total number of output  
capacitors to meet a given transient response require-  
ment. Setting the no-load output voltage slightly higher  
than the output voltage during nominally loaded condi-  
tions allows a larger downward voltage excursion when  
the output current suddenly increases. Regulating at a  
lower output voltage under a heavy load allows a larger  
upward-voltage excursion when the output current sud-  
denly decreases. A larger allowed, voltage-step excur-  
sion reduces the required number of output capacitors  
Set the VEA gain using R and R for the amount of  
F
IN  
output voltage positioning required within the rated cur-  
rent range as discussed in the Adaptive Voltage  
Positioning section (Figure 4).  
(3)  
R
R + R  
H L  
IN  
V
= 1+  
×
× V  
REF  
OUT(NL)  
R
R
L
F
where R and R are the feedback resistor network  
H
L
DRV_V  
CC  
PEAK-CURRENT  
COMPARATOR  
112mV  
CLP_  
CSP_  
CSN_  
A = 18  
V
G
m
=
500µS  
BST_  
DH_  
LX_  
PWM  
COMPARATOR  
GM  
IN  
Q
Q
S
R
RAMP  
CLK  
2 x f (V/s)  
s
DL_  
SHDN  
PGND  
Figure 5. Phase Circuit (Phase 1/Phase 2)  
______________________________________________________________________________________ 19  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
compensation provides a zero defined by 1 / [R4 x  
(C31 + C32)] and a pole defined by 1 / (R4 x C32). Use  
the following typical values for compensating the PLL:  
V
+ V /2  
OUT  
CNTR  
R4 = 7.5k, C31 = 4.7nF, C32 = 470pF. If changing the  
PLL frequency, expect a finite locking time of approxi-  
mately 200µs.  
V
CNTR  
V
- V /2  
OUT  
CNTR  
The MAX5065/MAX5067 require compensation on  
PLLCMP even when operating from the internal oscilla-  
tor. The device requires an active PLL in order to gen-  
erate the proper internal PWM clocks.  
FULL LOAD  
1/2 LOAD  
LOAD (A)  
NO LOAD  
MOSFET Gate Drivers (DH_, DL_)  
The high-side (DH_) and low-side (DL_) drivers drive  
the gates of external N-channel MOSFETs (Figures 1, 2,  
and 3). The drivershigh-peak sink and source current  
capability provides ample drive for the fast rise and fall  
times of the switching MOSFETs. Faster rise and fall  
times result in reduced cross-conduction losses. For  
modern CPU voltage-regulating module applications  
where the duty cycle is less than 50%, choose high-  
Figure 6. Defining the Voltage-Positioning Window  
or allows for the use of higher ESR capacitors.  
Voltage positioning may require the output to regulate  
away from a center value. Define the center value as the  
voltage where the output drops (V  
maximum output current (Figure 6).  
/2) at one half the  
OUT  
side MOSFETs (Q1 and Q3) with a moderate R  
DS(ON)  
Set the voltage-positioning window (V  
) using the  
and a very low gate charge. Choose low-side  
OUT  
resistive feedback of the VEA. Use the following equa-  
tions to calculate the voltage-positioning window for the  
MAX5065/MAX5067:  
MOSFETs (Q2 and Q4) with very low R  
moderate gate charge.  
and  
DS(ON)  
The driver block also includes a logic circuit that provides  
an adaptive nonoverlap time to prevent shoot-through  
currents during transition. The typical nonoverlap time is  
60ns between the high-side and low-side MOSFETs.  
(6)  
I
×R  
R +R  
H L  
OUT  
IN  
V  
=
×
OUT  
2×G ×R  
R
C
F
L
BST_  
The MAX5067 uses V  
to power the low- and high-  
DD  
(7)  
side MOSFET drivers. The high-side drivers derive their  
power through a bootstrap capacitor and V supplies  
0.05  
G
=
C
DD  
R
S
power internally to the low-side drivers. Connect a  
0.47µF low-ESR ceramic capacitor between BST_ and  
where R and R are the input and feedback resistors of  
the VEA, G is the current-loop transconductance, and  
IN  
F
LX_. Bypass V  
to SGND with 4.7µF and 0.1µF low-  
CC  
C
ESR ceramic capacitors in parallel. Reduce the PC  
board area formed by these capacitors, the rectifier  
R is the current-sense resistor.  
S
diodes between V  
and the boost capacitor, the  
CC  
Phase-Locked Loop: Operation and  
MAX5065/MAX5067, and the switching MOSFETs.  
Compensation  
The PLL synchronizes the internal oscillator to the  
external frequency source when driving CLKIN.  
Overload Conditions  
Average-current-mode control has the ability to limit the  
average current sourced by the converter during a fault  
condition. When a fault condition occurs, the VEA out-  
put clamps to +0.9V with respect to the common-mode  
Connecting CLKIN to V  
or SGND forces the PWM  
CC  
frequency to default to the internal oscillator frequency  
of 500kHz or 250kHz, respectively. The PLL uses a  
conventional architecture consisting of a phase detec-  
tor and a charge pump capable of providing 20µA of  
output current. Connect an external series combination  
capacitor (C31) and resistor (R4) and a parallel capaci-  
tor (C32) from PLLCMP to SGND to provide frequency  
compensation for the PLL (Figure 1). The pole-zero pair  
voltage (V  
= +0.6V) and is compared with the output  
CM  
of the current-sense amplifiers (CA1 and CA2) (see  
Figure 4). The current-sense amplifiers gain of 18 limits  
the maximum current in the inductor or sense resistor to  
I
= 50mV/R .  
S
LIMIT  
20 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Protection  
The MAX5067 includes output overvoltage protection  
(OVP), undervoltage protection (UVP), phase failure,  
and overload protection to prevent damage to the pow-  
ered electronic circuits.  
Power-Good Generator (MAX5067)  
The PGOOD output is high if all of the following condi-  
tions are met (Figure 8):  
1) The output is within 90% to 108% of the pro-  
grammed output voltage.  
2) Both phases are providing current.  
3) EN is high.  
Overvoltage Protection (MAX5067)  
The OVP comparator compares the OVPIN input to the  
overvoltage threshold (Figure 7). The overvoltage  
threshold is typically +0.8V. A detected overvoltage  
event latches the comparator output forcing the power  
stage into the OVP state. In the OVP state, the high-  
side MOSFETs turn off and the low-side MOSFETs latch  
on. Use the OVPOUT high-current output driver to turn  
on an external crowbar SCR. When the crowbar SCR  
turns on, a fuse must blow or the source current for the  
MAX5067 regulator must be limited to prevent further  
damage to the external circuitry. Connect the SCR  
close to the input source and after the fuse. Use an  
SCR large enough to handle the peak I2t energy due to  
the input and output capacitors discharging and the  
current sourced by the power-source output. Connect  
DIFF to OVPIN for differential output sensing and over-  
voltage protection. Add an RC delay to reduce the sen-  
sitivity of the overvoltage circuit and avoid nuisance  
tripping of the converter (Figures 1, 2). Connect a resis-  
tor-divider from the load to SGND to set the OVP output  
voltage.  
A window comparator compares the differential amplifier  
output (DIFF) against 1.08 times the set output voltage  
for overvoltage and 0.90 times the set output voltage for  
undervoltage monitoring. The phase-failure comparator  
detects a phase failure by comparing the current-error-  
amplifier output (CLP_) with a 2.0V reference.  
Use a 10kpullup resistor from PGOOD to a voltage  
source less than or equal to V . An output voltage  
CC  
outside the comparator window or a phase-failure con-  
dition forces the open-drain output low. The open-drain  
MOSFET sinks 4mA of current while maintaining less  
than 0.2V at the PGOOD output.  
R
R
A
(8)  
V
= 1+  
× 0.8V  
OVP  
DIFF  
B
8% OF V  
REF  
PGOOD  
V
REF  
RA  
10% OF V  
REF  
V
OUT  
OVPIN  
DIFF  
RB  
CLP1  
MAX5067  
+2.0V  
R
IN  
EAN  
R
F
EAOUT  
CLP2  
PHASE-FAILURE DETECTION  
Figure 7. OVP Input Delay  
Figure 8. Power-Good Generator (MAX5067)  
______________________________________________________________________________________ 21  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
CSN1  
CSP1  
SENSE+  
SENSE-  
V
IN  
DH1  
LX1  
DL1  
V
CC  
PHASE  
V
CC  
V
MAX5065/  
MAX5067  
IN  
CLKIN  
IN  
DH2  
LX2  
DL2  
V
IN  
DIFF  
EAN  
CSP2  
CSN2  
EAOUT  
PGND SGND CLKOUT  
CSN1  
CSP1  
CLKIN  
PHASE  
V
V
IN  
DH1  
LX1  
DL1  
V
CC  
MAX5065/  
MAX5067  
IN  
IN  
DH2  
LX2  
DL2  
DIFF  
V
V
= +0.6V (MAX5065)  
= +0.8V (MAX5067)  
OUT  
OUT  
LOAD  
EAN  
CSP2  
CSN2  
EAOUT  
PGND SGND CLKOUT  
CSN1  
CSP1  
CLKIN  
PHASE  
V
V
IN  
DH1  
LX1  
DL1  
V
CC  
MAX5065/  
MAX5067  
IN  
IN  
DH2  
LX2  
DL2  
DIFF  
EAN  
CSP2  
CSN2  
EAOUT  
PGND SGND CLKOUT  
TO OTHER MAX5065/MAX5067s  
Figure 9. Parallel Configuration of Multiple MAX5065/MAX5067s  
22 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
V
= +12V  
IN  
V
IN  
C1, C2  
2 x 47µF  
V
CC  
C31  
R13  
2.2Ω  
C32  
C43  
R12  
C42  
0.1µF  
R4  
V
IN  
C3C7  
5 x 22µF  
OVPOUT  
PLLCMP CLKIN  
IN  
SENSE- SENSE+ CSN1 CSP1  
DH1  
LX1  
DL1  
Q1  
L1  
R1  
1.35mΩ  
0.6µH  
C12  
0.47µF  
Q2  
D1  
D3  
BST1  
V
V
CC  
CC  
C38  
4.7µF  
C41  
0.1µF  
EN  
R3  
V
DD  
C39  
1µF  
C40  
1µF  
D4  
OVPIN  
DIFF  
R7  
R8  
V
IN  
MAX5067  
(MASTER)  
4 x 22µF  
C8C11  
EAN  
DH2  
LX2  
DL2  
Q3  
L2  
0.6µH  
R2  
1.35mΩ  
EAOUT  
C13  
0.47µF  
Q4  
D2  
BST2  
CLP1  
CLP2 PGND SGND CLKOUT PHASE PGOOD CSN2 CSP2  
R11  
R6  
R5  
C36  
C34  
PGOOD  
V
CC  
C35  
C33  
C26C30,  
C14, C15,  
C44, C45  
2 x 100µF  
R
RA  
RB  
H
C37  
R24  
2.2Ω  
6 x 10µF  
C70  
R17  
LOAD  
C16C25,  
C57C60  
2 x 270µF  
C71  
EN  
R
L
V
IN  
C61  
0.1µF  
V
= +0.8V TO  
OUT  
+3.3V AT 104A  
C46C50  
5 x 22µF  
PLLCMP  
IN  
CLKIN SENSE- SENSE+ CSN1 CSP1  
DH1  
LX1  
DL1  
Q5  
Q6  
L3  
R14  
1.35mΩ  
0.6µH  
C55  
0.47µF  
D5  
D7  
D8  
BST1  
V
CC  
C65  
4.7µF  
C64  
0.1µF  
R16  
OVPOUT  
OVPIN  
V
DD  
C62  
1µF  
C63  
0.1µF  
MAX5067  
(SLAVE)  
R20  
V
IN  
C51C54  
4 x 22µF  
DIFF  
EAN  
R15  
1.35mΩ  
DH2  
LX2  
DL2  
Q7  
Q8  
L4  
R21  
0.6µH  
EAOUT  
C56  
0.47µF  
D6  
BST2  
CLP1  
CLP2  
PGND  
SGND PHASE PGOOD  
CSN2 CSP2  
R19  
C67  
R18  
C68  
C66  
C69  
V
CC  
Figure 10. Four-Phase Parallel Application Circuit (V = +12V, V  
= +0.8V to +3.3V at 104A)  
OUT  
IN  
______________________________________________________________________________________ 23  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
tion, respectively. Figure 1 shows the typical application  
circuit for a two-phase operation. The design criteria for  
a two-phase converter includes frequency selection,  
inductor value, input/output capacitance, switching  
MOSFETs, sense resistors, and the compensation net-  
work. Follow the same procedure for the four- and six-  
phase converter design, except for the input and output  
capacitance. The input and output capacitance require-  
ments vary depending on the operating duty cycle.  
Phase-Failure Detector (MAX5067)  
Output current contributions from the two phases are  
within 10% of each other. Proper current sharing  
reduces the necessity to overcompensate the external  
components. However, an undetected failure of one  
phase driver causes the other phase driver to run con-  
tinuously as it tries to provide the entire current require-  
ment to the load. Eventually, the stressed operational  
phase driver fails.  
The examples discussed in this data sheet pertain to a  
typical application with the following specifications:  
During normal operating conditions, the voltage level  
on CLP_ is within the peak-to-peak voltage levels of the  
PWM ramp. If one of the phases fails, the control loop  
raises the CLP_ voltage above its operating range. To  
determine a phase failure, the phase-failure detection  
circuit (Figure 8) monitors the output of the current  
amplifiers (CLP1 and CLP2) and compares them to a  
2.0V reference. If the voltage levels on CLP1 or CLP2  
are above the reference level for more than 1250 clock  
cycles, the phase failure circuit forces PGOOD low.  
VIN = +12V  
VOUT = +1.8V  
IOUT(MAX) = 52A  
fSW = 250kHz  
Peak-to-Peak Inductor Current (IL) = 10A  
Table 1 shows a list of recommended external compo-  
nents (Figure 1) and Table 2 provides component sup-  
plier information.  
Parallel Operation  
For applications requiring large output current, parallel  
up to three MAX5065/MAX5067s (six phases) to triple  
the available output current (see Figures 9 and 10). The  
paralleled converters operate at the same switching fre-  
quency but different phases keep the capacitor ripple  
RMS currents to a minimum. Three parallel MAX5065/  
MAX5067 converters deliver up to 180A of output cur-  
rent. To set the phase shift of the on-board PLL, leave  
PHASE unconnected for 90° of phase shift (2 paralleled  
converters), or connect PHASE to SGND for 60° of phase  
shift (3 converters in parallel). Designate one converter  
as master and the remaining converters as slaves.  
Connect the master and slave controllers in a daisy-  
chain configuration as shown in Figure 9. Connect CLK-  
OUT from the master controller to CLKIN of the first  
slaved controller, and CLKOUT from the first slaved con-  
troller to CLKIN of the second slaved controller. Choose  
the appropriate phase shift for minimum ripple currents  
at the input and output capacitors. The master controller  
senses the output differential voltage through SENSE+  
and SENSE- and generates the DIFF voltage. Disable the  
voltage sensing of the slaved controllers by leaving DIFF  
unconnected (floating). Figure 10 shows a detailed typi-  
cal parallel application circuit using two MAX5067s. This  
circuit provides four phases at an input voltage of +12V  
and an output voltage range of +0.6V to +3.3V  
(MAX5065) and +0.8V to +3.3V (MAX5067) at 104A.  
Number of Phases  
Selecting the number of phases for a voltage regulator  
depends mainly on the ratio of input-to-output voltage  
(operating duty cycle). Optimum output-ripple cancella-  
tion depends on the right combination of operating duty  
cycle and the number of phases. Use the following  
equation as a starting point to choose the number of  
phases:  
NPH K/D  
(9)  
where K = 1, 2, or 3 and the duty cycle is D = VOUT/VIN.  
Choose K to make NPH an integer number. For exam-  
ple, converting VIN = +12V to VOUT = +1.8V yields  
better ripple cancellation in the six-phase converter  
than in the four-phase converter. Ensure that the output  
load justifies the greater number of components for  
multiphase conversion. Generally limiting the maximum  
output current to 25A per phase yields the most cost-  
effective solution. The maximum ripple cancellation  
occurs when NPH = K/D.  
Single-phase conversion requires greater size and power  
dissipation for external components such as the switch-  
ing MOSFETs and the inductor. Multiphase conversion  
eliminates the heatsink by distributing the power dissipa-  
tion in the external components. The multiple phases  
operating at given phase shifts effectively increase the  
switching frequency seen by the input/output capacitors,  
thereby reducing the input/output capacitance require-  
ment for the same ripple performance. The lower induc-  
tance value improves the large-signal response of the  
converter during a transient load at the output. Consider  
Applications Information  
Each MAX5065/MAX5067 circuit drives two 180° out-of-  
phase channels. Parallel two or three MAX5065/  
MAX5067 circuits to achieve four- or six-phase opera-  
24 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Table 1. Component List  
DESIGNATION  
C1, C2  
QTY  
2
DESCRIPTION  
47µF,16V X5R input-filter capacitors TDK C5750X5R1C476M  
22µF, 16V input-filter capacitors TDK C4532X5R1C226M  
0.47µF, 16V capacitors TDK C1608X5R1A474K  
100µF, 6.3V, output-filter capacitors Murata GRM44-1X5R107K6.3  
270µF, 2V output-filter capacitors Panasonic EEFUE0D271R  
10µF, 6.3V output-filter capacitors TDK C2012X5R05106M  
4700pF, 16V X7R capacitor Vishay-Siliconix VJ0603Y471JXJ  
470pF, 16V capacitors Murata GRM1885C1H471JAB01  
0.01µF, 50V X7R capacitors Murata GRM188R71H103KA01  
4.7µF, 16V X5R capacitor Murata GRM40-034X5R475k6.3  
0.1µF, 10V Y5V capacitor Murata GRM188F51A105  
0.1µF, 16V X7R capacitors Murata GRM188R71C104KA01  
100pFOVPIN capacitor  
C3C11  
C12, C13  
C14, C15  
C16C25  
C26C30, C37  
C31  
9
2
2
10  
6
1
C32, C34, C36  
C33, C35, C43  
C38  
3
3
1
C39  
1
C40, C41, C42  
C44  
3
1
D1, D2  
2
Schottky diodes ON-Semiconductor MBRS340T3  
Schottky diodes ON-Semiconductor MBR0520LT1  
0.6µH, 27A inductors Panasonic ETQP1H0R6BFX  
Upper-power MOSFETs Vishay-Siliconix Si7860DP  
Lower-power MOSFETs Vishay-Siliconix Si7886DP  
Current-sense resistors, use two 2.7mresistors in parallel, Panasonic ERJM1WSF2M7U  
2.21% resistors  
D3, D4  
2
L1, L2  
2
Q1, Q3  
2
Q2, Q4  
2
R1, R2  
4
R3, R13  
R4  
2
2
7.5k1% resistor  
R5, R6  
2
1k1% resistors  
R
IN  
1
4.99k1% resistor  
R
f
1
37.4k1% resistor  
R11  
R12  
RA  
RB  
RH  
RL  
1
10k1% resistor  
1
10k1% resistor  
1
See the Overvoltage Protection (MAX5067) section  
See the Overvoltage Protection (MAX5067) section  
See the Adaptive Voltage Positioning and Voltage-Error Amplifier sections  
See the Adaptive Voltage Positioning and Voltage-Error Amplifier sections  
Open circuit  
1
1
1
RX  
1
Table 2. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.murata.com  
Murata  
770-436-1300  
602-244-6600  
714-373-7939  
847-803-6100  
1-800-551-6933  
770-436-3030  
602-244-3345  
714-373-7183  
847-390-4405  
619-474-8920  
ON Semiconductor  
Panasonic  
www.on-semi.com  
www.panasonic.com  
www.tcs.tdk.com  
www.vishay.com  
TDK  
Vishay-Siliconix  
______________________________________________________________________________________ 25  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
all these issues when determining the number of phases  
necessary for the voltage regulator application.  
MAX5065/MAX5067 limits the maximum peak inductor  
current and prevents the inductor from saturating.  
Choose an inductor with a saturating current greater  
than the worst-case peak inductor current. Use the fol-  
lowing equation to determine the worst-case inductor  
current for each phase:  
Inductor Selection  
The switching frequency per phase, peak-to-peak rip-  
ple current in each phase, and allowable ripple at the  
output determine the inductance value.  
Selecting higher switching frequencies reduces the  
inductance requirement, but at the cost of lower efficien-  
cy. The charge/discharge cycle of the gate and drain  
capacitances in the switching MOSFETs create switching  
losses. The situation worsens at higher input voltages,  
since switching losses are proportional to the square of  
input voltage. Use 500kHz per phase for VIN = +5V and  
250kHz or less per phase for VIN > +12V.  
0.051V I  
L
(12)  
I
=
+
L_PEAK  
R
2
SENSE  
where RSENSE is the sense resistor in each phase.  
Switching MOSFETs  
When choosing a MOSFET for voltage regulators,  
consider the total gate charge, RDS(ON), power dissipa-  
tion, and package thermal impedance. The product of  
the MOSFET gate charge and on-resistance is a figure of  
merit, with a lower number signifying better performance.  
Choose MOSFETs optimized for high-frequency switch-  
ing applications.  
Although lower switching frequencies per phase increase  
the peak-to-peak inductor ripple current (IL), the ripple  
cancellation in the multiphase topology reduces the input  
and output capacitor RMS ripple current.  
Use the following equation to determine the minimum  
inductance value:  
The average gate-drive current from the MAX5065/  
MAX5067 output is proportional to the total capacitance it  
drives from DH1, DH2, DL1, and DL2. The power dissi-  
pated in the MAX5065/MAX5067 is proportional to the  
input voltage and the average drive current. See the VIN,  
section to determine the maximum total gate  
charge allowed from all the driver outputs combined.  
The gate charge and drain capacitance (CV2) loss, the  
cross-conduction loss in the upper MOSFET due to  
finite rise/fall time, and the I2R loss due to RMS current  
in the MOSFET RDS(ON) account for the total losses in  
the MOSFET. Estimate the power loss (PDMOS_) in the  
high-side and low-side MOSFETs using the following  
equations:  
V
V  
× V  
OUT  
(
)
INMAX  
OUT  
(10)  
L
=
MIN  
V
× f  
× ∆I  
IN SW  
L
VCC, V  
DD  
Choose IL equal to about 40% of the output current  
per phase. Since IL affects the output-ripple voltage,  
the inductance value may need minor adjustment after  
choosing the output capacitors for full-rated efficiency.  
Choose inductors from the standard high-current,  
surface-mount inductor series available from various  
manufacturers. Particular applications may require cus-  
tom-made inductors. Use high-frequency core material  
for custom inductors. High IL causes large peak-to-peak  
flux excursion increasing the core losses at higher fre-  
quencies. The high-frequency operation coupled with  
high IL, reduces the required minimum inductance  
and even makes the use of planar inductors possible.  
The advantages of using planar magnetics include low-  
profile design, excellent current-sharing between phas-  
es due to the tight control of parasitics, and low cost.  
(13)  
PD  
= Q × V × f  
+
(
(
)
MOSHI  
×I  
G
DD SW  
V
× t + t × f  
)
IN OUT  
R
F
SW  
2
+1.4R  
DS(ON)  
×I  
RMSHI  
4
where QG, RDS(ON), tR, and tF are the upper-switching  
MOSFETs total gate charge, on-resistance at +25°C,  
rise time, and fall time, respectively.  
For example, calculate the minimum inductance at  
VIN(MAX) = +13.2V, VOUT = +1.8V, IL = 10A, and fSW  
250kHz:  
=
D
3
2
2
(14)  
I
=
I
+I  
+I ×I  
PK  
×
DC  
RMSHI  
DC PK  
(
)
13.2 1.8 ×1.8  
(
)
(11)  
L
=
= 0.6µH  
MIN  
13.2 × 250k ×10  
where D = VOUT/VIN, IDC = (IOUT - IL)/2 and IPK  
=
(IOUT + IL)/2  
The average-current-mode control feature of the  
26 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Input Capacitors  
PD  
= Q × V × f  
+
(
)
MOSLO  
G
DD SW  
The discontinuous input-current waveform of the buck  
converter causes large ripple currents in the input  
capacitor. The switching frequency, peak inductor cur-  
rent, and the allowable peak-to-peak voltage ripple  
reflected back to the source dictate the capacitance  
requirement. Increasing the number of phases increas-  
es the effective switching frequency and lowers the  
peak-to-average current ratio, yielding a lower input  
capacitance requirement.  
(15)  
2
2 × C  
× V  
3
× f  
2
OSS  
IN SW  
+1.4R  
×I  
RMSLO  
DS(ON)  
where C  
is the MOSFET drain-to-source capacitance.  
OSS  
1D  
(
)
2
2
(16)  
I
=
I
+I  
+I ×I  
PK  
×
DC  
RMSLO  
DC PK  
(
)
3
The input ripple is comprised of VQ (caused by the  
capacitor discharge) and VESR (caused by the ESR of  
the capacitor). Use low-ESR ceramic capacitors with  
high-ripple-current capability at the input. Assume the  
contributions from the ESR and capacitor discharge are  
equal to 30% and 70%, respectively. Calculate the  
input capacitance and ESR required for a specified rip-  
ple using the following equation:  
For example, from the typical specifications in the  
Applications Information section with VOUT = +1.8V, the  
high-side and low-side MOSFET RMS currents are 9.9A  
and 24.1A, respectively. Ensure that the thermal imped-  
ance of the MOSFET package keeps the junction tem-  
perature at least 25°C below the absolute maximum  
rating. Use the following equation to calculate maxi-  
mum junction temperature:  
V  
(
)
ESR  
ESR  
=
IN  
(17)  
T = PD  
J
x θ  
+ T  
J-A A  
MOS  
(18)  
I
I  
L
OUT  
N
+
2
I
OUT  
N
V × f  
×D 1D  
(
)
Table 3. Peak-to-Peak Output Ripple  
Current Calculations  
(19)  
C
=
IN  
Q
SW  
NUMBER OF  
PHASES (N)  
DUTY  
CYCLE (D)  
where IOUT is the total output current of the multiphase  
converter and N is the number of phases.  
EQUATION FOR I  
P-P  
For example, at VOUT = +1.8V, the ESR and input  
capacitance are calculated for the input peak-to-peak  
ripple of 100mV or less yielding an ESR and capaci-  
tance value of 1mand 200µF.  
V (12D)  
O
I=  
2
2
4
4
4
6
< 50%  
> 50%  
L × f  
SW  
V
V 2D1  
)(  
(
)
IN  
O
Output Capacitors  
The worst-case peak-to-peak and capacitor RMS ripple  
current, the allowable peak-to-peak output ripple volt-  
age, and the maximum deviation of the output voltage  
during step loads determine the capacitance and the  
ESR requirements for the output capacitors.  
I=  
L × f  
SW  
V (14D)  
O
I=  
0 to 25%  
25% to 50%  
> 50%  
L × f  
SW  
In multiphase converter design, the ripple currents from  
the individual phases cancel each other and lower the  
ripple current. The degree of ripple cancellation  
depends on the operating duty cycle and the number of  
phases. Choose the right equation from Table 3 to calcu-  
V (12D)(4D1)  
O
I=  
I=  
2×D×L × f  
SW  
V (2D1)(34D)  
O
late the peak-to-peak output ripple (I ) for a given  
P-P  
D×L × f  
SW  
duty cycle of two-, four-, and six-phase converters. The  
maximum ripple cancellation occurs when NPH = K / D.  
V (16D)  
O
I=  
< 17%  
L × f  
SW  
______________________________________________________________________________________ 27  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
The allowable deviation of the output voltage during the  
fast transient load dictates the output capacitance and  
ESR. The output capacitors supply the load step until  
the controller responds with a greater duty cycle. The  
response time (tRESPONSE) depends on the closed-loop  
bandwidth of the converter. The resistive drop across  
the capacitor ESR and capacitor discharge causes a  
voltage drop during a step load. Use a combination of  
SP polymer and ceramic capacitors for better transient  
load and ripple/noise performance.  
Calculate the maximum reverse current based on V  
the reverse-current-limit threshold, and the current-sense  
resistor.  
,
CLR  
2× V  
CLR  
I
=
REVERSE  
(24)  
R
SENSE  
where I  
verter.  
is the total reverse current into the con-  
REVERSE  
Compensation  
Keep the maximum output voltage deviation less than  
or equal to the adaptive voltage-positioning window  
(VOUT). Assume 50% contribution each from the out-  
put capacitance discharge and the ESR drop. Use the  
following equations to calculate the required ESR and  
capacitance value:  
The main control loop consists of an inner current loop  
and an outer voltage loop. The MAX5065/MAX5067 use  
an average-current-mode control scheme to regulate  
the output voltage (Figure 4). IPHASE1 and IPHASE2 are  
the inner average current loops. The VEA output pro-  
vides the controlling voltage for these current sources.  
The inner current loop absorbs the inductor pole reduc-  
ing the order of the outer voltage loop to that of a sin-  
gle-pole system.  
V  
ESR  
(20)  
ESR  
=
OUT  
I
STEP  
A resistive feedback around the VEA provides the best  
possible response, since there are no capacitors to  
I
× t  
STEP  
RESPONSE  
(21)  
C
=
OUT  
charge and discharge during large-signal excursions, R  
F
V  
Q
and R determine the VEA gain. Use the following equa-  
IN  
where ISTEP is the load step and tRESPONSE is the  
response time of the controller. Controller response  
time depends on the control-loop bandwidth.  
tion to calculate the value for RF:  
I
× R  
IN  
OUT  
(25)  
R
=
F
N× G × ∆V  
C
OUT  
Current Limit  
The average-current-mode control technique of the  
MAX5065/MAX5067 accurately limits the maximum out-  
put current per phase. The MAX5065/MAX5067 sense  
the voltage across the sense resistor and limit the peak  
inductor current (IL-PK) accordingly. The ON cycle ter-  
minates when the current-sense voltage reaches 45mV  
(min). Use the following equation to calculate maximum  
current-sense resistor value:  
0.05  
G
=
(26)  
C
R
S
where GC is the current-loop transconductance and N  
is number of phases.  
When designing the current-control loop ensure that the  
inductor downslope (when it becomes an upslope at the  
CEA output) does not exceed the ramp slope. This is a  
necessary condition to avoid sub-harmonic oscillations  
similar to those in peak current-mode control with insuffi-  
cient slope compensation. Use the following equation to  
0.045  
R
=
SENSE  
(22)  
I
OUT  
N
3  
calculate the resistor RCF  
:
2.5×10  
(23)  
PD =  
R
R
SENSE  
2
2× f ×L ×10  
(27)  
SW  
R
where PDR is the power dissipation in sense resistors.  
Select 5% lower value of RSENSE to compensate for any  
parasitics associated with the PC board. Also, select a  
non inductive resistor with the appropriate wattage rating.  
CF  
V
×R  
OUT  
SENSE  
For example, the maximum RCF is 12kfor RSENSE  
1.35m.  
=
CCF provides a low-frequency pole while RCF provides a  
midband zero. Place a zero at fZ to obtain a phase bump  
at the crossover frequency. Place a high-frequency pole  
Reverse Current Limit  
The MAX5065/MAX5067 limit the reverse current when  
BUS  
V
is higher than the preset output voltage.  
28 ______________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
(fP) at least a decade away from the crossover frequency  
to achieve maximum phase margin.  
7) Avoid long traces between the VCC bypass capaci-  
tors, driver output of the MAX5065/MAX5067,  
MOSFET gates and PGND pin. Minimize the loop  
formed by the VCC bypass capacitors, bootstrap  
diode, bootstrap capacitor, MAX5065/MAX5067,  
and upper MOSFET gate.  
Use the following equations to calculate CCF and CCFF  
:
1
C
=
(28)  
CF  
2× π × f ×R  
Z
CF  
8) Place the bank of output capacitors close to the load.  
1
9) Distribute the power components evenly across the  
board for proper heat dissipation.  
C
=
(29)  
CFF  
2× π × f ×R  
P
CF  
10) Provide enough copper area at and around the  
switching MOSFETs, inductor, and sense resistors  
to aid in thermal dissipation.  
PC Board Layout  
Use the following guidelines to layout the switching  
voltage regulator:  
11) Use at least 4oz copper to keep the trace induc-  
tance and resistance to a minimum. Thin copper PC  
boards can compromise efficiency since high cur-  
rents are involved in the application. Also, thicker  
copper conducts heat more effectively, thereby  
reducing thermal impedance.  
1) Place the VIN and VCC bypass capacitors close to  
the MAX5065/MAX5067.  
2) Minimize the area and length of the high-current  
loops from the input capacitor, upper switching  
MOSFET, inductor, and output capacitor back to  
the input capacitor negative terminal.  
Chip Information  
TRANSISTOR COUNT: 5451  
3) Keep short the current loop from the lower-switch-  
ing MOSFET, inductor, and output capacitor.  
PROCESS: BiCMOS  
4) Place the Schottky diodes close to the lower  
MOSFETs and on the same side of the PC board.  
5) Keep the SGND and PGND isolated and connect  
them at one single point close to the negative termi-  
nal of the input-filter capacitor.  
Selector Guide  
6) Run the current-sense lines CS+ and CS- very  
close to each other to minimize the loop area.  
Similarly, run the remote-voltage sense lines  
SENSE+ and SENSE- close to each other. Do not  
cross these critical signal lines through power cir-  
cuitry. Sense the current right at the pads of the  
current-sense resistors.  
PART  
MAX5065 Adjustable +0.6V to +3.3V  
Adjustable +0.8V to +3.3V with OVP, PGOOD,  
Phase Failure Detector  
OUTPUT  
MAX5067  
______________________________________________________________________________________ 29  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Pin Configurations  
TOP VIEW  
44 43 42 41 40 39 38 37 36 35 34  
CSP2  
CSN2  
CLKIN  
CLKOUT  
BST2  
DH2  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
N.C.  
DH2  
LX2  
DL2  
PGND  
IN  
N.C.  
N.C.  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
PHASE  
PLLCMP  
CLP2  
N.C.  
3
N.C.  
4
MAX5067  
LX2  
SGND  
OVPIN  
CLP1  
5
MAX5065  
SGND  
DL2  
6
CLP1  
PGND  
IN  
V
CC  
7
SENSE+  
SENSE-  
V
DD  
8
OVPOUT  
PGOOD  
SENSE+  
SENSE-  
V
CC  
9
25 DL1  
24 LX1  
23 DH1*  
DL1  
LX1  
DH1  
BST1  
EN  
DIFF 10  
EAN 11  
10  
11  
EAOUT 12  
CSP1 13  
CSN1 14  
12 13 14 15 16 17 18 19 20 21 22  
44 THIN QFN*  
28 SSOP  
*CONNECT THE THIN QFN EXPOSED PAD TO SGND GROUND PLANE.  
30  
_____________________________________________________________________________________  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
2
1
INCHES  
MILLIMETERS  
MAX  
MAX  
1.99  
0.21  
0.38  
0.20  
DIM  
A
MIN  
0.068  
MIN  
1.73  
0.05  
0.25  
0.09  
INCHES  
MAX  
MILLIMETERS  
MAX  
6.33  
6.33  
7.33  
MIN  
MIN  
6.07  
6.07  
7.07  
8.07  
N
0.078  
14L  
16L  
20L  
D
D
D
D
D
A1  
B
0.239 0.249  
0.239 0.249  
0.278 0.289  
0.317 0.328  
0.002 0.008  
0.010 0.015  
0.004 0.008  
C
8.33 24L  
E
H
SEE VARIATIONS  
0.205 0.212 5.20  
0.0256 BSC  
D
0.397 0.407 10.07 10.33  
28L  
E
5.38  
e
0.65 BSC  
H
0.301 0.311 7.65  
0.025 0.037 0.63  
7.90  
0.95  
8∞  
L
0∞  
8∞  
0∞  
N
A
C
B
L
e
A1  
D
NOTES:  
1. D&E DO NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").  
3. CONTROLLING DIMENSION: MILLIMETERS.  
4. MEETS JEDEC MO150.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, SSOP, 5.3 MM  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.  
1
21-0056  
C
1
______________________________________________________________________________________ 31  
Dual-Phase, +0.6V to +3.3V Output Parallelable,  
Average-Current-Mode Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
DALLAS  
SEMICONDUCTOR  
A
A1  
A2  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48L THIN QFN, 7x7x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0144  
C
2
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48L THIN QFN, 7x7x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0144  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5065EAI

Dual-Phase, +0.6V to +3.3V Output Parallelable, Average-Current-Mode Controllers
MAXIM

MAX5065EAI+

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065EAI+T

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065EAI-T

Switching Controller, Current-mode, 525kHz Switching Freq-Max, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX5065|MAX5067

Dual-Phase. +0.6V to +3.3V Output Parallelable. Average-Current-Mode Controllers
MAXIM

MAX5066

Configurable, Single-/Dual-Output, Synchronous Buck Controller for High-Current Applications
MAXIM

MAX5066AUI

Configurable, Single-/Dual-Output, Synchronous Buck Controller for High-Current Applications
MAXIM

MAX5066AUI+

暂无描述
MAXIM

MAX5066AUI+T

Dual Switching Controller, Current-mode, 1000kHz Switching Freq-Max, BICMOS, PDSO28, 4.40 MM, MO-153AET, TSSOP-28
MAXIM

MAX5066AUI-T

Dual Switching Controller, Current-mode, 1000kHz Switching Freq-Max, BICMOS, PDSO28, 4.40 MM, MO-153AET, TSSOP-28
MAXIM

MAX5066EUI

Configurable, Single-/Dual-Output, Synchronous Buck Controller for High-Current Applications
MAXIM

MAX5066EUI+

Dual Switching Controller, Current-mode, 1000kHz Switching Freq-Max, BICMOS, PDSO28, 4.40 MM, MO-153AET, TSSOP-28
MAXIM