MAX5102BEUE+ [MAXIM]

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16;
MAX5102BEUE+
型号: MAX5102BEUE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16

文件: 总8页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1565; Rev 0; 10/99  
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
General Description  
Features  
The MAX5102 parallel-input, voltage-output, dual 8-bit  
digital-to-analog converter (DAC) operates from a single  
+2.7V to +5.5V supply and comes in a space-saving  
16-pin TSSOP package. Internal precision buffers  
+2.7V to +5.5V Single-Supply Operation  
Ultra-Low Supply Current  
0.2mA while Operating  
1nA in Shutdown Mode  
®
swing Rail-to-Rail , and the reference input range  
includes both ground and the positive rail. Both DACs  
share a common reference input.  
Ultra-Small 16-Pin TSSOP Package  
Ground to V  
Reference Input Range  
DD  
The MAX5102 has separate input latches for each of its  
DACs. Data is transferred to the input latches from a  
common 8-bit input port. The DACs are individually  
selected through address input A0 and are updated by  
bringing WR low.  
Output Buffer Amplifiers Swing Rail-to-Rail  
Power-On Reset Sets All Registers to Zero  
The MAX5102 features a shutdown mode that reduces  
current to 1nA, as well as a power-on reset mode that  
resets all registers to code 00 hex on power-up.  
Ordering Information  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
Applications  
MAX5102AEUE -40°C to +85°C 16 TSSOP  
MAX5102BEUE -40°C to +85°C 16 TSSOP  
1
2
Digital Gain and Offset Adjustment  
Programmable Attenuators  
Portable Instruments  
Power-Amp Bias Control  
Functional Diagram  
Pin Configuration  
TOP VIEW  
V
1
2
3
4
5
6
7
8
16 OUTA  
15 OUTB  
14 GND  
DD  
OUTA  
OUTB  
INPUT  
LATCH A  
DAC A  
DAC B  
REF  
SHDN  
WR  
D0–D7  
MAX5102  
13 A0  
12 D0  
11 D1  
10 D2  
INPUT  
LATCH B  
D7  
D6  
D5  
CONTROL  
LOGIC  
A0  
D4  
9
D3  
MAX5102  
TSSOP  
WR  
REF SHDN  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range  
D_, A0, WR, SHDN to GND ......................................-0.3V to +6V  
REF to GND................................................-0.3V to (V + 0.3V)  
MAX5102_EUE ..............................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
OUT_ to GND ...........................................................-0.3V to V  
DD  
Maximum Current into Any Pin ......................................... 50mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TSSOP (derate 5.7mW/°C above +70°C) .......457mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +2.7V to +5.5V, GND = 0V, R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
= V  
REF  
L
L
A
MIN  
V
= +3V and T = +25°C.)  
DD  
REF A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY  
Resolution  
8
Bits  
MAX5102A  
MAX5102B  
1
Integral Nonlinearity (Note 1)  
INL  
LSB  
2
Differential Nonlinearity (Note 1)  
Zero-Code Error  
DNL  
ZCE  
Guaranteed monotonic  
Code = 00 hex  
1
LSB  
mV  
20  
Zero-Code-Error Supply  
Rejection  
Code = 00 hex, V  
= 2.7V to 5.5V  
10  
1
mV  
DD  
Zero-Code Temperature  
Coefficient  
Code = 00 hex  
Code = F0 hex  
Code = F0 hex  
10  
µV/°C  
%
Gain Error (Note 2)  
Gain-Error Temperature  
Coefficient  
0.001  
LSB/°C  
V
V
= 2.7V to 3.6V,  
= 2.5V  
DD  
REF  
1
1
Power-Supply Rejection  
Code = FF hex  
LSB  
V
V
= 4.5V to 5.5V,  
= 4.096V  
DD  
REF  
REFERENCE INPUT  
Input Voltage Range  
Input Resistance  
Input Capacitance  
DAC OUTPUTS  
0
V
V
DD  
320  
460  
15  
600  
kΩ  
pF  
Output Voltage Range  
R = ∞  
L
0
V
REF  
V
DIGITAL INPUTS  
V
V
= 2.7V to 3.6V  
2
3
DD  
Input High Voltage  
V
IH  
V
= 3.6V to 5.5V  
DD  
Input Low Voltage  
Input Current  
V
0.8  
1.0  
V
IL  
I
IN  
V
IN  
= V or GND  
µA  
pF  
DD  
Input Capacitance  
C
IN  
10  
2
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= +2.7V to +5.5V, GND = 0V, R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
= V  
REF  
L
L
A
MIN  
V
= +3V and T = +25°C.)  
DD  
REF A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
Output Voltage Slew Rate  
Output Settling Time (Note 3)  
From code 00 to code F0 hex  
0.6  
6
V/µs  
µs  
To 1/2LSB, from code 00 to code F0 hex  
Channel-to-Channel Isolation  
(Note 4)  
Code 00 to code FF hex  
500  
0.5  
90  
nVs  
nVs  
nVs  
Digital Feedthrough (Note 5)  
Code 00 to code FF hex  
Digital-to-Analog Glitch Impulse  
Code 80 hex to code 7F hex  
REF = 2.5Vp-p at 1kHz, V  
= 1.5V,  
REF(DC)  
70  
60  
V
DD  
= 3V, code FF hex  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
dB  
REF = 2.5Vp-p at 10kHz, V  
= 1.5V,  
REF(DC)  
V
DD  
= 3V, code FF hex  
REF = 0.5Vp-p, V  
= 1.5V,  
REF(DC)  
Multiplying Bandwidth  
650  
kHz  
V
DD  
= 3V, -3dB bandwidth  
Wideband Amplifier Noise  
Shutdown Recovery Time  
Time to Shutdown  
60  
13  
20  
µV  
RMS  
t
To 1/2LSB of final value of V  
µs  
µs  
SDR  
OUT  
t
I
< 5µA  
SDN  
DD  
POWER SUPPLIES  
Power-Supply Voltage  
V
2.7  
5.5  
360  
1
V
DD  
Supply Current (Note 6)  
Shutdown Current  
I
190  
µA  
µA  
DD  
0.001  
DIGITAL TIMING (Figure 1) (Note 7)  
t
5
0
ns  
ns  
ns  
ns  
ns  
Address to WR Setup  
Address to WR Hold  
Data to WR Setup  
Data to WR Hold  
AS  
t
AH  
t
t
25  
0
DS  
DH  
WR  
t
20  
WR Pulse Width  
Note 1: Reduced digital code range (code 00 hex to code F0 hex) due to swing limitations when the output amplifier is loaded.  
Note 2: Gain error is: [100 (V - ZCE - V ) / V ]. Where V is the DAC output voltage with input code F0 hex,  
F0,meas  
F0,ideal  
REF  
F0,meas  
and V  
is the ideal DAC output voltage with input code F0 hex (i.e., VREF · 240 / 256).  
F0,ideal  
Note 3: Output settling time is measured from the 50% point of the falling edge of WR to 1/2LSB of V  
’s final value.  
OUT  
Note 4: Channel-to-channel isolation is defined as the glitch energy at a DAC output in response to a full-scale step change on any  
other DAC output. The measured channel has a fixed code of 80 hex.  
Note 5: Digital feedthrough is defined as the glitch energy at any DAC output in response to a full-scale step change on all eight  
data inputs with WR at V  
.
DD  
Note 6: R = , digital inputs at GND or V  
.
L
DD  
Note 7: Timing measurement reference level is (V + V ) / 2.  
IH  
IL  
_______________________________________________________________________________________  
3
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ADDRESS  
WR  
ADDRESS VALID  
t
AS  
t
t
AH-  
WR  
t
t
DH-  
DS-  
DATA  
DATA VALID  
Figure 1. Timing Diagram  
Typical Operating Characteristics  
(V  
= V  
= +3V, R = 10k, C = 100pF, code = FF hex, T = +25°C, unless otherwise noted.)  
DD  
REF  
L
L
A
DAC FULL-SCALE OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
DAC ZERO-CODE OUTPUT VOLTAGE  
vs. SINK CURRENT  
SUPPLY CURRENT vs. TEMPERATURE  
6
5
4
3
2
1
0
1.2  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
1 DAC AT CODE 00 OR F0  
1 DAC AT CODE 00 (R = )  
L
V
= V = 5V  
REF  
DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= V = 3V  
REF  
DD  
V
= 5V; CODE = F0 HEX  
DD  
DD  
V
= 3V; CODE = F0 HEX  
V
= V = 3V  
REF  
DD  
V
= V = 5V  
REF  
DD  
V
= 5V; CODE = 00  
= 3V; CODE = 00  
DD  
V
DD  
V
DD  
= 3.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
-40 -20  
0
20  
40  
60  
80 100  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE AT DAC OUTPUT  
vs. REFERENCE AMPLITUDE  
SUPPLY CURRENT vs.  
REFERENCE VOLTAGE  
SUPPLY CURRENT vs.  
REFERENCE VOLTAGE  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
DAC CODE = FF HEX  
1 DAC AT CODE 00 OR F0  
V
= SINE WAVE CENTERED AT 1.5V  
REF  
1 DAC AT CODE 00 (R = )  
L
80kHz FILTER  
CODE = F0 HEX  
CODE = F0 HEX  
CODE = 00 HEX  
20kHz REF SIGNAL  
10kHz REF SIGNAL  
CODE = 00 HEX  
60  
60  
40  
40  
V
= 5.0V  
DD  
1 DAC AT CODE 00 OR F0  
1 DAC AT CODE 00. (R = )  
20  
20  
V
= 3.0V  
0.5  
1kHz REF SIGNAL  
0.5 1.0  
REFERENCE AMPLITUDE (V  
DD  
L
0
0
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5. 5.0  
REFERENCE VOLTAGE (V)  
0
1.5  
2.0  
2.5  
REFERENCE VOLTAGE (V)  
)
p-p  
4
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Typical Operating Characteristics (continued)  
(V  
= V  
= +3V, R = 10k, C = 100pF, code = FF hex, T = +25°C, unless otherwise noted.)  
DD  
REF  
L
L
A
REFERENCE INPUT  
FREQUENCY RESPONSE  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(NEGATIVE)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE AT DAC OUTPUT  
vs. REFERENCE FREQUENCY  
10  
DAC CODE FROM 80 TO 7F HEX  
0
0
DAC CODE = FF HEX  
= SINE WAVE CENTERED AT 1.5V  
V
REF  
-10  
-10  
1kHz FREQUENCY  
500kHz FILTER  
-20  
-30  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1
2
-40  
-50  
REF = 0.5V  
p-p  
REF = 1V  
p-p  
-60  
-70  
CODE = FF HEX REF IS IV SIGNAL  
REF  
p-p  
-80  
-90  
REF = 2V  
10  
V
= 1.5V  
p-p  
2µs/div  
0.01  
0.1  
1
10  
1
100  
FREQUENCY (MHz)  
CH1 = WR, 1V/div, CH2 = V  
, 50mV/div, AC-COUPLED  
OUTA  
FREQUENCY (kHz)  
DIGITAL FEEDTHROUGH GLITCH IMPULSE  
(1 TO 0 DIGITAL TRANSITION)  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(POSITIVE)  
DIGITAL FEEDTHROUGH GLITCH IMPULSE  
(0 TO 1 DIGITAL TRANSITION)  
1 TO 0 DIGITAL TRANSITION ON  
ALL DATA BITS (WITH WR HIGH)  
DAC CODE FROM 7F TO 80 HEX  
0 TO 1 DIGITAL TRANSITION ON  
ALL DATA BITS (WITH WR HIGH)  
1
1
2
1
2
2
20ns/div  
1µs/div  
20ns/div  
CH1 = WR, 1V/div, CH2 = V  
, 50mV/div, AC-COUPLED  
OUTA  
CH1 = D7, 2V/div, CH2 = V  
, 1mV/div  
OUTA  
CH1 = D7, 2V/div, CH2 = V  
, 1mV/div  
OUTA  
INTEGRAL AND DIFFERENTIAL  
NONLINEARITY vs. DIGITAL CODE  
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
0.5  
0.4  
R = ∞  
L
DAC CODE FROM 10 TO F0 HEX  
DAC CODE FROM F0 TO 10 HEX  
0.3  
0.2  
DNL  
0.1  
1
2
1
2
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
INL  
1µs/div  
1µs/div  
0
32 64 96 128 160 192 224 256  
DIGITAL CODE  
CH1 = WR = 2V/div, CH2 = V  
= 2V/div  
CH1 = WR, 2V/div, CH2 = V  
, 2V/div  
OUTA  
OUTA  
_______________________________________________________________________________________  
5
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage. Bypass V  
to GND using a 0.1µF capacitor.  
DD  
2
REF  
SHDN  
WR  
Reference Voltage Input  
3
Shutdown. Connect SHDN to GND for normal operation.  
4
Write Input (active low). Use WR to load data into the DAC input latch selected by A0.  
5–12  
13  
14  
15  
16  
D7–D0  
A0  
Data Inputs  
DAC Address Select Bit  
Ground  
GND  
OUTB  
OUTA  
DAC B Voltage Output  
DAC A Voltage Output  
Reference Input  
Detailed Description  
Digital-to-Analog Section  
The MAX5102 provides a code-independent input  
impedance on the REF input. Input impedance is typi-  
cally 460kin parallel with 15pF, and the reference  
The MAX5102 uses a matrix decoding architecture for the  
DACs. The external reference voltage is divided down by  
a resistor string placed in a matrix fashion. Row and col-  
umn decoders select the appropriate tab from the resistor  
string to provide the needed analog voltages. The resistor  
network converts the 8-bit digital input into an equivalent  
analog output voltage in proportion to the applied refer-  
ence voltage input. The resistor string presents a code-  
independent input impedance to the reference and  
guarantees a monotonic output.  
input voltage range is 0 to V . The reference input  
DD  
accepts positive DC signals, as well as AC signals with  
peak values between 0 and V . The voltage at REF  
DD  
sets the full-scale output voltage for the DAC. The out-  
put voltage (V  
) for any DAC is represented by a  
OUT  
digitally programmable voltage source as follows:  
V
OUT  
= (N · V ) / 256  
B
REF  
where N is the numeric value of the DAC binary input  
B
These devices can be used in multiplying applications.  
Their voltages are buffered by rail-to-rail op amps con-  
nected in a follower configuration to provide a rail-to-rail  
output (see Functional Diagram).  
code.  
Digital Inputs and Interface Logic  
In the MAX5102, address line A0 selects the DAC that  
receives data from D0–D7, as shown in Table 1. When  
WR is low, the addressed DAC’s input latch is transpar-  
ent. Data is latched when WR is high. The DAC outputs  
(OUTA, OUTB) represent the data held in the two 8-bit  
Low-Power Shutdown Mode  
The MAX5102 features a shutdown mode that reduces  
current consumption to 1nA. A high voltage on the  
SHDN pin shuts down the DACs and the output ampli-  
fiers. In shutdown mode, the output amplifiers enter a  
high-impedance state. When bringing the device out of  
shutdown, allow 13µs for the output to stabilize.  
Table 1. MAX5102 Addressing Table  
(partial list)  
Output Buffer Amplifiers  
The DAC outputs are internally buffered by precision  
amplifiers with a typical slew rate of 0.6V/µs. The typical  
settling time to 1/2LSB at the output is 6µs when  
loaded with 10kin parallel with 100pF.  
A0  
X
LATCH STATE  
Input data latched  
WR  
H
L
L
DAC A input latch transparent  
DAC B input latch transparent  
L
H
H = High state, L = Low state, X = Don’t care  
6
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
input latches. To avoid output glitches in the MAX5102,  
connect an external Schottky diode between REF and  
V to ensure compliance with the absolute maximum  
DD  
ratings. Do not apply signals to the digital inputs before  
the device is fully powered up.  
ensure that data is valid before WR goes low. When the  
device powers up (i.e., V  
ramps up), all latches are  
DD  
internally preset with code 00 hex.  
Applications Information  
Power-Supply Bypassing and  
Ground Management  
External Reference  
The reference source resistance must be considerably  
less than the reference input resistance. To keep within  
Digital or AC transient signals on GND can create noise  
at the analog output. Return GND to the highest-quality  
ground available. Bypass V  
with a 0.1µF capacitor,  
DD  
1LSB error in an 8-bit system, R must be less than  
S
located as close to V  
and GND as possible.  
DD  
R
/256. Hence, maintain a value of R < 1kto  
REF  
S
Careful PC board ground layout minimizes crosstalk  
between the DAC outputs and digital inputs.  
ensure 8-bit accuracy. If V  
is DC only, bypass REF  
REF  
to GND with a 0.1µF capacitor. Values greater than this  
improve noise rejection.  
Power Sequencing  
Chip Information  
The voltage applied to REF should not exceed V  
at  
DD  
TRANSISTOR COUNT: 6848  
any time. If proper power sequencing is not possible,  
_______________________________________________________________________________________  
7
+2.7V to +5.5V, Low-Power, Dual, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5102BEUE+T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX5102BEUE-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX5104

Low-Power, Dual, Voltage-Output, 12-Bit DAC with Serial Interface
MAXIM

MAX5104CEE

Low-Power, Dual, Voltage-Output, 12-Bit DAC with Serial Interface
MAXIM

MAX5104CEE+

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104CEE+T

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104CEE-T

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104EEE

Low-Power, Dual, Voltage-Output, 12-Bit DAC with Serial Interface
MAXIM

MAX5104EEE+

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104EEE+T

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104EEE-T

D/A Converter, 1 Func, Serial Input Loading, 15us Settling Time, PDSO16, QSOP-16
MAXIM

MAX5104XXXXX

RADIATION HARD 4096 x 1 BIT STATIC RAM
ZARLINK