MAX515EPA+ [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 25us Settling Time, PDIP8, 0.300 INCH, PLASTIC, DIP-8;
MAX515EPA+
型号: MAX515EPA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 25us Settling Time, PDIP8, 0.300 INCH, PLASTIC, DIP-8

光电二极管 转换器
文件: 总16页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0280; Rev 2; 11/96  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
_______________Ge n e ra l De s c rip t io n  
___________________________Fe a t u re s  
Operate from Single +5V Supply  
Buffered Voltage Output  
The MAX504/MAX515 are low-power, voltage-output,  
10-bit digital-to-analog converters (DACs) specified for  
single +5V power-supply operation. The MAX504 can  
a ls o b e op e ra te d with ± 5V s up p lie s . The MAX515  
draws only 140µA, and the MAX504 (with internal refer-  
ence) draws only 260µA. The MAX515 comes in 8-pin  
DIP and SO packages, while the MAX504 comes in 14-  
p in DIP a nd SO p a c ka g e s . Both p a rts ha ve b e e n  
trimmed for offset voltage, gain, and linearity, so no fur-  
ther adjustment is necessary.  
Internal 2.048V Reference (MAX504)  
140µA Supply Current (MAX515)  
INL = ±1/2LSB (max)  
Guaranteed Monotonic Over Temperature  
Flexible Output Ranges:  
The MAX515s buffer is fixed at a gain of 2. The MAX504s  
internal op amp may be configured for a gain of 1 or 2, as  
we ll a s for unip ola r or b ip ola r outp ut volta g e s . The  
MAX504 can also be used as a four-quadrant multiplier  
without external resistors or op amps.  
0V to V  
(MAX504/MAX515)  
DD  
V
to V  
(MAX504)  
SS  
DD  
8-Pin SO/DIP (MAX515)  
Power-On Reset  
For parallel data inputs, see the MAX503 data sheet.  
For a ha rd wa re a nd s oftwa re c omp a tib le 12-b it  
upgrade, refer to the MAX531/MAX538/MAX539 data  
sheet.  
Serial Data Output for Daisy-Chaining  
______________Ord e rin g In fo rm a t io n  
_______________________Ap p lic a t io n s  
Battery-Powered Test Instruments  
PART  
MAX504CPD  
MAX504CSD  
MAX504EPD  
MAX504ESD  
MAX515CPA  
MAX515CSA  
MAX515EPA  
MAX515ESA  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
Digital Offset and Gain Adjustment  
Battery-Operated/Remote Industrial Controls  
Machine and Motion Control Devices  
Cellular Telephones  
14 Plastic DIP  
14 SO  
8 Plastic DIP  
8 SO  
________________Fu n c t io n a l Dia g ra m  
8 Plastic DIP  
8 SO  
REFIN  
REFOUT*  
BIPOFF*  
Refer to the MAX531/MAX538/MAX539 data sheet for military tem-  
perature or die equivalents.  
MAX504  
MAX515  
_________________P in Co n fig u ra t io n s  
2.048V  
REFERENCE*  
RFB*  
TOP VIEW  
VOUT  
DAC  
AGND  
V
DD  
POWER-UP  
RESET  
DIN  
SCLK  
CS  
V
1
2
3
4
8
7
6
5
DD  
DGND*  
10-BIT DAC REGISTER  
VOUT  
REFIN  
AGND  
CLR*  
CS  
MAX515  
CONTROL  
LOGIC  
V *  
SS  
DOUT  
4
(LSB)  
(MSB)  
2
0s  
SCLK  
DIN  
DUMMY  
BITS  
DOUT  
10 DATA BITS  
DIP/SO  
16-BIT SHIFT REGISTER  
MAX504 appears at end of data sheet.  
* MAX504 ONLY  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t  
S e ria l 1 0 -Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
V
to DGND and V to AGND ................................-0.3V, +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
V
to DGND and V to AGND .................................-6V, +0.3V  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) .....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C) ..... 800mW  
14-Pin SO (derate 8.33mW/°C above +70°C)................667mW  
Operating Temperature Ranges  
SS  
SS  
V
to V .................................................................-0.3V, +12V  
DD  
SS  
AGND to DGND........................................................-0.3V, +0.3V  
Digital Input Voltage to DGND ......................-0.3V, (V + 0.3V)  
REFIN ..................................................(V - 0.3V), (V + 0.3V)  
DD  
SS  
DD  
REFOUT to AGND .........................................-0.3V, (V + 0.3V)  
MAX5_ _C_ _.........................................................0°C to +70°C  
MAX5_ _E_ _......................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
RFB .....................................................(V - 0.3V), (V + 0.3V)  
SS  
DD  
BIPOFF................................................(V - 0.3V), (V + 0.3V)  
SS  
DD  
V
OUT  
(Note 1) ................................................................V , V  
SS DD  
Continuous Current, Any Pin................................-20mA, +20mA  
Note 1: The output may be shorted to V , V , or AGND if the package power dissipation limit is not exceeded.  
DD SS  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
04/MAX15  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(V = 5V, V = 0V, AGND = DGND = 0V, REFIN = 2.048V (external), RFB = BIPOFF = VOUT (MAX504), C  
= 33µF (MAX504),  
DD  
SS  
REFOUT  
R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
N
10  
Bits  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Unipolar Offset Error  
Unipolar Offset Tempco  
Unipolar Offset-Error  
INL  
DNL  
±0.5  
±1  
3
Guaranteed monotonic  
LSB  
V
OS  
0
LSB  
TCV  
3
ppm/°C  
OS  
PSRR  
GE  
4.5V V 5.5V  
0.1  
LSB/V  
DD  
Power-Supply Rejection Ratio  
Gain Error (Note 2)  
±1  
LSB  
Gain-Error Tempco  
1
ppm/°C  
Gain-Error Power-Supply  
Rejection Ratio  
PSRR  
4.5V V 5.5V  
0.1  
LSB/V  
DD  
VOLTAGE OUTPUT (V  
)
OUT  
MAX504 (G = 1)  
0
0
V
- 2  
DD  
Output Voltage Range  
V
MAX504 (G = 2), MAX515  
V
- 0.4  
DD  
Output Load Regulation  
Short-Circuit Current  
VOUT = 2V, R = 2kΩ  
0.5  
LSB  
mA  
L
I
SC  
12  
REFERENCE INPUT (REFIN)  
Voltage Range  
0
V
DD  
- 2  
V
Input Resistance  
Code dependent, minimum at code 0101...  
Code dependent (Note 3)  
40  
10  
kΩ  
pF  
dB  
Input Capacitance  
AC Feedthrough  
50  
REFIN = 1kHz, 2Vp-p  
-80  
2
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)  
(V = 5V, V = 0V, AGND = DGND = 0V, REFIN = 2.048V (external), RFB = BIPOFF = VOUT (MAX504), C  
= 33µF (MAX504),  
DD  
SS  
REFOUT  
R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.)  
MAX  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE OUTPUT (REFOUT—MAX504 Only)  
T
= +25°C  
2.024  
2.015  
2.011  
2.048  
2.072  
2.081  
2.085  
A
Reference Output Voltage  
MAX504C  
V
MAX504E  
Temperature Coefficient  
Resistance  
TC  
30  
ppm/°C  
REFOUT  
R
(Note 4)  
0.5  
2
REFOUT  
Power-Supply Rejection Ratio  
Noise Voltage  
PSRR  
4.5V V 5.5V  
200  
400  
µV/V  
µVp-p  
µF  
DD  
e
0.1Hz to 10kHz  
n
Required External Capacitor  
C
3.3  
2.4  
REFOUT  
DIGITAL INPUTS (DIN, SCLK, CS, CLR)  
Input High  
V
IH  
V
V
Input Low  
V
IL  
0.8  
±1  
Input Current  
I
IN  
V
IN  
= 0V or V  
DD  
µA  
pF  
Input Capacitance  
DIGITAL OUTPUT (DOUT)  
Output High  
C
8
IN  
V
OH  
I
= 2mA  
V
- 1  
V
V
SOURCE  
DD  
Output Low  
V
OL  
I
= 2mA  
0.4  
SINK  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
Voltage-Output Settling Time  
Digital Feedthrough  
SR  
T
= +25°C  
0.15  
0.25  
25  
5
V/µs  
µs  
A
To ±1/2LSB, VOUT = 2V  
nV-s  
CS = V , DIN = 100kHz  
DD  
REFIN = 1kHz, 2Vp-p (G = 1 or 2),  
code = 1111...  
Signal-to-Noise Plus Distortion  
SINAD  
68  
dB  
POWER SUPPLY  
Positive Supply Voltage  
V
4.5  
5.5  
400  
300  
V
DD  
MAX504  
MAX515  
260  
140  
All inputs = 0V or V  
output = no load  
,
DD  
Power-Supply Current  
I
DD  
µA  
SWITCHING CHARACTERISTICS (Note 5)  
CS Setup Time  
t
20  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
t
SCLK Fall to CS Fall Hold Time  
SCLK Fall to CS Rise Hold Time  
SCLK High Width  
CSH0  
CSH1  
t
35  
35  
45  
0
CH  
SCLK Low Width  
t
CL  
DS  
DH  
DO  
DIN Setup Time  
t
DIN Hold Time  
t
DOUT Valid Propagation Delay  
CS High Pulse Width  
CLR Pulse Width  
t
C
= 50pF  
80  
L
t
20  
25  
50  
CSW  
t
CLR  
t
CS Rise to SCLK Rise Setup Time  
CS1  
_______________________________________________________________________________________  
3
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (MAX504 Only)  
(V = 5V, V = -5V, AGND = DGND = 0V, REFIN = 2.048V (external), RFB = BIPOFF = VOUT, C  
= 33µF, R = 10k,  
L
DD  
SS  
REFOUT  
C
= 100pF, T = T  
to T , unless otherwise noted.)  
L
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution  
N
10  
Relative Accuracy  
Differential Nonlinearity  
Bipolar Offset Error  
Bipolar Offset Tempco  
INL  
±0.5  
±1  
LSB  
DNL  
Guaranteed monotonic  
BIPOFF = REFIN  
BIPOFF = REFIN  
LSB  
V
OS  
±3  
LSB  
TCV  
3
ppm/°C  
OS  
Offset-Error Power-Supply  
Rejection Ratio  
PSRR  
GE  
4.5V V 5.5V, -5.5V V -4.5V  
0.1  
LSB/V  
DD  
SS  
Gain Error (Unipolar or Bipolar)  
Gain-Error Tempco  
±1  
LSB  
1
ppm/°C  
04/MAX15  
Gain-Error Power-Supply  
Rejection Ratio  
PSRR  
4.5V V 5.5V, -5.5V V -4.5V  
0.1  
LSB/V  
DD  
SS  
REFERENCE INPUT (REFIN)  
Voltage Range  
V
SS  
+ 2  
V
DD  
- 2  
V
Input Resistance  
Code dependent, minimum at code 0101...  
Code dependent (Note 3)  
40  
10  
kΩ  
pF  
dB  
Input Capacitance  
AC Feedthrough  
50  
REFIN = 1kHz, 2.0Vp-p  
-80  
REFERENCE OUTPUT (REFOUT—MAX504 Only)  
= +25°C  
T
A
2.024  
2.015  
2.011  
2.048  
2.072  
2.081  
2.085  
MAX504C  
MAX504E  
Reference Output Voltage  
V
Temperature Coefficient  
Resistance  
TC  
30  
ppm/°C  
REFOUT  
REFOUT  
PSRR  
R
(Note 4)  
0.5  
2
Power-Supply Rejection Ratio  
Noise Voltage  
4.5V V 5.5V  
200  
400  
µV/V  
µVp-p  
µF  
DD  
e
0.1Hz to 10kHz  
n
Required External Capacitor  
DIGITAL INPUTS (DIN, SCLK, CS)  
Input High  
C
3.3  
2.4  
REFOUT  
V
IH  
V
V
Input Low  
V
IL  
0.8  
±1  
Input Current  
I
IN  
V
IN  
= 0V or V  
DD  
µA  
pF  
Input Capacitance  
DIGITAL OUTPUT (DOUT)  
Output High  
C
8
IN  
V
OH  
I
= 2mA  
V - 1  
DD  
V
V
SOURCE  
Output Low  
V
OL  
I
= 2mA  
0.4  
SINK  
4
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (MAX504 Only) (continued)  
(V = 5V, V = -5V, AGND = DGND = 0V, REFIN = 2.048V (external), RFB = BIPOFF = VOUT, C  
= 33µF, R = 10k,  
DD  
SS  
REFOUT  
L
C
= 100pF, T = T  
to T , unless otherwise noted.)  
L
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE OUTPUT (VOUT)  
(G = 1)  
(G = 2)  
V
+ 2  
V
- 2  
SS  
DD  
Output Voltage Range  
V
V
SS  
+ 0.4  
V
DD  
- 0.4  
Output Load Regulation  
Short-Circuit Current  
VOUT = 2V, R = 2kΩ  
0.5  
LSB  
mA  
L
I
SC  
12  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
Voltage-Output Settling Time  
Digital Feedthrough  
SR  
0.15  
0.25  
16  
5
V/µs  
µs  
To ±1/2LSB, VOUT = 2V  
Step all 0s to all 1s  
nV-s  
REFIN = 1kHz, 2Vp-p (G = 1)  
REFIN = 1kHz, 2Vp-p (G = 2)  
68  
68  
Signal-to-Noise Plus Distortion  
SINAD  
dB  
POWER SUPPLY  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
SWITCHING CHARACTERISTICS  
CS Setup Time  
V
4.5  
5.5  
0
V
V
DD  
V
SS  
-5.5  
I
DD  
All inputs = 0V or V , no load  
260  
400  
-200  
µA  
µA  
DD  
I
SS  
All inputs = 0V or V , no load  
-120  
DD  
t
20  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
t
SCLK Fall to CS Fall Hold Time  
SCLK Fall to CS Rise Hold Time  
SCLK High Width  
CSH0  
CSH1  
t
35  
35  
45  
0
CH  
SCLK Low Width  
t
CL  
DS  
DH  
DO  
DIN Setup Time  
t
DIN Hold Time  
t
DOUT Valid Propagation Delay  
CS High Pulse Width  
t
C
= 50pF  
80  
L
t
20  
25  
50  
CSW  
t
CLR Pulse Width  
CLR  
t
CS Rise to SCLK Rise Setup Time  
CS1  
Note 2: In single-supply operation, INL and GE calculated from Code 3 to Code 1023.  
Note 3: Guaranteed by design.  
Note 4: Tested at I  
= 100µA. The reference can typically source up to 5mA (see Typical Operating Characteristics).  
OUT  
Note 5: The timing characteristics limits for the MAX515 are guaranteed by design.  
_______________________________________________________________________________________  
5
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V  
= 2.048V, T = +25°C, unless otherwise noted.)  
A
DD  
REFIN  
OUTPUT SINK CAPABILITY vs.  
OUTPUT PULL-DOWN VOLTAGE  
OUTPUT SOURCE CAPABILITY vs.  
OUTPUT PULL-UP VOLTAGE  
ANALOG FEEDTHROUGH vs.  
FREQUENCY  
16  
14  
12  
10  
8
0
1
2
3
4
5
-110  
-100  
-90  
CODE = all 0s  
-80  
-70  
-60  
-50  
-40  
6
-30  
-20  
-10  
4
6
7
8
2
04/MAX15  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
-5  
V
-4  
V
-3  
V
-2  
V
-1  
V -0  
DD  
DD  
DD  
DD  
DD  
DD  
1
10  
100  
1k  
10k 100k 1M  
OUTPUT PULL-DOWN VOLTAGE (V)  
OUTPUT PULL-UP VOLTAGE (V)  
FREQUENCY (Hz)  
MAX504  
REFERENCE VOLTAGE vs.  
TEMPERATURE  
MAX504  
GAIN vs. FREQUENCY  
SUPPLY CURRENT vs.  
TEMPERATURE  
300  
4
2
2.055  
2.050  
REFIN = 4Vp-p  
280  
260  
240  
220  
200  
180  
160  
140  
120  
0
MAX504  
-2  
-4  
-6  
-8  
-10  
-12  
MAX515  
-14  
2.045  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
-60 -40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX504 REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE LOAD CURRENT  
MAX504  
GAIN AND PHASE vs.FREQUENCY  
MAX504  
AMPLIFIER SIGNAL-TO-NOISE RATIO  
20  
2.0520  
2.0515  
80  
70  
60  
50  
40  
30  
20  
10  
180  
RFB CONNECTED TO AGND (G=2)  
RFB CONNECTED TO VOUT (G=1)  
REFIN = 4Vp-p  
10  
GAIN  
2.0510  
2.0505  
2.0500  
2.0495  
2.0490  
0
-10  
-20  
0
PHASE  
-180  
-30  
0
1
10  
100  
800  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE LOAD CURRENT (mA)  
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V, V = 2.048V, T = +25°C, unless otherwise noted.)  
REFIN A  
DIGITAL FEEDTHROUGH  
A
B
2µs/div  
CS = HIGH  
A: DIN = 4Vp-p, 100kHz  
B: VOUT, 10mV/div  
NEGATIVE SETTLING TIME (MAX504)  
POSITIVE SETTLING TIME (MAX504)  
A
B
A
B
5µs/div  
5µs/div  
A: CS RISING EDGE, 5V/div  
B: VOUT, NO LOAD, 1V/div  
DUAL SUPPLY ±5V  
BIPOLAR CONFIGURATION  
V = 2V  
REFIN  
A: CS RISING EDGE, 5V/div  
B: VOUT, NO LOAD, 1V/div  
DUAL SUPPLY ±5V  
BIPOLAR CONFIGURATION  
V
REFIN  
= 2V  
_______________________________________________________________________________________  
7
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t  
S e ria l 1 0 -Bit DACs  
____________________P in De s c rip t io n  
_______________De t a ile d De s c rip t io n  
Ge n e ra l DAC Dis c u s s io n  
PIN  
The MAX504/MAX515 use an inverted” R-2R ladder net-  
work with a single-supply CMOS op amp to convert 10-bit  
digital data to analog voltage levels (see Functional  
Diagram). The term inverted” describes the ladder net-  
work because the REFIN pin in current-output DACs is the  
summing junction, or virtual ground, of an op amp.  
However, such use would result in the output voltage  
b e ing the inve rs e of the re fe re nc e volta g e . The  
MAX504/MAX515s topology makes the output the same  
polarity as the reference input.  
NAME  
FUNCTION  
MAX504  
MAX515  
Bipolar offset/gain  
resistor  
1
BIPOFF  
DIN  
1
2
3
Serial data input  
Clear. Asynchronously sets  
DAC register to all 0s.  
CLR  
An internal reset circuit forces the DAC register to reset  
to all 0s on power-up. Additionally, a clear (CLR) pin,  
when held low, sets the DAC register to all 0s. CLR  
operates asynchronously and independently from the  
chip select (CS) pin.  
4
5
2
3
SCLK  
Serial clock input  
Chip select, active low  
CS  
04/MAX15  
Serial data output for  
daisy-chaining  
6
4
DOUT  
Bu ffe r Am p lifie r  
7
8
9
5
DGND  
AGND  
REFIN  
Digital ground  
The output buffer is a unity-gain stable, rail-to-rail output,  
BiCMOS op amp. Input offset voltage and CMRR are  
trimmed to achieve better than 10-bit performance.  
Settling time is 25µs to 0.01% of final value. The output is  
short-circuit protected and can drive a 2kload with more  
than 100pF load capacitance.  
Analog ground  
Reference input  
Reference output,  
2.048V. Connect to V  
DD  
if not used.  
6
10  
REFOUT  
11  
12  
13  
14  
7
V
Negative power supply  
DAC output  
SS  
VOUT  
8
V
DD  
Positive power supply  
Feedback resistor  
RFB  
CS  
t
t
CSH0  
CSW  
t
CH  
t
t
CL  
t
CSH1  
CSS  
SCLK  
t
DH  
t
CS1  
t
DS  
DIN  
t
DO  
DOUT  
Figure 1. Timing Diagram  
8
_______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
code 0000.... REFIN’s input capacitance is also code  
dependent and has a 50pF maximum value at several  
codes.  
R
S
REFOUT  
TOTAL  
REFERENCE  
NOISE  
C
S
If an upgrade to the internal reference is required, the 2.5V  
C
REFOUT  
MAX873A is suitable: ±15mV initial accuracy, TCV  
7ppm/°C (max).  
=
TEK 7A22  
OUT  
300  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
SINGLE POLE ROLLOFF  
Logic Inte rfa c e  
C
= 3.3µF  
REFOUT  
The MAX504/MAX515 logic inputs are designed to be  
compatible with TTL or CMOS logic levels. However, to  
achieve the lowest power dissipation, drive the digital  
inputs with rail-to-rail CMOS logic. With TTL logic levels,  
the power requirement increases by a factor of approxi-  
mately 2.  
0.6  
0.4  
0.2  
0.0  
C
= 47µF  
REFOUT  
Serial Clock and Update Rate  
Figure 1 shows the MAX504/MAX515 timing. The maxi-  
0
mum serial clock rate is given by 1/(t +t ), approxi-  
0.1  
1
10  
100  
1000  
CH CL  
mately 14MHz. The digital update rate is limited by the  
FREQUENCY (kHz)  
chip-select period, which is 16 x (t  
+ t ) + t  
.
CH  
CL  
CSW  
Figure 2. Reference Noise vs. Frequency  
This equals a 1.14µs, or 877kHz, update rate. However,  
the DAC settling time to 10 bits is 25µs, which may limit  
the update rate to 40kHz for full-scale step transitions.  
Inte rna l Re fe re nc e (MAX504 only)  
The on-chip reference is laser trimmed to generate 2.048V  
at REFOUT. The output stage can source and sink current  
so REFOUT can settle to the correct voltage quickly in  
response to code-dependent loading changes. Typically,  
source current is 5mA and sink current is 100µA.  
____________Applic a tions Inform a tion  
Refer to Figures 3a and 3b for typical operating con-  
nections.  
Se ria l Inte rfa c e  
REFOUT connects the internal reference to the R-2R DAC  
ladder at REFIN. The R-2R ladder draws 50µA maximum  
load current. If any other connection is made to REFOUT,  
ensure that the total load current is less than 100µA to  
avoid gain errors.  
The MAX504/MAX515 use a three-wire serial interface that  
is compatible with SPI™, QSPI™ (CPOL = CPHA = 0), and  
Microwire™ standards as shown in Figures 4 and 5. The  
DAC is programmed by writing two 8-bit words (see Figure  
1 and the Functional Diagram). 16 bits of serial data are  
clocked into the DAC in the following order: 4 fill (dummy)  
bits, 10 data bits, and 2 sub-LSB 0s. The 4 dummy bits are  
not normally needed, and are required only when DACs  
are daisy chained. The 2 sub-LSB 0s, however, are always  
needed, and allow hardware and software compatibility  
with the 12-bit MAX531/MAX538/MAX539. Transitions at  
CS should occur while SCLK is low. Data is clocked in on  
SCLK’s rising edge while CS is low. The serial input data is  
held in a 16-bit serial shift register. On CSs rising edge, the  
10 data-bits are transferred to the DAC register and update  
the DAC. With CS high, data cannot be clocked into the  
MAX504/MAX514.  
For applications requiring very low-noise performance, con-  
nect a 33µF capacitor from REFOUT to AGND. If noise is  
not a concern, a lower value (3.3µF min) capacitor may be  
used. To reduce noise further, insert a buffered RC filter  
between REFOUT and REFIN (Figure 2). The reference  
bypass capacitor C  
is still required for reference sta-  
REFOUT  
bility. In applications not requiring the reference, connect  
REFOUT to V (to save power and to eliminate the need  
DD  
for C  
) or use the MAX515 (no internal reference).  
REFOUT  
Exte rna l Re fe re nc e  
An external reference in the range (V + 2V) to (V - 2V)  
SS  
DD  
may be used with the MAX504 in dual-supply operation.  
With the MAX515 or the MAX504 in single-supply use, the  
The MAX504/MAX515 inputs data in 16-bit blocks. The SPI  
and Microwire interfaces output data in 8-bit blocks, there-  
by requiring two write cycles to input data to the DAC. The  
QSPI interface allows variable data input from 8 to 16 bits,  
and can be loaded into the DAC in one write cycle.  
reference must be positive and may not exceed V - 2V.  
DD  
The reference voltage determines the DACs full-scale out-  
put. The DAC input resistance is code dependent and is  
minimum (40k) at code 0101... and virtually infinite at  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
_______________________________________________________________________________________  
9
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
DIN SCLK CS DOUT  
DIN DOUT SCLK CS  
REFIN  
CLR  
REFIN  
VOUT  
VOUT  
INVERTED  
R-2R DAC  
INVERTED  
R-2R DAC  
REFOUT  
2R  
2R  
2R  
RFB  
2.048V  
MAX504  
2R  
CONNECT BIPOFF  
TO VOUT FOR G=1,  
TO AGND FOR G=2,  
OR TO REFIN FOR  
BIPOLAR GAIN  
MAX515  
BIPOFF  
MAX515  
ONLY  
33µF  
V
DD  
V
AGND DGND  
SS  
AGND  
V
DD  
0.1µF  
0.1µF  
+5V  
0V to -5V  
0.1µF  
+5V  
04/MAX15  
Figure 3a. MAX504 Typical Operating Circuit  
Figure 3b. MAX515 Typical Operating Circuit  
Da is y-Ch a in in g De vic e s  
Bip o la r Co n fig u ra t io n  
The serial output, DOUT, allows cascading of two or more  
DACs. The data at DIN appears at DOUT, delayed by 16  
clock cycles plus one clock width. For low power, DOUT is  
a CMOS output that does not require an external pull-up  
resistor. DOUT does not go into a high-impedance state  
when CS is high. DOUT changes on SCLK’s falling edge  
when CS is low. When CS is high, DOUT remains in the  
state of the last data bit.  
A bipolar range is set up by connecting BIPOFF to  
REFIN a nd RFB to VOUT, a nd op e ra ting from d ua l  
(±5V) supplies (Figure 8). Table 3 shows the DAC-latch  
c onte nts (inp ut) vs . VOUT (outp ut). In this ra ng e ,  
-9  
1LSB = V  
(2 ).  
REFIN  
Fo u r-Qu a d ra n t Mu lt ip lic a t io n  
The MAX504 can be used as a four-quadrant multiplier  
by connecting BIPOFF to REFIN and RFB to VOUT, and  
using (1) an offset binary digital code, (2) bipolar power  
supplies, and (3) a bipolar analog input at REFIN within  
Any number of MAX504/MAX515 DACs can be daisy-  
chained by connecting the DOUT of one device to the DIN  
of the next device in the chain. For proper timing, ensure  
the range V + 2V to V - 2V, as shown in Figure 9.  
SS  
DD  
that t (SCLK low) is greater than t + t .  
CL  
DO  
DS  
In general, a 10-bit DACs output is (D)(V  
(G),  
REFIN)  
Un ip o la r Co n fig u ra t io n  
The MAX504 is configured for a gain of 1 (0V to V  
where G is the gain (1 or 2) and D” is the binary rep-  
10  
resentation of the digital input divided by 2 or 1,024.  
REFIN  
unipolar output) by connecting BIPOFF and RFB to VOUT  
(Figure 6). The converter operates from either single or  
dual supplies in this configuration. See Table 1 for the  
This formula is precise for unipolar operation. However,  
for bipolar, offset binary operation, the MSB is really a  
polarity bit. No resolution is lost because the number of  
steps is the same. The output voltage, however, has  
been shifted from a range of, for example, 0V to 4.096V  
(G = 2) to a range of -2.048V to +2.048V.  
DAC-latch contents (input) vs. the analog VOUT (output).  
-10  
In this range, 1LSB = V  
(2  
), where V  
is the  
REFIN  
REF  
voltage on REFIN.  
A gain of 2 (0V to 2V  
unipolar output) is set up by  
Keep in mind that when using the DAC as a four-quad-  
rant multiplier, the scale is skewed. Negative full scale  
REFIN  
connecting BIPOFF to AGND and RFB to VOUT (Figure  
7). Table 2 shows the DAC-latch contents vs. VOUT. The  
MAX504 operates from either single or dual supplies in  
this mode. In this range,  
is -V  
, while positive full scale is +V  
- 1LSB.  
REFIN  
REFIN  
-10  
-9  
1LSB = (2)(V )(2  
REFIN  
) = (V  
)(2 ).  
REFIN  
The MAX515 is internally configured for unipolar gain of  
2 operation.  
10 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
SCLK  
DIN  
SCLK  
DIN  
SK  
SO  
SCK  
MICROWIRE  
PORT  
SPI  
PORT  
MOSI  
MAX504  
MAX515  
MAX504  
MAX515  
CS  
CS  
I/O  
SI  
I/O  
DOUT  
DOUT  
MISO  
CPOL = 0, CPHA = 0  
THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE  
MAX504/MAX515, BUT MAY BE USED FOR VERIFYING DATA TRANSFER .  
THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE  
MAX504/MAX515, BUT MAY BE USED FOR VERIFYING DATA TRANSFER .  
Figure 4. Microwire Connection  
Figure 5. SPI/QSPI Connection  
+5V  
+5V  
V
DD  
V
DD  
REFIN  
REFIN  
BIPOFF  
REFOUT  
REFOUT  
33µF  
33µF  
MAX504  
MAX504  
BIPOFF  
AGND  
DGND  
AGND  
DGND  
RFB  
RFB  
V
OUT  
VOUT  
V
OUT  
VOUT  
G = 2  
V
SS  
V
SS  
G = 1  
0V TO -5V  
0V TO -5V  
Figure 6. Unipolar Configuration (0V to +2.048V Output)  
Figure 7. Unipolar Configuration (0V to +4.096V Output)  
Table 2. Unipolar Binary Code Table  
Table 1. Unipolar Binary Code Table  
(0V to 2V  
Output), Gain = 2  
(0V to V  
Output), Gain = 1  
REFIN  
REFIN  
OUTPUT  
INPUT*  
OUTPUT  
INPUT*  
1023  
1024  
1023  
1024  
+2 (V )  
REFIN  
1111 1111  
1000 0000  
11(00)  
01(00)  
(V  
)
1111 1111  
1000 0000  
11(00)  
01(00)  
REFIN  
513  
1024  
513  
1024  
+2 (V  
)
(V  
REFIN  
)
REFIN  
512  
1024  
512  
1024  
= +V  
+2 (V  
)
1000 0000  
0111 1111  
00(00)  
11(00)  
REFIN  
(V  
)
= +V  
/2  
REFIN  
REFIN  
1000 0000  
0111 1111  
00(00)  
11(00)  
REFIN  
511  
1024  
511  
+2 (V  
)
)
(V  
)
REFIN  
REFIN  
1024  
1
1
1024  
0000 0000  
0000 0000  
(V  
)
01(00)  
00(00)  
REFIN  
0000 0000  
0000 0000  
+2 (V  
01(00)  
00(00)  
REFIN  
1024  
OV  
OV  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
______________________________________________________________________________________ 11  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
Table 3. Bipolar (Offset Binary) Code  
Table (-V to +V Output)  
+5V  
REFIN  
REFIN  
OUTPUT  
INPUT*  
REFIN  
BIPOFF  
REFOUT  
511  
512  
(+V  
)
1111 1111  
1000 0000  
11(00)  
01(00)  
REFIN  
33µF  
MAX504  
1
512  
RFB  
(+V  
)
REFIN  
AGND  
DGND  
1000 0000  
0111 1111  
00(00)  
11(00)  
0V  
V
OUT  
VOUT  
1
512  
(-V  
)
)
REFIN  
511  
512  
0000 0000  
0000 0000  
(-V  
(-V  
01(00)  
00(00)  
REFIN  
04/MAX15  
-5V  
512  
512  
)
= -V  
REFIN  
REFIN  
Figure 8. Bipolar Configuration (-2.048V to +2.048V Output)  
* Write 10-bit data words with two sub-LSB 0s because the  
DAC input latch is 12 bits wide.  
DGND and AGND should be connected together at the  
chip. For the MAX504 in single-supply applications,  
S in g le -S u p p ly Lin e a rit y  
As with any amplifier, the MAX504/MAX515s output  
buffer offset can be positive or negative. When the off-  
set is positive, it is easily accounted for (Figure 10).  
However, when the offset is negative, the buffer output  
cannot follow linearly when there is no negative supply.  
In that case, the amplifier output (VOUT) remains at  
ground until the DAC voltage is sufficient to overcome  
the offset and the output becomes positive.  
connect V to AGND at the chip. The best ground  
SS  
connection may be achieved by connecting the DAC's  
DGND and AGND pins together and connecting that  
point to the system analog ground plane. If the DAC's  
DGND is connected to the system digital ground, digi-  
tal noise may get through to the DACs analog portion.  
Bypass V  
(and V in dual-supply mode) with a  
SS  
DD  
0.1µF ceramic capacitor connected between V  
and  
DD  
Normally, linearity is measured after accounting for  
zero error and gain error. Since, in single-supply opera-  
tion, the actual value of a negative offset is unknown, it  
cannot be accounted for during test. Additionally, the  
output buffer amplifier exhibits a nonlinearity near-zero  
output when operating with a single supply. To account  
for this nonlinearity in the MAX504/MAX515, linearity  
a nd g a in e rror a re me a s ure d from c od e 3 to c od e  
1023. The output buffers offset and nonlinearity do not  
affect monotonicity, and these DACs are guaranteed  
monotonic starting with code zero. In dual-supply oper-  
ation, linearity and gain error are measured from code  
0 to 1023.  
AGND (and between V and AGND). Mount it with  
SS  
short leads close to the device. Ferrite beads may also  
be used to further isolate the analog and digital power  
supplies.  
Fig ure s 11a a nd 11b illus tra te the g round ing a nd  
bypassing scheme described.  
S a vin g P o w e r  
When the DAC is not being used by the system, mini-  
mize power consumption by setting the appropriate  
code to minimize load current. For example, in bipolar  
mode, with a resistive load to ground, set the DAC  
code to mid-scale (see Table 3). If there is no output  
load, minimize internal loading on the reference by set-  
ting the DAC to a ll 0s (on the MAX504, us e CLR).  
Under this condition, REFIN is high impedance and the  
op amp operates at its minimum quiescent current.  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
Best system performance is obtained with printed cir-  
c uit b oa rd s tha t us e s e p a ra te a na log a nd d ig ita l  
ground planes. Wire-wrap boards are not recommend-  
e d . The two g round p la ne s s hould b e c onne c te d  
together at the low-impedance power-supply source.  
Due to these low currents, the output settling time for a  
zero input code typically increases to 60µs (100µs  
max).  
12 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
CS CLR DIN DOUT REFOUT V  
V
SS  
DD  
2.048V  
5
4
3
POSITIVE OFFSET  
NEGATIVE OFFSET  
SIGNAL  
IN  
REFIN  
VOUT  
INVERTED  
R-2R DAC  
2R  
2R  
RFB  
2
1
BIPOFF  
MAX504  
0
1
2
3
4
5
Figure 9. MAX504 Connected as Four-Quadrant Multiplier. The  
unused REFOUT is connected to V  
.
DD  
DAC CODE (LSBs)  
Figure 10. Single-Supply Offset  
AC Co n s id e ra t io n s  
ANALOG GROUND PLANE  
Digital Feedthrough  
High-speed serial data at any of the digital input or output  
pins may couple through the DAC package and cause  
internal stray capacitance to appear at the DAC output as  
noise, even though CS is held high (see Typical Operating  
Characteristics). This digital feedthrough is tested by hold-  
ing CS high transmitting 0101... from DIN to DOUT.  
0.1µF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Analog Feedthrough  
Because of internal stray capacitance, higher frequency  
analog input signals may couple to the output as shown in  
the Analog Feedthrough vs. Frequency graph in the  
Typical Operating Characteristics. It is tested by holding  
CS high, setting the DAC code to all 0s, and sweeping  
REFIN.  
0.1µF  
8
(a) MAX504 BYPASSING  
1
8
7
6
5
2
3
4
0.1µF  
(b) MAX515 BYPASSING  
Figure 11. Power-Supply Bypassing  
______________________________________________________________________________________ 13  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
___________________Ch ip In fo rm a t io n  
____P in Co n fig u ra t io n s (c o n t in u e d )  
TRANSISTOR COUNT: 922  
TOP VIEW  
BIPOFF  
DIN  
RFB  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
DD  
MAX504  
CLR  
VOUT  
SCLK  
CS  
V
SS  
REFOUT  
REFIN  
DOUT  
DGND  
AGND  
8
DIP/SO  
04/MAX15  
14 ______________________________________________________________________________________  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
04/MAX15  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
5 V, Lo w -P o w e r, Vo lt a g e -Ou t p u t ,  
S e ria l 1 0 -Bit DACs  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
04/MAX15  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY