MAX5188_01 [MAXIM]

Dual, 8-Bit, 40MHz, Current/Voltage,Alternate-Phase Output DACs; 双路,8位, 40MHz的,电流/电压,交替相输出DAC
MAX5188_01
型号: MAX5188_01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, 8-Bit, 40MHz, Current/Voltage,Alternate-Phase Output DACs
双路,8位, 40MHz的,电流/电压,交替相输出DAC

文件: 总15页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1580; Rev 2; 12/01  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
General Description  
Features  
The MAX5188 is a dual 8-bit, alternate-phase-update,  
current-output digital-to-analog converter (DAC)  
designed for superior performance in systems requiring  
analog signal reconstruction with low distortion and  
low-power operation. The MAX5191 provides equal  
specifications, with on-chip output resistors for voltage-  
output operation. Both devices are designed for 10pVs  
glitch operation to reduce distortion and minimize  
unwanted spurious signal components at the output. An  
on-board +1.2V bandgap circuit provides a well-regu-  
lated, low-noise reference that may be disabled for  
external reference operation.  
o +2.7V to +3.3V Single-Supply Operation  
o Wide Spurious-Free Dynamic Range: 70dB  
at f = 2.2MHz  
OUT  
o Fully Differential Outputs for Each DAC  
0.ꢀ5 FSR ꢁain Mismatch Betꢂeen DAC Outputs  
o
o Loꢂ-Current Standby or Full Shutdoꢂn Modes  
o Internal +1.2V Loꢂ-Noise Bandgap Reference  
o Small 28-Pin QSOP Package  
The MAX5188/MAX5191 are designed to provide a high  
level of signal integrity for the least amount of power  
dissipation. Both DACs operate from a +2.7V to +3.3V  
single supply. Additionally, these DACs have three  
modes of operation: normal, low-power standby, and  
full shutdown. A full shutdown provides the lowest pos-  
sible power dissipation with a maximum shutdown cur-  
rent of 1µA. A fast wake-up time (0.5µs) from standby  
mode to full DAC operation allows for power conserva-  
tion by activating the DACs only when required.  
Ordering Information  
PART  
TEMP. RANꢁE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAꢁE  
28 QSOP  
MAXꢀ188BEEI  
MAXꢀ191BEEI  
28 QSOP  
The MAX5188/MAX5191 are available in a 28-pin QSOP  
package and are specified for the extended (-40°C to  
+85°C) temperature range. For pin-compatible 10-bit  
versions, refer to the MAX5182/MAX5185 data sheet.  
Pin Configuration  
TOP VIEW  
Applications  
CREF1  
OUT1P  
OUT1N  
AGND  
1
2
3
4
5
6
7
8
9
28 CREF2  
27 OUT2P  
26 OUT2N  
25 REFO  
24 REFR  
Signal Reconstruction Applications  
Digital Signal Processing  
Arbitrary Waveform Generators  
Imaging Applications  
AV  
DD  
MAX5188  
MAX5191  
DACEN  
PD  
23 DGND  
22 DV  
21 D7  
20 D6  
19 D5  
18 D4  
17 D3  
16 D2  
15 D1  
DD  
CS  
CLK  
N.C. 10  
REN 11  
DGND 12  
DGND 13  
D0 14  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
ABSOLUTE MAXIMUM RATINꢁS  
AV , DV  
to AGꢁD, DGꢁD .................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
Digital Inputs to DGꢁD.............................................-0.3V to +6V  
OUT1P, OUT1ꢁ, OUT2P, OUT2ꢁ, CREF1,  
28-Pin QSOP (derate 9.00mW/°C above +70°C)..........725mW  
Operating Temperature Ranges  
MAX5188/MAX5191BEEI..................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CREF2 to AGꢁD....................................................-0.3V to +6V  
V
to AGꢁD ..........................................................-0.3V to +6V  
REF  
AV  
to DV ..................................................................... 3.3V  
DD  
DD  
AGꢁD to DGꢁD.....................................................-0.3V to +0.3V  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
8
-1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral ꢁonlinearity  
Differential ꢁonlinearity  
IꢁL  
DꢁL  
0.25  
0.25  
+1  
+1  
Guaranteed monotonic  
-1  
MAX5188  
MAX5191  
(ꢁote 1)  
-1  
+1  
Zero-Scale Error  
-4  
+4  
Full-Scale Error  
-20  
4
+20  
DYNAMIC PERFORMANCE  
Output Settling Time  
Glitch Impulse  
To 0.5LSB error band  
25  
10  
72  
70  
-70  
-68  
52  
52  
-60  
50  
10  
ns  
pVs  
f
f
f
f
f
f
= 500kHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Spurious-Free Dynamic Range  
to ꢁyquist  
SFDR  
THD  
SꢁR  
f
f
= 40MHz  
= 40MHz  
dBc  
dB  
CLK  
= 2.2MHz, T = +25°C  
A
57  
46  
= 500kHz  
Total Harmonic Distortion  
to ꢁyquist  
CLK  
= 2.2MHz, T = +25°C  
A
-63  
= 500kHz  
Signal-to-ꢁoise Ratio  
to ꢁyquist  
f
f
= 40MHz  
= 2.2MHz  
dB  
CLK  
= 2.2MHz, T = +25°C  
A
DAC-to-DAC Output Isolation  
Clock and Data Feedthrough  
Output ꢁoise  
dB  
nVs  
OUT  
All 0s to all 1s  
pA/Hz  
Gain Mismatch Between DAC  
Outputs  
f
= 2.2MHz, T = +25°C  
LSB  
0.5  
1
OUT  
A
ANALOꢁ OUTPUT  
Full-Scale Output Voltage  
Voltage Compliance of Output  
Output Leakage Current  
Full-Scale Output Current  
V
400  
mV  
V
FS  
-0.3  
-1  
0.8  
1
DACEꢁ = 0, MAX5188 only  
MAX5188 only  
µA  
mA  
I
FS  
0.5  
1
1.5  
DAC External Output Resistor  
Load  
MAX5188 only  
400  
2
________________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +3V 10ꢀ, AGꢁD = DGꢁD = 0, f  
= 40MHz, I = 1mA, 400differential output, C = 5pF, T = T  
to T  
,
MAX  
DD  
DD  
CLK  
FS  
L
A
MIꢁ  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
REFERENCE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Range  
V
1.12  
1.2  
50  
1.28  
V
REF  
Output Voltage Temperature  
Drift  
TCV  
ppm/°C  
REF  
Reference Output Drive  
Capability  
I
10  
µA  
REFOUT  
Reference Supply Rejection  
0.5  
8
mV/V  
Current Gain (I / I  
)
mA/mA  
FS REF  
POWER REQUIREMENTS  
Analog Power-Supply Voltage  
Analog Supply Current  
Digital Power-Supply Voltage  
Digital Supply Current  
AV  
2.7  
2.7  
3.3  
5
V
DD  
I
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
2.7  
mA  
V
AVDD  
DD  
DV  
3.3  
5
DD  
I
PD = 0, DACEꢁ = 1, digital inputs at 0 or DV  
PD = 0, DACEꢁ = 0, digital inputs at 0 or DV  
4.2  
1
mA  
mA  
DVDD  
DD  
Standby Current  
I
1.5  
STAꢁDBY  
DD  
PD = 1, DACEꢁ = X, digital inputs at 0 or DV  
(X = don’t care)  
DD  
Shutdown Current  
I
0.5  
1
µA  
SHDꢁ  
LOꢁIC INPUTS AND OUTPUTS  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
Iꢁ  
V
Iꢁ  
= 0 or DV  
DD  
µA  
pF  
Digital Input Capacitance  
TIMINꢁ CHARACTERISTICS  
C
Iꢁ  
10  
DAC1 DATA to CLK Rise Setup  
Time  
t
10  
10  
0
ns  
ns  
ns  
ns  
DS1  
DS2  
DH1  
DH2  
DAC2 DATA to CLK Fall Setup  
Time  
t
DAC1 CLK Rise to DATA Hold  
Time  
t
t
DAC2 CLK Fall to DATA Hold  
Time  
0
5
5
ns  
ns  
µs  
µs  
ns  
ns  
ns  
CS Fall to CLK Rise Time  
CS Fall to CLK Fall Time  
DACEꢁ Rise Time to V  
0.5  
50  
OUT  
PD Fall Time to V  
Clock Period  
OUT  
t
25  
10  
10  
CLK  
Clock High Time  
Clock Low Time  
t
CH  
t
CL  
Note 1: Excludes reference and reference resistor (MAX5191) tolerance.  
_______________________________________________________________________________________  
3
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
Typical Operating Characteristics  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD FS L  
A
DD  
INTEGRAL NONLINEARITY  
vs. INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. INPUT CODE  
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0.100  
0.075  
0.050  
0.025  
0
3.00  
2.75  
2.50  
2.25  
2.00  
MAX5191  
MAX5188  
-0.025  
-0.050  
-0.075  
0
-0.025  
-0.050  
0
32 64 96 128 160 192 224 256  
INPUT CODE  
0
32 64 96 128 160 192 224 256  
INPUT CODE  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
10  
3.00  
2.75  
2.50  
4.00  
3.75  
3.50  
MAX5188  
MAX5191  
8
6
MAX5191  
MAX5188  
MAX5188  
MAX5191  
4
2
2.25  
2.00  
3.25  
3.00  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
STANDBY CURRENT  
vs. SUPPLY VOLTAGE  
STANDBY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
3.8  
3.7  
3.6  
3.5  
3.4  
620  
610  
600  
590  
580  
570  
560  
600  
590  
580  
570  
560  
550  
MAX5191  
MAX5191  
MAX5188  
MAX5188  
MAX5188  
MAX5191  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD FS L  
A
DD  
OUTPUT CURRENT  
vs. REFERENCE CURRENT  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
4
3
2
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
MAX5188  
MAX5191  
MAX5188  
MAX5191  
1
0
0
100  
200  
300  
400  
500  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
REFERENCE CURRENT (µA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
DYNAMIC RESPONSE RISE TIME  
DYNAMIC RESPONSE FALL TIME  
OUT_P  
150mV/div  
OUT_P  
150mV/div  
OUT_N  
150mV/div  
OUT_N  
150mV/div  
50ns/div  
50ns/div  
FFT PLOT, DAC2  
FFT PLOT, DAC1  
SETTLING TIME  
0
0
-10  
f
f
= 40MHz  
= 2.2MHz  
f
f
= 40MHz  
-10  
CLK  
OUT  
CLK  
OUT  
= 2.2MHz  
-20  
-20  
-30  
-30  
-40  
OUT_N  
-40  
100mV/div  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
OUT_P  
100mV/div  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
12.5ns/div  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +3V, AGꢁD = DGꢁD = 0, 400differential output, I = 1mA, C = 5pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
FS  
L
A
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE vs. OUTPUT  
FREQUENCY AND CLOCK FREQUENCY, DAC1  
100  
90  
80  
70  
60  
50  
40  
78  
f
= 40MHz  
CLK  
76  
74  
72  
70  
68  
66  
f
= 60MHz  
CLK  
f
= 20MHz  
= 10MHz  
CLK  
DAC2  
DAC1  
f
= 50MHz  
CLK  
f
CLK  
f
= 30MHz  
CLK  
10 15 20 25 30 35 40 45 50 55 60  
CLOCK FREQUENCY (MHz)  
500 700 900 1100 1300 1500 1700 1900 2100 2300  
OUTPUT FREQUENCY (kHz)  
SPURIOUS-FREE DYNAMIC RANGE vs. OUTPUT  
FREQUENCY AND CLOCK FREQUENCY, DAC2  
78  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. OUTPUT FREQUENCY  
62.5  
62.0  
61.5  
61.0  
60.5  
60.0  
f
= 50MHz  
f
= 20MHz  
f
= 40MHz  
CLK  
CLK  
CLK  
76  
74  
72  
70  
68  
66  
DAC2  
f
= 10MHz  
DAC1  
CLK  
f
= 60MHz  
CLK  
f
= 30MHz  
CLK  
500 700 900 1100 1300 1500 1700 1900 2100 2300  
OUTPUT FREQUENCY (kHz)  
0
500  
1000  
1500  
2000  
2500  
OUPUT FREQUENCY (kHz)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. FULL-SCALE OUTPUT CURRENT  
MULTITONE SPURIOUS-FREE DYNAMIC  
RANGE vs. OUTPUT FREQUENCY  
74  
72  
70  
68  
0
-10  
-20  
-30  
-40  
-50  
66  
64  
-60  
-70  
62  
60  
-80  
-120  
0.50  
0.75  
1.00  
1.25  
1.50  
0
2
4
6
8
10 12 14 16 18 20  
FULL-SCALE OUTPUT CURRENT (mA)  
OUTPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
Pin Description  
PIN  
1
NAME  
CREF1  
OUT1P  
OUT1ꢁ  
AGꢁD  
FUNCTION  
Reference Bias Bypass, DAC1  
2
Positive Analog Output, DAC1. Current output for the MAX5188; voltage output for the MAX5191.  
ꢁegative Analog Output, DAC1. Current output for the MAX5188; voltage output for the MAX5191.  
Analog Ground  
3
4
5
AV  
Analog Positive Supply, +2.7V to +3.3V  
DD  
DAC Enable, Digital Input  
0: Enter DAC standby mode with PD = DGꢁD  
1: Power-up DAC with PD = DGꢁD  
6
7
DACEꢁ  
PD  
X: Enter shutdown mode with PD = DV (X = don’t care)  
DD  
Power-Down Select  
0: Enter DAC standby mode (DACEꢁ = DGꢁD) or power-up DAC (DACEꢁ = DV  
1: Enter shutdown mode  
)
DD  
8
9
Active-Low Chip Select  
CS  
CLK  
ꢁ.C.  
REN  
Clock Input  
10  
11  
ꢁot Connected. Do not connect to this pin.  
Active-Low Reference Enable. Connect to DGꢁD to activate on-chip +1.2V reference.  
12, 13, 23 DGꢁD  
Digital Ground  
14  
15–20  
21  
D0  
D1–D6  
D7  
Data Bit D0 (LSB)  
Data Bits D1–D6  
Data Bit D7 (MSB)  
22  
DV  
Digital Supply, +2.7V to +3.3V  
DD  
24  
REFR  
REFO  
Reference Input  
25  
Reference Output  
26  
OUT2ꢁ  
OUT2P  
CREF2  
ꢁegative Analog Output, DAC2. Current output for the MAX5188; voltage output for the MAX5191.  
Positive Analog Output, DAC2. Current output for the MAX5188; voltage output for the MAX5191.  
Reference Bias Bypass, DAC2  
27  
28  
_______________________________________________________________________________________  
7
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
REN  
1.2V REF  
AV  
AGND  
CS  
DACEN  
PD  
DD  
REFO  
REFR  
CREF1  
CREF2  
CURRENT-  
SOURCE ARRAY  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
9.6k*  
DAC 1 SWITCHES  
DAC 2 SWITCHES  
OUTPUT  
LATCHES  
OUTPUT  
LATCHES  
MSB DECODE  
MSB DECODE  
MAX5188  
MAX5191  
CLK  
INPUT  
LATCHES  
INPUT  
LATCHES  
DV  
DGND  
DD  
*INTERNAL 400AND 9.6kRESISTORS FOR MAX5191 ONLY.  
D7D0  
Figure 1. Functional Diagram  
Due to its limited 10µA output drive capability, the  
REFO pin must be buffered with an external amplifier if  
heavier loading is required.  
Detailed Description  
The MAX5188/MAX5191 are dual 8-bit digital-to-analog  
converters (DACs) capable of operating with clock  
speeds up to 40MHz. Each of these dual converters  
consists of separate input and DAC registers, followed  
by a current-source array capable of generating up to  
1.5mA full-scale output current (Figure 1). An integrat-  
ed +1.2V voltage reference and control amplifier deter-  
mine the data converters’ full-scale output currents/  
voltages. Careful reference design ensures close gain  
matching and excellent drift characteristics. The  
MAX5191’s voltage output operation features matched  
400on-chip resistors that convert the current from the  
current array into a voltage.  
The MAX5188/MAX5191 also employ a control amplifi-  
er, designed to simultaneously regulate the full-scale  
output current I for both MAX5188/MAX5191 outputs.  
FS  
The output current is calculated as follows:  
I
FS  
= 8 I  
REF  
where I  
is the reference output current (I  
SET FS  
=
REF  
REF  
/ R  
V
) and I is the full-scale output current.  
REFO  
R
is the reference resistor that determines the  
SET  
amplifier’s output current (Figure 2) on the MAX5188.  
This current is mirrored into the current-source array,  
where it is equally distributed between matched current  
segments and summed to valid output current readings  
for the DACs.  
Internal Reference  
and Control Amplifier  
The MAX5188/MAX5191 provide an integrated  
50ppm/°C, +1.2V, low-noise bandgap reference that  
can be disabled and overridden by an external refer-  
ence voltage. REFO serves either as an input for an  
external reference or as an output for the integrated ref-  
erence. If REN is connected to DGꢁD, the internal ref-  
erence is selected and REFO provides a +1.2V output.  
Inside the MAX5191, each output current (DAC1 and  
DAC2) is converted to an output voltage (V  
, V  
)
OUT1 OUT2  
with two internal, ground-referenced, 400load resis-  
tors. Using the internal +1.2V reference voltage, the inte-  
grated reference output current resistor of the MAX5191  
(R  
SET  
= 9.6k) sets I to 125µA and I to 1mA.  
REF FS  
8
_______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
OPTIONAL EXTERNAL BUFFER  
FOR HEAVIER LOADS  
DGND  
REN  
+1.2V  
MAX4040  
BANDGAP  
REFERENCE  
REFO  
REFR  
I
FS  
C
*
CURRENT-  
SOURCE ARRAY  
COMP  
I
REF  
AGND  
V
R
REF  
SET  
R
I
=
SET  
REF  
R
**  
SET  
9.6k  
MAX5188  
MAX5191  
AGND  
*COMPENSATION CAPACITOR (C  
= 100nF)  
**9.6kREFERENCE CURRENT SET RESISTOR  
COMP  
INTERNAL TO MAX5191 ONLY. USE EXTERNAL  
R
FOR MAX5188.  
SET  
Figure 2. Setting I with the Internal +1.2V Reference and Control Amplifier  
FS  
must be pulled high with PD held at DGꢁD. The  
MAX5188/MAX5191 typically require 50µs to wake up  
and allow both the outputs and the reference to settle.  
External Reference  
To disable the MAX5188/MAX5191’s internal reference,  
connect REN to DV . A temperature-stable external  
DD  
reference may now be applied to drive the REFO pin  
(Figure 3) to set the full-scale output. Choose a refer-  
ence that can supply at least 150µA to drive the bias  
circuit that generates the cascode current for the cur-  
rent array. For improved accuracy and drift perfor-  
mance, choose a fixed output voltage reference such  
as the +1.2V, 25ppm/°C MAX6520 bandgap reference.  
Shutdown Mode  
For lowest power consumption, the MAX5188/MAX5191  
provide a power-down mode in which the reference,  
control amplifier, and current array are inactive and the  
DAC’s supply current is reduced to 1µA. To enter this  
mode, connect PD to DV . To return to active mode,  
DD  
connect PD to DGꢁD and DACEꢁ to DV . About 50µs  
DD  
are required for the devices to leave shutdown mode  
and settle their outputs to the values prior to shutdown.  
Table 1 lists the power-down mode selection.  
Standby Mode  
To enter the lower-power standby mode, connect digi-  
tal inputs PD and DACEꢁ to DGꢁD. In standby, both  
the reference and the control amplifier are active with  
the current array inactive. To exit this condition, DACEꢁ  
Table 1. Poꢂer-Doꢂn Mode Selection  
PD  
DACEN  
(DAC ENABLE)  
POWER-DOWN  
OUTPUT STATE  
(POWER-DOWN SELECT)  
MODE  
MAX5188  
MAX5191  
High-Z  
AGꢁD  
0
0
1
X
Standby  
Wake-Up  
Shutdown  
0
1
Last state prior to standby mode  
MAX5188  
High-Z  
MAX5191 AGꢁD  
X = Don’t care  
_______________________________________________________________________________________  
9
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
DV  
DD  
10µF  
0.1µF  
DGND  
REN  
+1.2V  
AV  
DD  
BANDGAP  
REFERENCE  
EXTERNAL  
+1.2V  
REFERENCE  
REFO  
REFR  
I
FS  
CURRENT-  
SOURCE ARRAY  
MAX6520  
I
REF  
AGND  
9.6k*  
R
SET  
MAX5188  
MAX5191  
AGND  
*9.6kREFERENCE CURRENT SET RESISTOR  
INTERNAL TO MAX5191 ONLY. USE EXTERNAL  
R
FOR MAX5188.  
SET  
Figure 3. MAX5188/MAX5191 Using an External Reference  
t
t
t
CH  
CLK  
CL  
CLK  
N
N - 1  
N + 1  
N + 1  
N - 1  
N
D0D7  
DAC1  
DAC2  
DAC1  
DAC2  
DAC1  
DAC2  
t
t
t
t
DH2  
DS1  
DS2  
DH1  
OUT1  
N - 2  
N - 1  
N
OUT2  
N - 2  
N - 1  
N
Figure 4. Timing Diagram  
10 ______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
ed 400resistors that restore the array currents into  
proportional, differential voltages of 400mV. These dif-  
ferential output voltages can then be used to drive a  
balun transformer or a low-distortion, high-speed oper-  
ational amplifier to convert the differential voltage into a  
single-ended voltage.  
Timing Information  
Both internal DAC cells write to their outputs in alternate  
phase (Figure 4). The input latch of the first DAC  
(DAC1) is loaded after the clock signal transitions high.  
When the clock signal transitions low, the input latch of  
the second DAC (DAC2) is loaded. The contents of the  
first input latch are shifted into the DAC1 register on the  
rising edge of the clock; the contents of the second  
input latch are shifted into the input register of DAC2 on  
the falling edge of the clock. Both outputs are updated  
on alternate phases of the clock.  
Applications Information  
Static and Dynamic  
Performance Definitions  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) (Figure 5a) is the deviation of  
the values on an actual transfer function from either a  
best-straight-line fit (closest approximation to the actual  
transfer curve) or a line drawn between the endpoints  
Outputs  
The MAX5188 outputs are designed to supply 1mA full-  
scale output currents into 400loads in parallel with a  
capacitive load of 5pF. The MAX5191 features integrat-  
7
6
6
1 LSB  
5
4
5
DIFFERENTIAL LINEARITY  
ERROR (-1/4 LSB)  
4
AT STEP  
3
2
3
2
1
0
011 (1/2 LSB )  
1 LSB  
DIFFERENTIAL  
LINEARITY ERROR (+1/4 LSB)  
AT STEP  
1
0
001 (1/4 LSB )  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
000  
001  
010  
011  
100  
101  
DIGITAL INPUT CODE  
Figure 5b. Differential Nonlinearity  
Figure 5a. Integral Nonlinearity  
IDEAL FULL-SCALE OUTPUT  
7
6
5
ACTUAL  
3
2
1
0
GAIN ERROR  
(-1 1/4 LSB)  
DIAGRAM  
IDEAL DIAGRAM  
IDEAL DIAGRAM  
ACTUAL  
FULL-SCALE  
OUTPUT  
ACTUAL  
OFFSET  
POINT  
OFFSET ERROR  
(+1 1/4 LSB)  
4
0
IDEAL OFFSET  
POINT  
000 100  
101  
110  
111  
000  
001  
010  
011  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 5d. Gain Error  
Figure 5c. Offset Error  
______________________________________________________________________________________ 11  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
of the transfer function once offset and gain errors have  
been nullified. For a DAC, the deviations are measured  
at every single step.  
Differential to Single-Ended Conversion  
The MAX4108 low-distortion, high input-bandwidth  
amplifier may be used to generate a voltage from the  
MAX5188’s current-array output. The differential volt-  
age across OUT1P (or OUT2P) and OUT1ꢁ (or OUT2ꢁ)  
is converted into a single-ended voltage by designing  
an appropriate operational amplifier configuration as  
shown in Figure 6.  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) (Figure 5b) is the differ-  
ence between an actual step height and the ideal value  
of 1LSB. A DꢁL error specification of less than 1LSB  
guarantees no missing codes and a monotonic transfer  
function.  
Grounding and Power-Supply Decoupling  
Grounding and power-supply decoupling strongly influ-  
ence the performance of the MAX5188/MAX5191.  
Unwanted digital crosstalk may couple through the  
input, reference, power-supply, and ground connec-  
tions, which may affect dynamic specifications like SꢁR  
or SFDR. In addition, electromagnetic interference  
(EMI) can either couple into or be generated by the  
MAX5188/MAX5191. Therefore, grounding and power-  
supply decoupling guidelines for high-speed, high-fre-  
quency applications should be closely followed.  
Offset Error  
Offset error (Figure 5c) is the difference between the  
ideal and the actual offset point. For a DAC, the offset  
point is the step value when the digital input is zero.  
This error affects all codes by the same amount and  
can usually be compensated by trimming.  
Gain Error  
Gain error (Figure 5d) is the difference between the  
ideal and the actual full-scale output voltage on the  
transfer curve, after nullifying the offset error. This error  
alters the slope of the transfer function and corre-  
sponds to the same percentage error in each step.  
First, a multilayer PC board with separate ground and  
power-supply planes is recommended. High-speed  
signals should run on controlled impedance lines  
directly above the ground plane. Since the MAX5188/  
MAX5191 have separate analog and digital ground  
buses (AGꢁD and DGꢁD, respectively), the PC board  
should also have separate analog and digital ground  
sections with only one point connecting the two. Digital  
signals should run above the digital ground plane, and  
analog signals should run above the analog ground  
plane.  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles its new  
output value to within the converter’s specified accuracy.  
Digital Feedthrough  
Digital feedthrough is the noise generated on a DAC’s  
output when any digital input transitions. Proper board  
layout and grounding will significantly reduce this  
noise, but there will always be some feedthrough  
caused by the DAC itself.  
Both devices have two power-supply inputs: analog  
V
DD  
(AV ) and digital V  
(DV ). Each AV  
input  
DD  
DD  
DD  
DD  
should be decoupled with parallel 10µF and 0.1µF  
ceramic-chip capacitors as close to the pin as possi-  
ble. Their opposite ends should have the shortest pos-  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the input signal’s first four harmonics to the fun-  
damental itself. This is expressed as:  
sible connection to the ground plane. The DV  
pins  
DD  
should also have separate 10µF and 0.1µF capacitors,  
again adjacent to their respective pins. Try to minimize  
the analog load capacitance for proper operation. For  
best performance, bypass CREF1 and CREF2 with low-  
2
2
2
2
V
+ V + V + V  
3 4 5  
(
)
2
THD = 20 × log  
ESR, 0.1µF capacitors to AV  
.
DD  
V
1
The power-supply voltages should also be decoupled  
with large tantalum or electrolytic capacitors at the  
point they enter the PC board. Ferrite beads with addi-  
tional decoupling capacitors forming a pi network could  
also improve performance.  
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
harmonics.  
5
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
12 ______________________________________________________________________________________  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
AV  
AV  
DD  
DD  
+3V  
+3V  
10µF  
0.1µF  
0.1µF  
0.1µF  
10µF  
0.1µF  
402Ω  
DV  
AV  
DD CREF1  
CREF2  
DD  
+5V  
-5V  
402Ω  
CLK  
OUT1P  
OUTPUT1  
400*  
400*  
MAX5188  
MAX5191  
MAX4108  
D0D7  
OUT1N  
402Ω  
402Ω  
402Ω  
REFO  
REFR  
+5V  
402Ω  
0.1µF  
OUT2P  
OUTPUT2  
400*  
400*  
MAX4108  
-5V  
R
**  
SET  
OUT2N  
AGND  
402Ω  
402Ω  
DGND  
REN  
**MAX5188 ONLY  
*400RESISTORS INTERNAL TO MAX5191 ONLY.  
Figure 6. Differential to Single-Ended Conversion Using the MAX4108 Low-Distortion Amplifier  
Chip Information  
TRAꢁSISTOR COUꢁT: 9464  
SUBSTRATE COꢁꢁECTED TO GꢁD  
______________________________________________________________________________________ 13  
Dual, 8-Bit, 40MHz, Current/Voltage,  
Alternate-Phase Output DACs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MAX5189

Dual.8-Bit.40MHz.Current/Voltage.Simultaneous-Output DACs
MAXIM

MAX5189BEEI

Dual, 8-Bit, 40MHz, Current/Voltage, Simultaneous-Output DACs
MAXIM

MAX5189BEEI+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.025us Settling Time, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM

MAX5189BEEI+T

暂无描述
MAXIM

MAX5189BEEI-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.025us Settling Time, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM

MAX518ACPA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518ACPA+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX518ACSA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AEPA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AEPA+

暂无描述
MAXIM

MAX518AESA

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX518AESA+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO8, 0.150 INCH, SO-8
MAXIM