MAX5195EGM-T [MAXIM]

D/A Converter, 1 Func, Parallel, Word Input Loading, 7 X 7 MM, 0.90 MM HEIGHT, QFN-48;
MAX5195EGM-T
型号: MAX5195EGM-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, Word Input Loading, 7 X 7 MM, 0.90 MM HEIGHT, QFN-48

转换器
文件: 总18页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2557; Rev 0; 7/02  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
General Description  
Features  
The MAX5195 is an advanced, 14-bit, 260Msps digital-  
to-analog converter (DAC) designed to meet the  
demanding performance requirements of signal synthe-  
sis applications found in wireless base stations and  
other communication systems. Operating from a single  
5V supply, this DAC offers exceptional dynamic perfor-  
mance such as 77dBc spurious-free dynamic range  
o 260Msps Output Update Rate  
o Excellent SFDR Performance  
To Nyquist (-12dBFS)  
At 19.4MHz Output = 77dBc  
At 51.6MHz Output = 76dBc  
o Industry-Leading IMD Performance  
For 4 Tones (-15dBFS)  
(SFDR) at f  
= 19.4MHz, while supporting update  
OUT  
rates beyond 260Msps.  
At 18MHz Output = 86dBc  
At 31MHz Output = 84dBc  
The MAX5195 current-source array architecture sup-  
ports a full-scale current range of 10mA to 20mA, which  
allows a differential output voltage swing between  
o Low Noise Performance  
0.5V  
and 1V  
.
P-P  
SNR = 160dB/Hz at f  
= 19.4MHz  
P-P  
OUT  
The MAX5195 features an integrated 1.2V bandgap ref-  
erence and control amplifier to ensure high accuracy  
and low-noise performance. Additionally, a separate  
reference input pin allows the user to apply an external  
reference source for optimum flexibility.  
o On-Chip 1.2V Bandgap Reference  
o 20mA Full-Scale Current  
o Single 5V Supply  
o Differential LVPECL-Compatible Digital Inputs  
o 48-Lead QFN-EP Package  
The digital and clock inputs of the MAX5195 are  
designed for differential LVPECL-compatible voltage  
levels.  
The MAX5195 is available in a 48-lead QFN package  
with exposed paddle and is specified for the extended  
industrial temperature range (-40°C to +85°C).  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX5195EGM  
-40°C to +85°C  
48 QFN-EP*  
Applications  
*EP = Exposed paddle.  
Base Stations:  
Single-/Multi-Carrier UMTS, GSM  
Pin Configuration  
LMDS, MMDS, Point-to-Point Microwave  
Direct IF Synthesis  
TOP VIEW  
Digital-Signal Synthesis  
Broadband Cable Systems  
Automated Test Equipment  
Instrumentation  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D9P  
D8N  
D8P  
1
2
3
4
5
6
7
8
9
RSET  
AV  
CC  
AMPOUT  
D7N  
D7P  
CLKP  
CLKN  
D6N  
D6P  
AV  
AV  
CC  
CC  
OUTP  
OUTN  
AV  
CC  
MAX5195  
AGND  
D5N 10  
D5P 11  
D4N 12  
AGND  
REFOUT  
AV  
CC  
QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
ABSOLUTE MAXIMUM RATINGS  
AV , DV  
to AGND..............................................-0.3V to +6V  
to DGND..............................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
CC  
CC  
AV , DV  
48-Pin QFN-EP (thermal resistance θ = +37°C/W)....2162W  
CC  
JA  
AGND to DGND.....................................................-0.3V to +0.3V  
D0ND013, D0PD13P, T.P. to DGND .................-0.3V to +3.6V  
OUTP, OUTN, AMPOUT, REFOUT, CLKP,  
CLKN, RSET to AGND..........................................-0.3V to +6V  
REFIN Voltage Range...............................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= 5V, AGND = DGND = 0, external reference V  
= 1.196V, R = 27.4referenced to AV , V  
= 1V  
,
P-P  
CC  
CC  
REFIN  
T
CC  
OUT  
R
= 3.83k, f  
= 156MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
SET  
CLK  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
14  
2
LSB  
LSB  
LSB  
%FS  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
Best-straight-line fit  
= +25°C  
DNL  
T
-3.3  
1.5  
0.05  
2.5  
1.6  
+3.0  
0.1  
6
A
V
(Note 1)  
OS  
Internal reference  
External reference  
Full-Scale Gain Error  
(Note 2)  
GE  
%FS  
4
DYNAMIC PERFORMANCE  
Maximum Throughput Rate  
f
260  
MHz  
CLK  
Full-scale output, within Nyquist window,  
Signal-to-Noise Ratio  
SNR  
160  
dB/Hz  
f
= 260MHz, f = 19.4MHz  
OUT  
CLK  
f
= 1MHz, -2dBFS  
89  
77  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
= 156MHz  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 19.42MHz  
= 51.67MHz  
= 19.4MHz  
= 51.61MHz  
= 19.42MHz  
= 51.67MHz  
= 19.42MHz  
= 51.61MHz  
= 1.27MHz  
= 9.53MHz  
= 19.42MHz  
= 28.82MHz  
= 38.42MHz  
= 51.67MHz  
= 70.05MHz  
CLK  
Spurious-Free Dynamic Range  
to Nyquist, -12dBFS  
SFDR  
76  
dBc  
dBc  
74  
f
f
f
= 260MHz  
= 156MHz  
= 260MHz  
CLK  
CLK  
CLK  
72  
82  
75  
Spurious-Free Dynamic Range  
10MHz Window, -12dBFS  
SFDR  
HD2  
82  
76  
-88  
-86  
-82  
-79  
-77  
-79  
-72  
f
f
= 156MHz  
= 260MHz  
CLK  
CLK  
2nd-Order Harmonic Distortion,  
-12dBFS  
dBc  
2
_______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 5V, AGND = DGND = 0, external reference V  
= 1.196V, R = 27.4referenced to AV , V  
= 1V  
,
P-P  
CC  
CC  
REFIN  
T
CC  
OUT  
R
= 3.83k, f  
= 156MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
SET  
CLK  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
-90  
-85  
-81  
-78  
-78  
-79  
-80  
92  
90  
91  
89  
89  
87  
88  
87  
86  
84  
86  
84  
81  
79  
81  
78  
80  
77  
79  
76  
75  
73  
76  
74  
MAX  
UNITS  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 1.27MHz  
= 9.53MHz  
= 19.42MHz  
= 28.82MHz  
= 38.42MHz  
= 51.64MHz  
= 70.05MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
= 18MHz  
= 31MHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
= 156MHz  
CLK  
3rd-Order Harmonic Distortion,  
-12dBFS  
HD3  
dBc  
f
f
= 260MHz  
= 156MHz  
CLK  
CLK  
2-Tone IMD,  
-9dBFS, 200kHz  
Frequency Spacing  
IM3  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
f
f
f
f
f
f
f
f
f
f
= 260MHz  
= 156MHz  
= 260MHz  
= 156MHz  
= 260MHz  
= 156MHz  
= 260MHz  
= 156MHz  
= 260MHz  
= 156MHz  
= 260MHz  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
2-Tone IMD,  
-12dBFS, 200kHz  
Frequency Spacing  
IM3  
4-Tone Power Ratio,  
-15dBFS, 200kHz  
Frequency Spacing  
MTPR  
MTPR  
MTPR  
MTPR  
4-Tone Power Ratio,  
-18dBFS, 200kHz  
Frequency Spacing  
8-Tone Power Ratio,  
-21dBFS, 200kHz  
Frequency Spacing  
8-Tone Power Ratio,  
-24dBFS, 200kHz  
Frequency Spacing  
REFERENCE AND CONTROL AMPLIFIER  
Internal Reference Voltage Range  
V
1.136  
1.196  
1.255  
V
V
REFOUT  
1.196  
8%  
Reference Input Voltage Range  
V
REFIN  
Internal Reference Voltage Drift  
Internal Reference  
TCO  
30  
200  
1.5  
1
µV/°C  
µA  
REF  
I
SINK  
Sink/Source Current  
I
mA  
SOURCE  
Amplifier Input Impedance  
R
MΩ  
IN  
_______________________________________________________________________________________  
3
14-Bit, 260Msps High-Dynamic  
Performance DAC  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 5V, AGND = DGND = 0, external reference V  
= 1.196V, R = 27.4referenced to AV , V  
= 1V  
,
P-P  
CC  
CC  
REFIN  
T
CC  
OUT  
R
= 3.83k, f  
= 156MHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
SET  
CLK  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG OUTPUT TIMING  
Output Fall Time  
t
90% to 10%  
10% to 90%  
0.8  
0.8  
0.5  
ns  
ns  
FALL  
Output Rise Time  
t
RISE  
Glitch Energy  
pV-s  
TIMING CHARACTERISTICS  
Data-to-Clock Setup Time  
(D0ND13N, D0PD13P)  
t
Referenced to the rising edge, Figure 4  
Referenced to the rising edge, Figure 4  
0.5  
1
ns  
ns  
SETUP  
Data-to-Clock Hold Time  
(D0ND13N, D0PD13P)  
t
0.5  
0.5  
1.1  
HOLD  
Propagation Delay Time  
t
(Note 3)  
ns  
ns  
ns  
PD  
Minimum Clock Pulse Width High  
Minimum Clock Pulse Width Low  
t
CLKP, CLKN  
CLKP, CLKN  
1.6  
1.6  
CH  
t
CL  
LOGIC INPUTS (D0N–D13N, D0P–D13P, CLKP, CLKN)  
Input Logic High  
V
2.4  
V
IH  
Input Logic Low  
V
1.6  
V
IL  
Input Logic Current, Logic High  
Input Logic Current, Logic Low  
Digital Input Capacitance  
POWER SUPPLIES  
I
V
V
= 2.4V  
= 1.6V  
-300  
-300  
50  
10  
2
+300  
+300  
µA  
µA  
pF  
IH  
IH  
IL  
I
IL  
C
IN  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
Analog Supply Current  
Digital Supply Current  
AV  
DV  
4.75  
4.75  
5
5
5.25  
5.25  
58  
V
V
CC  
CC  
I
AV  
AV  
AV  
AV  
= DV  
= DV  
= DV  
= DV  
= 5V  
48  
mA  
AVCC  
DVCC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I
= 5V  
190  
1190  
0.2  
230  
1440  
mA  
Power Dissipation  
P
= 5V  
mW  
%FS/V  
DISS  
Power-Supply Rejection Ratio  
PSRR  
= 5V 5% (Note 4)  
Note 1: Offset error is the deviation of the output voltage from its ideal value at midscale.  
Note 2: Full-scale gain error is the deviation of the output voltage from the ideal full-scale value. The actual full-scale voltage is  
determined by V - V , when D0PD13P are set high and D0ND13N are set low.  
OUTP  
OUTN  
Note 3: Propagation delay is the time difference between the active edge of the clock and the active edge of the output.  
Note 4: Power-supply rejection ratio is the full-scale output change as the supply voltage varies over its specified range.  
4
_______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Typical Operating Characteristics  
(AV  
1V , R  
P-P SET  
= DV  
= 5V, external reference V  
= 1.196V, f  
= 156.072MHz, R = 27.4referenced to AV , C = 15pF, V  
=
REFIN  
CC  
CC  
CLK  
T
CC  
L
OUT  
= 3.83k, T = +25°C, unless otherwise noted.)  
A
REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
2.0  
1.5  
1.0  
0.5  
0
3
2
1.20  
1.19  
1.18  
1.17  
1.16  
1
0
-0.5  
-1.0  
-1.5  
-2.0  
-1  
-2  
-3  
0
2048 4096 6144 8192 10240122881433616384  
DIGITAL INPUT CODE  
0
2048 4096 6144 8192 10240122881433616384  
DIGITAL INPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
1.1904  
1.1900  
1.1896  
1.1892  
1.1888  
1.1884  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
4.750  
4.875  
5.000  
5.125  
5.250  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
ANALOG SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SPURIOUS-FREE DYNAMIC RANGE vs.  
OUTPUT FREQUENCY (f  
= 156.072MHz)  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
CLK  
100  
90  
80  
70  
60  
50  
40  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
-6dBFS  
-12dBFS  
DIGITAL SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
DIGITAL SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
-18dBFS  
0
0
0
10 20 30 40 50 60 70 80  
(MHz)  
-40  
-15  
10  
35  
60  
85  
4.750  
4.875  
5.000  
5.125  
5.250  
f
TEMPERATURE (°C)  
ANALOG SUPPLY VOLTAGE (V)  
OUT  
_______________________________________________________________________________________  
5
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Typical Operating Characteristics (continued)  
(AV  
1V , R  
P-P SET  
= DV  
= 5V, external reference V  
= 1.196V, f  
= 156.072MHz, R = 27.4referenced to AV , C = 15pF, V  
=
REFIN  
CC  
CC  
CLK  
T
CC  
L
OUT  
= 3.83k, T = +25°C, unless otherwise noted.)  
A
SPURIOUS-FREE DYNAMIC RANGE vs.  
OUTPUT FREQUENCY (f = 208.096MHz)  
SPURIOUS-FREE DYNAMIC RANGE vs.  
SPURIOUS-FREE DYNAMIC RANGE vs.  
OUTPUT FREQUENCY (f  
= 260.12MHz)  
OUTPUT FREQUENCY (f  
= 312.144MHz)  
CLK  
CLK  
CLK  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
-6dBFS  
-6dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
-12dBFS  
-18dBFS  
-18dBFS  
-18dBFS  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80 100 120 140  
(MHz)  
0
20 40 60 80 100 120 140 160  
(MHz)  
f
(MHz)  
f
OUT  
f
OUT  
OUT  
SPECTRAL PLOT, SINGLE-TONE SFDR  
FOR A 10MHz WINDOW  
SPURIOUS-FREE DYNAMIC RANGE vs.  
TEMPERATURE (f = 16MHz AT -12dBFS)  
SPECTRAL PLOT, SINGLE-TONE SFDR  
FOR A 10MHz WINDOW  
OUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
83  
82  
81  
80  
79  
78  
77  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
= 260.12MHz  
f
= 160MHz  
f
f
= 156.072MHz  
CENTER  
CLK  
CENTER  
CLK  
CLK  
= 19.3975MHz  
= 19.416 MHz  
OUTPUT AMPLITUDE:  
-12dBFS  
OUTPUT AMPLITUDE:  
-12dBFS  
f
f
CENTER  
CENTER  
10 12 14 16 18 20 22 24 26 28  
OUTPUT FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
10 12 14 16 18 20 22 24 26 28  
OUTPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
SPURIOUS-FREE DYNAMIC RANGE vs.  
MULTITONE (4 TONES) POWER RATIO vs.  
CLOCK FREQUENCY  
CLOCK FREQUENCY (f  
= 19MHz)  
OUT  
85  
81  
77  
73  
69  
65  
-70  
-75  
-80  
-85  
-90  
-95  
-6dBFS  
32MHz/-18dBFS  
18MHz/-18dBFS  
32MHz/-15dBFS  
-12dBFS  
18MHz/-15dBFS  
-18dBFS  
150  
180  
210  
240  
(MHz)  
270  
300  
330  
150  
180  
210  
240  
(MHz)  
270  
300  
330  
f
f
CLK  
CLK  
6
_______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Typical Operating Characteristics (continued)  
(AV  
1V , R  
P-P SET  
= DV  
= 5V, external reference V  
= 1.196V, f  
= 156.072MHz, R = 27.4referenced to AV , C = 15pF, V  
=
REFIN  
CC  
CC  
CLK  
T
CC  
L
OUT  
= 3.83k, T = +25°C, unless otherwise noted.)  
A
MULTITONE (8 TONES) POWER RATIO  
vs. CLOCK FREQUENCY  
OUTPUT RISE/FALL TIMES  
-70.0  
32MHz/-24dBFS  
-73.0  
90%  
10%  
18MHz/-24dBFS  
-76.0  
200mV/div  
32MHz/-21dBFS  
-79.0  
18MHz/-21dBFS  
-82.0  
-85.0  
150  
180  
210  
240  
(MHz)  
270  
300  
330  
1ns/div  
f
CLK  
Pin Description  
PIN  
1
NAME  
D9P  
FUNCTION  
Data Bit 9  
2
D8N  
D8P  
Complementary Data Bit 8  
Data Bit 8  
3
4
D7N  
D7P  
Complementary Data Bit 7  
Data Bit 7  
5
6
CLKP  
Converter Clock Input. Positive input terminal for LVPECL-compatible differential converter clock.  
Complementary Converter Clock Input. Negative input terminal for LVPECL-compatible differential  
converter clock.  
7
CLKN  
8
D6N  
D6P  
D5N  
D5P  
D4N  
D4P  
D3N  
D3P  
Complementary Data Bit 6  
Data Bit 6  
9
10  
11  
12  
13  
14  
15  
Complementary Data Bit 5  
Data Bit 5  
Complementary Data Bit 4  
Data Bit 4  
Complementary Data Bit 3  
Data Bit 3  
Digital Supply Voltage. Accepts a 4.75V to 5.25V supply voltage range. Bypass to DGND with a capacitor  
combination of 10µF in parallel with 0.1µF and 47pF.  
16, 47  
DV  
CC  
17, 46  
18  
19  
DGND  
D2N  
D2P  
Digital Ground  
Complementary Data Bit 2  
Data Bit 2  
20  
21  
D1N  
D1P  
Complementary Data Bit 1  
Data Bit 1  
22  
D0N  
Complementary Data Bit 0 (LSB)  
_______________________________________________________________________________________  
7
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Pin Description (continued)  
PIN  
23  
NAME  
D0P  
FUNCTION  
Data Bit 0 (LSB)  
24  
T.P.  
Test Point. Must be connected to LVPECL high level (2.4V) for optimum dynamic performance.  
25, 29, 32,  
33, 35  
Analog Supply Voltage. Accepts a 4.75V to 5.25V supply voltage range. Bypass to AGND with a capacitor  
combination of 10µF in parallel with 0.1µF and 47pF.  
AV  
CC  
Reference Output. Output of the internal 1.2V precision bandgap reference. Bypass with a 1µF capacitor to  
AGND, if an external reference source is used.  
26  
REFOUT  
27, 28  
30  
AGND  
OUTN  
OUTP  
Analog Ground  
Complementary DAC Output. Negative terminal for differential voltage output.  
DAC Output. Positive terminal for differential voltage output.  
31  
Control Amplifier Output. For stable operation, bypass to AGND with a combination of a 3kresistor in  
parallel with a 1.5µF tantalum capacitor.  
34  
36  
37  
AMPOUT  
RSET  
Output Current Set Resistor. External resistor (3.83kto 7.66k) sets the full-scale current of the DAC.  
Reference Input. Accepts an input voltage range of 1.196V 8%. Bypass to AGND with a 0.1µF capacitor,  
when used with the internal bandgap reference.  
REFIN  
38  
39  
40  
41  
42  
43  
44  
45  
48  
D13N  
D13P  
D12N  
D12P  
D11N  
D11P  
D10N  
D10P  
D9N  
Complementary Data Bit 13 (MSB)  
Data Bit 13 (MSB)  
Complementary Data Bit 12  
Data Bit 12  
Complementary Data Bit 11  
Data Bit 11  
Complementary Data Bit 10  
Data Bit 10  
Complementary Data Bit 9  
8
_______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Internal Reference and Control Amplifier  
Detailed Description  
The MAX5195 supports operation with the on-chip 1.2V  
bandgap reference or an external reference voltage  
source. REFIN serves as the input for an external refer-  
ence source, and REFOUT provides a 1.2V output volt-  
age, if the internal reference is used. For internal  
reference operation, REFIN and REFOUT must be con-  
nected together and decoupled to AGND with a 1µF  
capacitor in parallel with a 0.1µF capacitor for stable  
operation.  
Architecture  
The MAX5195 is a high-performance, 14-bit, segmented  
current-source array DAC (Figure 1) capable of operat-  
ing with clock speeds up to 260MHz. The converter  
consists of separate input and DAC registers, followed  
by a current-source array. This current-source array is  
capable of generating differential full-scale currents in  
the range of 10mA to 20mA. An internal R2R resistor  
network, in combination with external 27.4termination  
resistors, convert these differential output currents into a  
differential output voltage with a peak-to-peak output  
voltage range of 0.5V to 1V. An integrated 1.2V  
bandgap reference, control amplifier, and user-selec-  
table, external resistor determine the data converters  
full-scale output range.  
The MAX5195 reference circuit also employs a control  
amplifier, designed to regulate the full-scale current I  
FS  
for the differential current outputs of the MAX5195. For  
stable operation, the output AMPOUT of this amplifier  
must be bypassed with a 3kresistor in parallel with a  
1.5µF tantalum capacitor to AGND. Configured as a  
voltage-to-current amplifier, the output current can be  
calculated as follows:  
I
FS  
= 64 I  
- 1LSB  
REF  
DV  
DGND  
CC  
AGND  
AV  
1.2V  
REFERENCE  
R2R  
NETWORK  
CC  
BIAS  
REFOUT  
REFIN  
OUTP  
OUTN  
CURRENT-SOURCE  
ARRAY  
RSET  
CLKN  
CLKP  
INPUT REGISTER  
DECODER  
INPUT LATCH  
MAX5195  
14  
D0N/D0P–D13N/D13P  
Figure 1. Simplified MAX5195 Block Diagram  
_______________________________________________________________________________________  
9
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Table 1. I and R  
FS  
Selection Matrix Based on a Typical 1.2V Reference Voltage  
SET  
R
(k)  
SET  
FULL-SCALE CURRENT  
REFERENCE CURRENT  
(µA)  
OUTPUT VOLTAGE  
I
FS  
(mA)  
I
V
* (mV  
OUTP/N P-P  
)
REF  
CALCULATED  
7.68  
1% EIA STD  
7.50  
10  
12  
14  
16  
18  
20  
156.26  
187.50  
218.80  
250.00  
281.30  
312.50  
500  
6.40  
6.34  
600  
700  
800  
900  
1000  
5.49  
5.49  
4.80  
4.75  
4.27  
4.22  
3.84  
3.83  
*Terminated into a 27.4load (see Analog Outputs section for details) referenced to AV  
.
CC  
I
FS  
= 64 I  
- (I / 214)  
REF FS  
where I  
V
is the reference output current (I  
=
is  
REF  
/R  
REF  
3k  
1.5µF  
AV  
CC  
) and I is the full-scale current. R  
REFOUT SET  
FS  
SET  
MAX5195  
the reference resistor that determines the amplifiers  
output current (Figure 2) on the MAX5195. See Table 1  
for a matrix of different I and R  
selections.  
FS  
SET  
1.2V  
REFERENCE  
External Reference Operation  
Figure 3 illustrates a low-impedance reference source  
applied to the data converter for external reference  
operation. REFIN allows an input voltage range of  
1.196V 8%. Use a fixed output voltage reference  
source such as the 1.2V, 25ppm/°C (typ) MAX6520  
bandgap reference for improved accuracy and drift  
performance. Bypass the unused REFOUT pin of the  
MAX5195 with a 1µF capacitor to AGND.  
REFOUT  
0.1µF  
1µF  
OUTP  
OUTN  
REFIN  
RSET  
CURRENT-SOURCE  
ARRAY  
I
= V  
/R  
I
REF  
REF  
REFOUT SET  
NOTE: CONNECT REFIN AND REFOUT TOGETHER FOR INTERNAL REFERENCE OPERATION.  
Figure 2. Internal Reference Configuration  
3kΩ  
1.5µF  
AV  
CC  
MAX5195  
AMPOUT  
1.2V  
REFERENCE  
REFOUT  
1µF  
REFIN  
MAX6520  
OUTP  
OUTN  
CURRENT-SOURCE  
ARRAY  
RSET  
I
= V  
/R  
REF  
REFOUT SET  
I
REF  
Figure 3. External Reference Configuration Using the MAX6520  
10 ______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Table 2. LVPECL Voltage Levels  
PARAMETER  
Input Voltage High  
MINIMUM LVPECL SPECIFICATION  
MAXIMUM LVPECL SPECIFICATION  
V
V
** - 1.16V  
CC  
** - 1.81V  
CC  
V
V
** - 0.88V  
CC  
** - 1.48V  
CC  
Input Voltage Low  
Common-Mode Level  
V
** - 1.3V  
CC  
**V  
is the supply voltage associated with the LVPECL source. A typical V  
level associated with LVPECL is 3.3V, which sets the  
CC  
CC  
common-mode level to 2V, allowing a typical peak-to-peak signal swing of 0.8V.  
provides for minimum setup and hold times (<2ns), allow-  
ing for noncritical external interface timing (Figure 4).  
LVPECL-Compatible Digital Inputs  
(D0P–D13P, D0N–D13N)  
The MAX5195 digital interface consists of 14 differen-  
tial, LVPECL-compatible digital input pins. These inputs  
follow standard positive binary coding where D0P and  
D0N represent the differential inputs to the least signifi-  
cant bit (LSB), and D13P and D13N represent the dif-  
ferential pair associated with the most significant bit  
(MSB). D0P/N through D13P/N accept LVPECL input  
For best AC performance, a differential, DC-coupled  
clock signal with LVPECL-compatible voltage levels  
(Table 2) should be used. The MAX5195 operates  
properly with a clock duty cycle set within the limits list-  
ed in the Electrical Characteristics table. However, a  
50% duty cycle should be utilized for optimum dynamic  
performance. To maintain the DACs excellent dynamic  
performance, clock and data signals should originate  
from separate signal sources.  
levels of 0.8V  
(Table 2).  
P-P  
Each of the digital input terminals can be terminated  
with a separate 50resistor; however, to achieve the  
lowest noise performance, it is recommended to termi-  
nate each differential pair with a 100resistor located  
between the positive and negative input terminals.  
Analog Outputs (OUTP, OUTN)  
The MAX5195s current array is designed to drive full-  
scale currents of 10mA to 20mA into an internal R2R  
resistor network (R  
). To achieve the desired differ-  
R2R  
ential output voltage range of 0.5V  
to 1V , both  
P-P  
Clock Inputs (CLKP, CLKN) and Data  
Timing Relationship  
P-P  
OUTP and OUTN should be externally terminated into  
27.4(R ), resulting in a combined load of R  
=
LOAD  
T
The MAX5195 features differential, LVPECL-compatible  
clock inputs. Internal edge-triggered flip-flops latch the  
input word on the rising edge of the clock-input pair  
CLKP/CLKN. The DAC is updated with the data word  
on the next rising edge of the clock input. This results in  
a conversion latency of one clock cycle. The MAX5195  
25(Figure 5):  
R
LOAD  
R
LOAD  
R
LOAD  
= R  
|| R  
R2R T  
= (28527.4) / (285+ 27.4)  
= 25Ω  
t
t
CL  
CH  
CLKP  
CLKN  
t
SETUP  
t
HOLD  
D13D0  
OUTP  
OUTN  
90% POINT  
t
PD  
MAX5195  
10% POINT  
t
, t  
RISE FALL  
Figure 4. Input/Output Timing Information  
______________________________________________________________________________________ 11  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
The proportional, differential output voltages can then  
AV  
CC  
be used to drive a wideband RF transformer or a fast,  
low-noise, low-distortion operational amplifier to convert  
the differential voltage into a single-ended output.  
AV  
CC  
R
T
R
R
R2R  
285  
R2R  
285Ω  
R
R
= 25Ω  
27.4Ω  
LOAD  
The MAX5195 analog outputs can also be configured in  
single-ended mode. For more details on different output  
configurations, see the Applications Information section.  
OUTN  
OUTP  
= 25Ω  
R
T
27.4Ω  
LOAD  
Applications Information  
AV  
Differential Coupling Using a  
Wideband RF Transformer  
CC  
A wideband RF transformer such as the TTWB1010 (1:1  
turns ratio) from Coilcraft can be used to convert the  
MAX5195 differential output signal to a single-ended  
signal (Figure 6). As long as the generated output  
spectrum is within the passband of the transformer, a  
differentially coupled transformer provides the best dis-  
tortion performance. Additionally, the transformer helps  
to reject noise and even-order harmonics, provides  
electrical isolation, and is capable of delivering more  
power to the load.  
AMPOUT  
AGND  
R
IS THE COMBINED LOAD OF  
LOAD  
THE INTERNAL R2R RESISTOR  
MAX5195  
NETWORK IN PARALLEL WITH THE  
EXTERNAL TERMINATION RESISTOR.  
Figure 5. Simplified Output Architecture  
With a full-scale current of 10mA (20mA), both outputs  
OUTP and OUTN achieve a 0.25V (0.5V) voltage swing  
Single-Ended Unbuffered Output  
Configuration  
each, resulting in a 0.5V  
(1V ) differential output  
P-P  
P-P  
Figure 7a shows an unbuffered single-ended output,  
which is suitable for applications requiring a unipolar  
voltage output. The nominal termination resistor load of  
signal. For applications that require an even smaller  
output voltage swing, the termination resistor value R  
T
can be as low as 0.  
27.4(referred to AV ) results in a differential output  
CC  
AV , DV  
CC  
CC  
AV  
CC  
R
T
27.4  
V
, SINGLE ENDED  
AGND  
OUT  
OUTP  
1 : 1  
D0D13  
14  
OUTN  
TTWB1010  
R
T
AGND  
27.4Ω  
WIDEBAND RF TRANSFORMER  
PERFORMS DIFFERENTIAL-TO-  
SINGLE-ENDED CONVERSION.  
AV  
CC  
MAX5195  
Figure 6. Differential Coupling Using a Wideband RF Transformer  
AGND, DGND  
12 ______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
AV , DV  
CC  
CC  
AV  
CC  
R
T
27.4Ω  
OUTP  
V
OUTP  
AGND  
D0D13  
V
= I × R  
OUT_ FS LOAD  
14  
V
OUTN  
OUTN  
R
T
27.4Ω  
AGND  
: RESISTOR COMBINATION OF  
R
LOAD  
AV  
CC  
INTERNAL R2R NETWORK AND EXTERNAL  
TERMINATION RESISTOR  
MAX5195  
AGND, DGND  
Figure 7a. Single-Ended Unbuffered Output Configuration  
AV , DV  
CC  
CC  
R
LOOP  
OUTP  
C
LOOP  
D0D13  
V
OUT  
14  
AGND  
OUTN  
AV  
CC  
MAX5195  
AGND, DGND  
Figure 7b. Single-Ended Buffered Output Configuration  
swing of 1V  
(0.5V  
single ended) when applying a  
P-P  
amplifiers maximum output swing and the MAX5195  
full-scale current determine the value of R . An  
P-P  
full-scale current of 20mA.  
LOOP  
optional roll-off capacitor (C  
) in the feedback loop  
LOOP  
Alternatively, an external unity-gain amplifier can be  
used to buffer the outputs. This circuit works as an I-V  
amplifier (Figure 7b), in which OUTP is held at AV  
the inverting terminal of the buffer amplifier. OUTN  
should then be connected to AV to provide a DC-  
current path for the current switched to OUTP. The  
helps to ease dV/dt requirements at the input of the  
operational amplifier. It is recommended that the ampli-  
fiers power-supply rails be higher than the resistors  
by  
CC  
output reference voltage AV  
due to its positive and  
CC  
CC  
CC  
negative output swing around AV  
.
______________________________________________________________________________________ 13  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
point connecting the two planes. Digital signals should  
Grounding, Bypassing, and Power-Supply  
Considerations  
run above the digital ground plane and analog signals  
above the analog ground plane. Digital signals should  
be kept as far away from sensitive analog inputs, refer-  
ence input lines, and clock inputs. Digital signal paths  
should be kept short and run lengths matched to avoid  
propagation delay mismatch.  
Grounding and power-supply decoupling can strongly  
influence the performance of the MAX5195. Unwanted  
digital crosstalk can couple through the input, refer-  
ence, power supply, and ground connections, thus  
affecting dynamic performance. Proper grounding and  
power-supply decoupling guidelines for high-speed,  
high-frequency applications should be closely followed.  
This reduces EMI and internal crosstalk, which can also  
affect the dynamic performance of the MAX5195.  
The MAX5195 has two separate power-supply inputs  
for analog (AV ) and digital (DV ). Each AV input  
CC  
CC  
CC  
should be decoupled with parallel ceramic chip capac-  
itors of 10µF in parallel with 0.1µF and 47pF with these  
capacitors as close to the supply pins as possible and  
their opposite ends with the shortest possible connec-  
Use of a multilayer printed circuit (PC) board with sepa-  
rate ground and power-supply planes is recommend-  
ed. High-speed signals should be run on lines directly  
above the ground plane. Since the MAX5195 has sepa-  
rate analog and digital ground buses (AGND and  
DGND, respectively), the PC board should have sepa-  
rate analog and digital ground sections with only one  
tion to the ground plane (Figure 8). The DV  
pins  
CC  
should also have separate 10µF in parallel with 0.1µF  
and 47pF capacitors adjacent to their respective pins.  
Try to minimize the analog and digital load capaci-  
tances for proper operation.  
5V  
10µF  
0.1µF  
47pF  
1.5µF  
3kΩ  
AMPOUT  
DGND DV  
CC  
5V  
AV  
CC  
1.2V  
REFERENCE  
R2R  
NETWORK  
47pF  
0.1µF  
10µF  
BIAS  
AGND  
OUTP  
REFOUT  
REFIN  
27.4Ω  
27.4Ω  
AGND  
V
OUT  
RSET  
CURRENT-SOURCE  
ARRAY  
AGND  
1µF  
OUTN  
3.83kΩ  
AGND  
0.1µF  
INPUT REGISTER  
DECODER  
CLKP  
CLKN  
2.4V  
1.6V  
2V  
MAX5195  
260MHz,  
LVPECL  
INPUT LATCH  
14  
D0N/D0PD13N/D13P  
Figure 8. Decoupling and Bypassing Techniques for MAX5195—Typical Operating Circuit  
14 ______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
The power-supply voltages should also be decoupled  
greater) vias (0.3mm diameter per via hole and 1.2mm  
pitch between via holes) is recommended. A smaller via  
array can be used as well, but results in an increased θja.  
at the point where they enter the PC board with tanta-  
lum or electrolytic capacitors. Ferrite beads with addi-  
tional decoupling capacitors forming a π network can  
also improve performance.  
Note that efficient thermal management for the MAX5195  
is strongly dependent on PC board and circuit design,  
component placement, and installation; therefore, exact  
performance figures cannot be provided. For more infor-  
mation on proper design techniques and recommenda-  
tions to enhance the thermal performance of parts such  
as the MAX5195, refer to Amkor Technologys website at  
www.amkor.com.  
The analog and digital power-supply inputs AV  
and  
CC  
DV  
of the MAX5195 allow a 4.75V to 5.25V supply  
CC  
voltage range.  
Enhanced Thermal Dissipation QFN-EP Package  
The MAX5195 is packaged in a thermally enhanced 48-  
pin QFN-EP package, providing greater design flexibili-  
ty, increased thermal efficiency, and a low thermal  
junction-case (θjc) resistance of 2°C/W. In this pack-  
age, the data converter die is attached to an EP lead  
frame. The back of the lead frame is exposed at the  
package bottom surface (the PC board side of the  
package, Figure 9. This allows the package to be  
attached to the PC board with standard infrared (IR)  
flow soldering techniques. A specially created land pat-  
tern on the PC board, matching the size of the EP  
(5.5mm 5.5mm), guarantees proper attachment of the  
chip, and can also be used for heat-sinking purposes.  
Designing thermal vias* into the land area and imple-  
menting large ground planes in the PC board design  
further enhance the thermal conductivity between  
board and package. To remove heat from a 48-pin  
QFN-EP package effectively, an array of 3 3 (or  
Static Performance Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from either a best-straight-line  
fit (closest approximation to the actual transfer curve)  
or a line drawn between the endpoints of the transfer  
function, once offset and gain errors have been nulli-  
fied. For a DAC, the deviations are measured every  
individual step.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step height and the ideal value of 1LSB. A DNL  
error specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
*Connect the land pattern to internal or external copper  
planes.  
48-LEAD QFN PACKAGE  
WITH EXPOSED PAD  
DIE  
BONDING WIRE  
EPOXY  
EXPOSED PAD  
COPPER  
TRACE, 1oz  
COPPER TRACE, 1oz  
PC BOARD  
TOP LAYER  
GROUND PLANE  
AGND, DGND  
POWER PLANE  
GROUND PLANE (AGND)  
3 x 3 ARRAY OF THERMAL VIAS  
THERMAL LAND  
COPPER PLANE, 1oz  
MAX5195  
Figure 9. MAX5195 Exposed Paddle/PC Board Cross Section  
______________________________________________________________________________________ 15  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Offset Error  
Spurious-Free Dynamic Range  
The offset error is the difference between the ideal and  
the actual offset point. For a DAC, the offset point is the  
step value when the digital input is at midscale. This  
error affects all codes by the same amount.  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal components) to the RMS  
value of the next largest distortion component. SFDR is  
measured in dBc, with respect to the carrier frequency  
amplitude.  
Gain Error  
A gain error is the difference between the ideal and the  
actual full-scale output voltage on the transfer curve,  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step.  
Multitone Power Ratio (MTPR)  
A series of equally spaced ones is applied to the DAC  
with one tone removed from the center of the range.  
MTPR is defined as the worst-case distortion (usually a  
3rd-order harmonic product of the fundamental frequen-  
cies), which appears as the largest spur at the frequency  
of the missing tone in the sequence. This test can be  
performed with any number of input tones; however, four  
and eight tones are among the most common test condi-  
tions for CDMA- and GSM/EDGE-type applications.  
Glitch Energy  
Glitch impulses are caused by asymmetrical switching  
times in the DAC architecture, which generates unde-  
sired output transients. The amount of energy that  
appears at DACs output is measured over time and is  
usually specified in the pV-s range.  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in dBc of either  
input tone to the worst 3rd-order (or higher) IMD prod-  
ucts. Note that 2nd-order IMD products usually fall at  
frequencies, which can be easily removed by digital fil-  
tering. Therefore, they are not as critical as 3rd-order  
IMDs. The two-tone IMD performance of the MAX5195  
was tested with the two individual input tone levels set  
to -9dBFS and -12dBFS.  
Dynamic Performance Parameter  
Definitions  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of the  
full-scale analog output (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum can be derived from the DACs resolution (N bits):  
Chip Information  
TRANSISTOR COUNT: 15,000  
SNR = 6.02 N + 1.76  
dB  
dB  
dB  
However, noise sources such as thermal noise, refer-  
ence noise, clock jitter, etc., affect the ideal reading.  
SNR is therefore computed by taking the ratio of the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the fundamental, the first four  
harmonics, and the DC offset.  
PROCESS: SiGe  
16 ______________________________________________________________________________________  
14-Bit, 260Msps High-Dynamic  
Performance DAC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
ENG LIS H ? ? ? ? ? ? ? ? ? ?  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ERS  
M a x i m > P r o d u c t s > D i g i t a l - t o - A n a l o g C o n v e r t e r s H i g h - S p e e d D a t a C o n v e r t e r s  
M A X 5 1 9 5 , M A X 5 1 9 5 E G M  
1
4
-
B
i
t
,
2
6
0
M
s
p
s
H
i
g
h
-
D
y
n
a
m
i
c
P
e
r
f
o
r
m
a
n
c
e
D
A
C
Q
u
i
c
k
V
i
e
w
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
A l l  
O r d e r i n g I n f o r m a t i o n  
N o t e s :  
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b
u
s
i
n
e
s
s
d
a
y
.
3
.
P
a
r
t
n
u
m
b
e
r
s
u
f
f
i
x
e
s
:
T
o
r
T
&
R
=
t
a
p
e
a
n
d
r
e
e
l
;
+
=
R
o
H
S
/
l
e
a
d
-
f
r
e
e
;
#
=
R
o
H
S
/
l
e
a
d
-
e
x
e
m
p
t
.
M
o
r
e
:
S
e
e
F
u
l
l
D
a
t
a
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
D e v i c e s : 1 - 2 o f 2  
M
A
X
5
1
9
5
E
G
M
F r e e  
B uy  
T
e
m
p
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 5 1 9 5 E G M - T D  
Q F N ; 4 8 p i n ; 5 0 m m  
D w g : 2 1 - 0 0 9 2 H ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : G 4 8 7 7 - 1 *  
M A X 5 1 9 5 E G M - D  
Q F N ; 4 8 p i n ; 5 0 m m  
D w g : 2 1 - 0 0 9 2 H ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
G
4
8
7
7
-
1
*
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q
u
i
c
k
V
i
e
w
T
e
c
h
n
i
c
a
l
D
o
c
u
m
e
n
t
s
O
r
d
e
r
i
n
g
I
n
f
o
M
o
r
e
I
n
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 2 5 5 7 ; R e v 0 ; 2 0 0 2 - 0 8 - 0 5  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 7 - 3 0  
C
O
N
T
A
C
T
U
S
:
S
E
N
D
U
S
A
N
E
M
A
I
L
C
o
p
y
r
i
g
h
t
2
0
0
7
b
y
M
a
x
i
m
I
n
t
e
g
r
a
t
e
d
P
r
o
d
u
c
t
s
,
D
a
l
l
a
s
S
e
m
i
c
o
n
d
u
c
t
o
r
L
e
g
a
l
N
o
t
i
c
e
s
P
r
i
v
a
c
y
P
o
l
i
c
y

相关型号:

MAX5195EGM-TD

D/A Converter, 1 Func, Parallel, Word Input Loading, 7 X 7 MM, 0.90 MM HEIGHT, QFN-48
MAXIM

MAX5195EVKIT

Evaluation Kit for the MAX5195
MAXIM

MAX519ACPE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519ACSE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519AEPE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519AEPE+

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM

MAX519AESE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519AESE+

暂无描述
MAXIM

MAX519AESE+T

暂无描述
MAXIM

MAX519AESE-T

D/A Converter, 2 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, SO-8
MAXIM

MAX519BC/D

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM

MAX519BCPE

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
MAXIM