MAX521 [MAXIM]

Quad/Octal, 2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs; 四/八通道, 2线串行8位DAC,具有轨至轨输出
MAX521
型号: MAX521
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad/Octal, 2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs
四/八通道, 2线串行8位DAC,具有轨至轨输出

文件: 总20页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0378; Rev 3; 9/96  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Single +5V Supply  
The MAX520/MAX521 are quad/octal, 8-bit voltage-output  
digital-to-analog converters (DACs) with simple 2-wire ser-  
ial interfaces that allow communication between multiple  
devices. They operate from a single +5V supply and their  
reference input range includes both supply rails.  
Simple 2-Wire Serial Interface  
I2C Compatible  
Outputs Swing Rail to Rail:  
Unbuffered Outputs (MAX520)  
Buffered Outputs (MAX521)  
The MAX521 includes rail-to-rail output buffer amplifiers for  
reduced system size and component count when driving  
loads. The MAX520s unbuffered voltage outputs reduce  
the devices total supply current to 4µA and provide  
increased accuracy at low output currents.  
1%-Accurate Trimmed Output Resistance (MAX520A)  
Ultra-Low 4µA Supply Current (MAX520)  
Individual DACs Have Separate Reference Inputs  
Power-On Reset Clears All Latches  
The MAX520/MAX521 feature a serial interface and internal  
software protocol, allowing communication at data rates up  
to 400kbps. The interface, combined with the double-  
buffered input configuration, allows the DAC registers to be  
updated individually or simultaneously. In addition, the  
devices can be put into a low-power shutdown mode that  
reduces supply current to 4µA. Power-on reset ensures the  
DAC outputs are at 0V when power is initially applied.  
4µA Power-Down Mode  
______________Ord e rin g In fo rm a t io n  
TUE  
(LSB)  
PART†  
TEMP. RANGE PIN-PACKAGE  
The MAX520 is available in 16-pin DIP and wide SO pack-  
a ge s, a s we ll a s a spa c e -sa ving 20-p in SSOP. The  
MAX521 comes in 20-pin DIP and 24-pin SO packages, as  
well as a space-saving 24-pin SSOP.  
MAX520ACPE  
MAX520BCPE  
MAX520ACWE  
MAX520BCWE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
1
1
1
1
________________________Ap p lic a t io n s  
Minimum Component Analog Systems  
Digital Offset/Gain Adjustment  
Ordering Information continued at end of data sheet.  
MAX520 A” grade parts include a 1%-accurate, factory-trimmed  
output resistance.  
Industrial Process Control  
Automatic Test Equipment  
_______________Fu n c t io n a l Dia g ra m s  
Programmable Attenuators  
SDA SCL  
REF1  
REF0  
_________________P in Co n fig u ra t io n s  
OUTPUT  
LATCH 0  
INPUT  
LATCH 0  
OUT0  
OUT1  
DAC0  
MAX520  
1
TOP VIEW  
8
8-BIT  
SHIFT REGISTER  
ADDRESS  
COMPARATOR  
OUT1  
OUT0  
REF1  
REF0  
AGND  
DGND  
SCL  
1
2
3
4
5
6
7
8
16 OUT2  
15 OUT3  
14 REF2  
INPUT  
LATCH 1  
OUTPUT  
LATCH 1  
DAC1  
START/STOP  
DETECTOR  
1
REF3  
13  
MAX520  
OUTPUT  
LATCH 2  
INPUT  
LATCH 2  
OUT2  
OUT3  
DAC2  
DAC3  
V
12  
11  
10  
9
DD  
DECODE  
1
AD2  
AD1  
AD0  
4
INPUT  
LATCH 3  
OUTPUT  
LATCH 3  
SDA  
1
AD0  
AD2  
REF2  
REF3  
DIP/SO  
AD1  
Functional Diagrams continued at end of data sheet.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
ABSOLUTE MAXIMUM RATINGS  
V
to DGND ...........................................................-0.3V to +6V  
to AGND............................................................-0.3V to +6V  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) ......762mW  
24-Pin Wide SO (derate 11.76mW/°C above +70°C) ....941mW  
20-Pin SSOP (derate 8.00mW/°C above +70°C) .........640mW  
24-Pin SSOP (derate 8.00mW/°C above +70°C) .........640mW  
16-Pin CERDIP (derate 10.00mW/°C above +70°C)....800mW  
20-Pin CERDIP (derate 11.11mW/°C above +70°C)....889mW  
Operating Temperature Ranges  
MAX520_C_ _/MAX521_C_ _..............................0°C to +70°C  
MAX520_E_ _/MAX521_E_ _ ...........................-40°C to +85°C  
MAX520_MJE/MAX521BMJP ........................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
V
DD  
OUT_ ..........................................................-0.3V to (V + 0.3V)  
REF_ ...........................................................-0.3V to (V + 0.3V)  
AD0, AD1, AD2...........................................-0.3V to (V + 0.3V)  
SCL, SDA to DGND..................................................-0.3V to +6V  
AGND to DGND.....................................................-0.3V to +0.3V  
Maximum Current into Any Pin............................................50mA  
DD  
DD  
DD  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW  
20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
0/MAX521  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±10%, V  
= 4V, R = (MAX520), R = 10k(MAX521), C = 0pF (MAX520), C = 100pF (MAX521), T = T  
to T  
MIN MAX,  
L
L
L
L
DD  
REF_  
A
unless otherwise noted. Typical values are at T = +25°C)  
A
PARAMETER  
STATIC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution  
8
MAX520_  
±1  
±1.5  
±2  
Total Unadjusted Error  
Differential Nonlinearity  
TUE  
DNL  
MAX521A  
MAX521B  
LSB  
Guaranteed monotonic  
±1.0  
8
LSB  
MAX520_  
MAX521_C  
MAX521_E  
MAX521BM  
18  
Zero-Code Error  
ZCE  
Code = 00 hex  
mV  
20  
20  
Zero-Code-Error Supply Rejection  
Code = 00 hex  
Code = 00 hex  
±1  
mV  
Zero-Code-Error Temperature Coefficient  
±10  
µV/°C  
MAX520_  
8
MAX521_C  
MAX521_E  
MAX521BM  
18  
20  
20  
Full-Scale Error  
Code = FF hex  
mV  
Full-Scale-Error Supply Rejection  
Code = FF hex, V = 5V ±10%  
±1  
mV  
DD  
Full-Scale-Error Temperature Coefficient  
±10  
µV/°C  
2
_______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±10%, V  
= 4V, R = (MAX520), R = 10k(MAX521), C = 0pF (MAX520), C = 100pF (MAX521), T = T  
to T  
,
L
L
L
L
A
MIN  
MAX  
DD  
REF_  
unless otherwise noted. Typical values are at T = +25°C)  
A
PARAMETER  
REFERENCE INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
Input Resistance  
Input Current  
0
8
V
V
DD  
MAX520_  
MAX521_  
12  
6
Code =  
55 hex  
(Note 1)  
R
REF4  
4
kΩ  
µA  
pF  
IN  
REF0–REF3  
16  
24  
PD = 1  
±10  
MAX520_  
MAX521_  
30  
120  
30  
Code =  
FF hex  
(Note 2)  
Input Capacitance  
REF4  
REF0–REF3  
MAX520_  
MAX521_  
-70  
-60  
-70  
Channel-to-Channel Isolation  
(Note 3)  
(Note 4)  
dB  
dB  
AC Feedthrough  
DAC OUTPUTS  
Full-Scale Output Voltage  
0
V
DD  
V
T
= +25°C  
15.8  
15.6  
8.4  
16  
16  
16.2  
16.4  
16.4  
A
MAX520A  
MAX520B  
Output Resistance (Note 5)  
T
A
= T  
to T  
MAX  
kΩ  
MIN  
MAX521_, OUT_ = 4V,  
0mA to 2.5mA  
0.25  
1.5  
MAX521_C/E, V  
= V  
,
REF_  
DD  
Output Load Regulation  
Output Leakage Current  
LSB  
µA  
code = FF hex, 0µA to 500µA  
MAX521BM, V = V  
code = FF hex, 0µA to 500µA  
,
DD  
REF_  
2.0  
MAX521_, OUT_ = 0V to V  
PD = 1  
,
DD  
±10  
DIGITAL INPUTS SCL, SDA  
Input High Voltage  
V
0.7V  
V
V
IH  
DD  
Input Low Voltage  
V
IL  
0.3V  
DD  
Input Current  
I
0V V V  
±10  
µA  
V
IN  
IN  
(Note 5)  
(Note 5)  
DD  
Input Hysteresis  
V
0.05V  
DD  
HYST  
Input Capacitance  
C
10  
pF  
IN  
DIGITAL INPUTS AD0, AD1  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
Input Leakage  
I
IN  
V
IN  
= 0V to V  
DD  
±10  
µA  
DIGITAL OUTPUT SDA (Note 6)  
I
= 3mA  
= 6mA  
0.4  
0.6  
±10  
10  
SINK  
Output Low Voltage  
V
V
OL  
I
SINK  
Three-State Leakage Current  
I
V
= 0V to V  
DD  
µA  
pF  
L
IN  
Three-State Output Capacitance  
C
(Note 5)  
OUT  
_______________________________________________________________________________________  
3
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±10%, V  
= 4V, R = (MAX520), R = 10k(MAX521), C = 0pF (MAX520), C = 100pF (MAX521), T = T  
to T  
,
L
L
L
L
A
MIN  
MAX  
DD  
REF_  
unless otherwise noted. Typical values are at T = +25°C)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
MAX521_C  
1.0  
0.7  
0.5  
Voltage Output Slew Rate  
Output Settling Time  
Positive and negative MAX521_E  
MAX521BM  
V/µs  
MAX520_, to 1/2LSB, no load  
2
6
µs  
MAX521_, to 1/2LSB, 10kand  
100pF load (Note 7)  
Code = 00 hex, all digital inputs from  
0V to V  
Digital Feedthrough  
5
nV-s  
nV-s  
dB  
DD  
0/MAX521  
Digital-Analog Glitch Impulse  
Signal to Noise + Distortion Ratio  
Code 128 to 127  
= 4Vp-p at 1kHz, V = 5V,  
12  
87  
V
REF_  
DD  
SINAD  
code = FF hex  
Multiplying Bandwidth  
Wideband Amplifier Noise  
POWER REQUIREMENTS  
Supply Voltage  
V
= 4Vp-p, 3dB bandwidth  
1
MHz  
REF_  
MAX521_  
60  
µV  
RMS  
V
4.5  
5.5  
20  
20  
24  
20  
V
DD  
MAX520_  
4
10  
10  
4
µA  
Operating mode, out-  
put unloaded, all dig- MAX521_C  
ital inputs 0V or V  
Supply Current  
I
DD  
mA  
µA  
DD  
MAX521_E/BM  
Power-down mode (PD = 1)  
Note 1: Input resistance is code dependent. The lowest input resistance occurs at code = 55 hex.  
Note 2: Input capacitance is code dependent. The highest input capacitance occurs at code = FF hex.  
Note 3:  
V
REF_  
= 4Vp-p, 10kHz. Channel-to-channel isolation is measured by setting the code of one DAC to FF hex and setting the  
code of all other DACs to 00 hex.  
= 4Vp-p, 10kHz, DAC code = 00 hex.  
Note 4:  
V
REF_  
Note 5: Guaranteed by design.  
Note 6: I2C-compatible mode.  
Note 7: Output settling time is measured by taking the code from 00 hex to FF hex, and from FF hex to 00 hex.  
4
_______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
TIMING CHARACTERISTICS  
(V = 5V ±10%, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clock Frequency  
f
0
400  
kHz  
SCL  
Bus Free Time Between a STOP and a  
START Condition  
t
1.3  
µs  
BUF  
Hold Time, (Repeated) Start Condition  
Low Period of the SCL Clock  
t
t
0.6  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
pF  
ns  
HD, STA  
t
1.3  
LOW  
High Period of the SCL Clock  
t
0.6  
HIGH  
Setup Time for a Repeated START Condition  
Data Hold Time  
0.6  
SU, STA  
HD, DAT  
t
(Note 8)  
0
0.9  
Data Setup Time  
t
100  
SU, DAT  
Rise Time of Both SDA and SCL Signals, Receiving  
Fall Time of Both SDA and SCL Signals, Receiving  
Fall Time of SDA Transmitting (Note 6)  
Setup Time for STOP Condition  
t
(Note 9)  
(Note 9)  
20 + 0.1Cb  
20 + 0.1Cb  
20 + 0.1Cb  
0.6  
300  
300  
250  
R
t
t
F
F
I
6mA (Note 9)  
SINK  
t
SU, STO  
Cb  
Capacitive Load for Each Bus Line  
Pulse Width of Spike Suppressed  
400  
50  
t
SP  
(Notes 10, 11)  
0
Note 8: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) in order to  
IL  
bridge the undefined region of SCL’s falling edge.  
Note 9: Cb = total capacitance of one bus line in pF. t and t measured between 0.3V and 0.7V .  
DD  
R
f
DD  
Note 10: An input filter on the SDA and SCL input suppresses noise spikes less than 50ns.  
Note 11: Guaranteed by design.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5V, DAC outputs unloaded, T = +25°C, unless otherwise noted.)  
DD  
A
MAX520  
MAX520  
MAX520  
REFERENCE INPUT CURRENT vs.  
TEMPERATURE (SHUTDOWN MODE)  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
SUPPLY CURRENT vs. TEMPERATURE  
10  
9
40  
35  
2
0
V
= 4V  
REF  
OPERATING MODE OR  
SHUTDOWN MODE  
ONE REF INPUT DRIVEN  
8
V
DD  
= 5V  
-2  
-4  
30  
25  
20  
15  
10  
5
V
REF  
= 4Vp-p SINE WAVE  
7
CENTERED AT 2.5V  
6
-6  
5
-8  
4
-10  
-12  
-14  
-16  
-18  
3
2
1
0
0
-60 -30  
0
30  
60  
90 120 150  
-60 -30  
0
30  
60  
90 120 150  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
______________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, DAC outputs unloaded, T = +25°C, unless otherwise noted.)  
DD  
A
MAX520  
MAX520  
NEGATIVE SETTLING TIME  
POSITIVE SETTLING TIME  
OUT2  
OUT2  
1V/div  
1V/div  
0/MAX521  
1µs/div  
1µs/div  
OUT2 = NO LOAD, REF2 = 4V,  
DAC CODE = FF HEX to 00 HEX  
OUT2 = NO LOAD, REF2 = 4V,  
DAC CODE = 00 HEX to FF HEX  
MAX520  
MAX520  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(CAPACITIVE LOAD = 25pF)  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(CAPACITIVE LOAD < 5pF)  
OUT2  
20mV/div  
AC COUPLED  
OUT2  
20mV/div  
AC COUPLED  
500ns/div  
500ns/div  
REF2 = 4V, DAC CODE = 7F HEX to 80 HEX  
REF2 = 4V, DAC CODE = 7F HEX to 80 HEX  
6
_______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5V, DAC outputs unloaded, T = +25°C, unless otherwise noted.)  
DD  
A
MAX521  
MAX521  
MAX521  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
12  
10  
8
10  
8
6
5
4
3
2
1
0
V
= 5.5V  
V
= 5.5V  
DD  
DD  
ALL REFERENCE  
INPUTS DRIVEN  
ALL REF INPUTS = 0.6V  
ALL DIGITAL INPUTS to V  
ALL REF INPUTS = 0.6V  
ALL DIGITAL INPUTS to V  
DD  
DD  
ALL DAC CODES FF HEX  
6
6
ALL DAC CODES = FF HEX  
4
4
ALL DAC CODES 00 HEX  
2
ALL DAC CODES = 00 HEX  
2
0
0
-60  
-20  
20  
60  
100  
140  
0
1
2
3
4
5
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
MAX521  
MAX521  
MAX521  
DAC OUTPUT LOW VOLTAGE  
vs. OUTPUT SINK CURRENT  
DAC OUTPUT HIGH VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
1.0  
2
1.0  
V
= 5V  
V
= 5V  
REF  
REF  
0
DAC CODE = FF HEX  
LOAD to AGND  
DAC CODE = 00 HEX  
LOAD to V  
DD  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
4V SINE  
p-p  
-8  
2V SINE  
p-p  
1V SINE  
p-p  
-10  
-12  
-14  
-16  
-18  
0.5V SINE  
p-p  
V
REF  
= SINE WAVE  
CENTERED AT 2.5V  
V
OUT  
= V x (255/256)  
REF  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
MAX521  
MAX521  
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
OUT1  
OUT1  
1V/div  
1V/div  
1µs/div  
OUT1 LOADED WITH 10kII 100pF, REF1 = 4V,  
DAC CODE = 00 HEX to FF HEX  
1µs/div  
OUT1 LOADED WITH 10kII 100pF, REF1 = 4V,  
DAC CODE = FF HEX to 00 HEX  
_______________________________________________________________________________________  
7
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
______________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, DAC outputs unloaded, T = +25°C, unless otherwise noted.)  
DD  
A
MAX521  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
OUT1  
20mV/div  
AC COUPLED  
0/MAX521  
500ns/div  
REF1 = 5V, DAC CODE = 80 HEX to 7F HEX  
REFERENCE FEEDTHROUGH AT 1kHz  
CLOCK FEEDTHROUGH  
A
B
A
B
A = REF1, 1V/div (4V  
)
P-P  
A = SCL, 400kHz, 5V/div  
B = OUT1, 50µV/div, UNLOADED  
B = OUT1, 5mV/div  
FILTER PASSBAND = 100Hz to 10kHz, DAC CODE = 00 HEX  
REF1 = 5V, DAC CODE = 7F HEX  
REFERENCE FEEDTHROUGH AT 10kHz  
REFERENCE FEEDTHROUGH AT 100kHz  
A
B
A
B
A = REF1, 1V/div (4V  
)
P-P  
A = REF1, 1V/div (4V )  
P-P  
B = OUT1, 50µV/div, UNLOADED  
B = OUT1, 50µV/div, UNLOADED  
FILTER PASSBAND = 1kHz to 100kHz, DAC CODE = 00 HEX  
FILTER PASSBAND = 10kHz to 1MHz, DAC CODE = 00 HEX  
8
_______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
______________________________________________________________P in De s c rip t io n  
PIN  
MAX520  
MAX521  
SO/SSOP  
NAME  
FUNCTION  
DIP/SO  
SSOP  
DIP  
1
2
1
2
3
5
1
2
1
OUT1  
OUT0  
REF1  
REF0  
N.C.  
DAC1 Voltage Output  
2
DAC0 Voltage Output  
3
3
3
Reference Voltage Input for DAC1  
Reference Voltage Input for DAC0  
No Connect—not internally connected  
Digital Ground  
4
4
4
6
4, 7, 14, 17  
5
7, 9, 16, 20  
8
5
DGND  
AGND  
SCL  
5
6
6
6
Analog Ground  
7
9
7
8
Serial Clock Input  
8
10  
11  
12  
13  
15  
16  
18  
19  
20  
8
10  
11  
12  
13  
14  
15  
17  
18  
19  
21  
22  
23  
24  
SDA  
Serial Data Input  
9
9
OUT4  
OUT5  
OUT6  
OUT7  
AD0  
DAC4 Voltage Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DAC5 Voltage Output  
DAC6 Voltage Output  
DAC7 Voltage Output  
Address Input 0; sets ICs slave address  
Address Input 1; sets ICs slave address  
Address Input 2; sets ICs slave address  
Power Supply, +5V  
10  
11  
12  
13  
14  
15  
16  
AD1  
AD2  
V
DD  
REF4  
REF3  
REF2  
OUT3  
OUT2  
Reference Voltage Input for DACs 4, 5, 6, and 7  
Reference Voltage Input for DAC3  
Reference Voltage Input for DAC2  
DAC3 Voltage Output  
DAC2 Voltage Output  
SDA  
t
BUF  
t
,
t ,  
SU STA  
SU DAT  
t
,
HD STA  
t
,
SU STO  
t
t ,  
HD DAT  
LOW  
SCL  
t
HIGH  
t
,
HD STA  
t
R
t
F
START CONDITION  
REPEATED START CONDITION  
STOP CONDITION START CONDITION  
Figure 1. 2-Wire Serial-Interface Timing Diagram  
_______________________________________________________________________________________  
9
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
_______________De t a ile d De s c rip t io n  
S e ria l In t e rfa c e  
The MAX520/MAX521 use a simple 2-wire serial interface  
requiring only two I/O lines (2-wire bus) of a standard  
microprocessor (µP) port. Figure 1 shows the timing dia-  
gram for signals on the 2-wire bus. Figure 2 shows the  
typical application of the MAX520/MAX521. The 2-wire  
b us c a n ha ve s e ve ra l d e vic e s (in a d d ition to the  
REF0  
REF1  
REF2  
REF3  
+1V  
+4V  
+5V  
µC  
SDA SCL  
QUAD  
DAC  
OUT0  
OFFSET ADJUSTMENT  
OFFSET ADJUSTMENT  
GAIN ADJUSTMENT  
GAIN ADJUSTMENT  
R
1k  
C
OUT1  
OUT2  
OUT3  
MAX520  
MAX520/MAX521) attached. The two bus lines (SDA and  
SCL) must be high when the bus is not in use. When in  
use, the port bits are toggled to generate the appropriate  
signals for SDA and SCL. External pull-up resistors are  
not required on these lines. The MAX520/MAX521 can  
be used in applications where pull-up resistors are  
SCL  
SDA  
AD0  
AD1  
AD2  
+5V  
2
required (such as in I C systems) to maintain compatibil-  
ity with the existing circuitry.  
0/MAX521  
REF0  
.
The MAX520/MAX521 are receive-only devices and  
must be controlled by a bus master device. They oper-  
ate at SCL rates up to 400kHz. A master device sends  
information to the devices by transmitting their address  
over the bus and then transmitting the desired informa-  
tion. Each transmission consists of a START condition,  
the MAX520/MAX521s programmable slave-address,  
one or more command-byte/output-byte pairs (or a  
command byte alone, if it is the last byte in the trans-  
mission), and finally, a STOP condition (Figure 3).  
.
.
.
OCTAL  
DAC  
REF4  
OUT0  
OUT1  
BRIGHTNESS ADJUSTMENT  
CONTRAST ADJUSTMENT  
MAX521  
OUT2  
.
.
.
THRESHOLD  
ADJUSTMENTS  
SCL  
SDA  
AD0  
AD1  
+5V  
OUT6  
OUT7  
+5V  
The address byte and pairs of command and output  
bytes are transmitted between the START and STOP con-  
ditions. The SDA state is allowed to change only while  
SCL is low. SDAs state is sampled, and therefore must  
remain stable while SCL is high. The only exceptions to  
this are the START and STOP conditions. Data is transmit-  
ted in 8-bit bytes. Nine clock cycles are required to trans-  
fer the data bits to the MAX520/MAX521. Set SDA low  
during the 9th clock cycle as the MAX520/MAX521 pull  
MOTOR  
+12V  
SDA low during this time. R (Figure 2) limits the current  
C
that flows during this time if SDA stays high for short peri-  
ods of time.  
Figure 2. Typical Application Circuit  
SLAVE ADDRESS BYTE  
COMMAND BYTE  
OUTPUT BYTE  
SDA  
SCL  
MSB  
LSB  
ACK  
MSB  
LSB ACK  
MSB  
LSB  
ACK  
STOP CONDITION  
START CONDITION  
Figure 3. A Complete Serial Transmission  
10 ______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
START and STOP Conditions  
When the bus is not in use, both SCL and SDA must be  
SDA  
SCL  
high. A bus master signals the beginning of a transmis-  
sion with a START condition by transitioning SDA from  
high to low while SCL is high (Figure 4). When the mas-  
ter has finished communicating with the slave, it issues  
a STOP condition by transitioning SDA from low to high  
while SCL is high. The bus is then free for another  
transmission.  
START CONDITION  
STOP CONDITION  
Figure 4. All communications begin with a START condition and  
end with a STOP condition, both generated by a bus master.  
Slave Address  
The MAX520/MAX521 each have a 7-bit-long slave  
address (Figure 5). The first four bits (MSBs) of the slave  
address have been factory programmed and are always  
0101. In addition, the MAX521 has the next bit factory  
programmed to 0. The logic state of the address input  
pins (AD0, AD1, and AD2 of the MAX520; AD0 and AD1  
of the MAX521) determine the least significant bits of the  
7-bit slave address. These input pins may be connected  
SLAVE ADDRESS  
0
1
0
1
0 or AD2 AD1 AD0  
0
ACK  
SDA  
SCL  
LSB  
SLAVE ADDRESS BITS AD2, AD1, AND AD0 CORRESPOND TO THE LOGIC STATE  
OF THE ADDRESS INPUT PINS AD2, AD1, AND AD0.  
to V or DGND, or they may be actively driven by TTL  
DD  
or CMOS logic levels. There are four possible slave  
addresses for the MAX521, and therefore a maximum of  
four such devices may be on the bus at one time. The  
MAX520 has eight possible slave addresses. The eighth  
bit (LSB) in the slave address byte should be low when  
writing to the MAX520/MAX521.  
Figure 5. Address Byte  
R2  
R1  
R0 RST  
PD  
A2  
A1  
A0  
ACK  
SDA  
SCL  
MSB  
LSB  
The MAX520/MAX521 monitor the bus continuously,  
waiting for a START condition followed by its slave  
address. When a device recognizes its slave address, it  
is ready to accept data.  
R2, R1, R0:  
RST:  
RESERVED BITS. SET TO 0.  
RESET BIT, SET TO 1 TO RESET ALL DAC REGISTERS.  
Command Byte and Output Byte  
A command byte follows the slave address. Figure 6  
shows the format for the command byte. A command  
byte is usually followed by an output byte unless it is  
the last byte in the transmission. If it is the last byte, all  
bits except PD and RST are ignored. If an output byte  
follows the command byte, A0–A2 of the command  
byte indicate the digital address of the DAC whose  
input data latch receives the digital output data. The  
data is transferred to the DACs output latch during the  
STOP condition following the transmission. This allows  
all DACs to be updated and the new outputs to appear  
simultaneously (Figure 7).  
PD:  
POWER-DOWN BIT. SET TO 1 TO PLACE THE DEVICE IN THE 4µA  
SHUTDOWN MODE. SET TO 0 TO RETURN TO THE NORMAL  
OPERATIONAL STATE.  
A2, A1, A0:  
ACK:  
ADDRESS BITS. DIGITAL ADDRESS FOR DAC0 TO DAC7. DETERMINES  
WHICH DAC'S INPUT LATCH RECEIVES THE 8 BITS OF DATA IN  
THE NEXT BYTE. A2 IS IGNORED BY THE MAX520.  
ACKNOWLEDGE BIT. THE MAX520/MAX521 PULL SDA LOW DURING THE  
9TH CLOCK PULSE.  
Figure 6. Command Byte  
the STOP condition is detected. When in power-down,  
the MAX521s DAC outputs float, and the MAX520s  
unbuffered outputs look like a 16kresistor to AGND.  
In this mode, the supply current is a maximum of 20µA.  
A c omma nd b yte with the PD b it low re turns the  
MAX520/MAX521 to normal operation following a STOP  
condition, and the voltage outputs reflect the current  
output-latch contents (Figures 9a and 9b). Because  
each subsequent command byte overwrites the previ-  
ous PD bit, only the last command byte of a transmis-  
sion affects the power-down state.  
Se tting the PD b it hig h p owe rs d own the MAX520/  
MAX521 following a STOP condition (Figure 8a). If a  
command byte with PD set high is followed by an out-  
p ut b yte , the a d d re s s e d DACs inp ut la tc h will b e  
updated and the data will be transferred to the DACs  
output latch following the STOP condition (Figure 8b). If  
the transmissions last command byte has PD high, the  
voltage outputs will not reflect the newly entered data  
because the DAC will enter power-down mode when  
______________________________________________________________________________________ 11  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0 OR AD2  
0
1
0
1
AD1 AD0 0  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0 0  
0
0
SDA  
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(FULL SCALE)  
COMMAND BYTE  
(ADDRESSING DAC1)  
DAC0 INPUT LATCH  
ACK  
ACK  
START  
CONDITION  
(
)
SET TO FULL SCALE  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
SDA  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
ACK  
COMMAND BYTE  
(ADDRESSING DAC2)  
DAC1 INPUT LATCH  
OUTPUT BYTE  
(HALF SCALE)  
ACK  
STOP  
CONDITION  
DAC2 INPUT LATCH  
SET TO HALF SCALE  
(
)
(
)
SET TO FULL SCALE  
DAC OUTPUTS CHANGE HERE:  
DACS 0 AND 1 GO TO FULL SCALE,  
DAC 2 GOES TO HALF SCALE.  
(
)
0/MAX521  
Figure 7. Setting DAC Outputs  
0 OR AD2  
(PD)  
1
(a)  
0
1
0
1
AD1 AD0 0  
0
0
0
0
0
0
X
X
0
X
SDA  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
START  
CONDITION  
DEVICE ENTERS  
CONDITION POWER-DOWN STATE  
(
)
0 OR AD2  
AD1 AD0 0  
(b)  
SDA  
(PD)  
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
1
1
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC0)  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
STOP  
START  
CONDITION  
CONDITION  
DAC 0 INPUT LATCH  
SET TO FULL SCALE  
(
)
DEVICE ENTERS POWER-DOWN STATE.  
DAC 0 OUTPUT LATCH SET TO FULL SCALE.  
NOTE: X = DON'T CARE  
(
)
Figure 8. Entering the Power-Down State  
0 OR AD2  
(PD)  
0
(a)  
0
1
0
1
AD1 AD0 0  
0
0
0
0
0
0
X
X
X
SDA  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
START  
CONDITION  
STOP  
DEVICE RETURNS TO  
CONDITION NORMAL OPERATION  
(
)
0 OR AD2  
AD1 AD0 0  
(b)  
SDA  
(PD)  
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
ACK  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(ADDRESSING DAC3)  
OUTPUT BYTE  
(SET TO 0)  
ACK  
STOP  
CONDITION  
START  
CONDITION  
DAC3 OUTPUT  
(
)
LATCH SET TO 0  
DEVICE RETURNS TO NORMAL OPERATION.  
DAC 3 SET TO 0.  
NOTE: X = DON'T CARE  
(
)
Figure 9. Returning to Normal Operation from Power-Down  
12 ______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
0 OR AD2  
AD1 AD0 0  
(RST)  
1
(a)  
SDA  
0
1
0
1
0
0
0
0
0
0
X
X X  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
START  
CONDITION  
CONDITION  
ALL INPUT LATCHES  
SET TO 0  
(
)
ALL OUTPUTS  
SET TO 0  
(
)
0 OR AD2  
AD1 AD0 0  
(b)  
SDA  
(RST)  
1
0
1
0
1
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
ACK  
ADDITIONAL  
COMMAND BYTE/  
"DUMMY"  
OUTPUT BYTE  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
ACK  
STOP  
CONDITION  
START  
CONDITION  
OUTPUT BYTE PAIRS  
ALL INPUT LATCHES  
SET TO 0  
ALL DAC OUTPUTS SET TO 0 UNLESS  
CHANGED BY ADDITIONAL COMMAND  
BYTE/OUTPUT BYTE PAIRS  
(
)
NOTE: X = DON'T CARE  
(
)
Figure 10. Resetting DAC Outputs  
Setting the RST bit high clears all DAC input latches.  
The DAC outputs remain unchanged until a STOP con-  
dition is detected (Figure 10a). If a reset is issued, the  
following output byte is ignored. Subsequent pairs of  
c omma nd /outp ut b yte s ove rwrite the inp ut la tc he s  
(Figure 10b).  
2
µC  
E PROM  
XICOR  
X24C04  
SDA SCL  
All changes made during a transmission affect the  
MAX520/MAX521s outputs only when the transmission  
ends and a STOP has been recognized. The R0, R1,  
and R2 bits are reserved bits that must be set to zero.  
SCL  
SDA  
QUAD  
DAC  
2
I C Co m p a t ib ilit y  
The MAX520/MAX521 are fully compatible with existing  
I C systems. SCL and SDA are high-impedance inputs;  
MAX520  
2
SCL  
SDA has an open drain which pulls the data line low  
during the 9th clock pulse. Figure 11 shows a typical  
I C application.  
SDA  
AD0  
AD1  
AD2  
2
Additional START Conditions  
It is possible to interrupt a transmission to a MAX520/  
MAX521 with a new START (repeated start) condition  
(perhaps addressing another device), which leaves the  
input latches with data that has not been transferred to  
the outp ut la tc he s (Fig ure 12). Only the c urre ntly  
addressed device will recognize a STOP condition and  
transfer data to its output latches. If the device is left  
with data in its input latches, the data can be trans-  
ferred to the output latches the next time the device is  
addressed, as long as it receives at least one com-  
mand byte and a STOP condition.  
OCTAL  
DAC  
+5V  
MAX521  
SCL  
SDA  
AD0  
AD1  
Figure 11. Typical I2C Application Circuit  
______________________________________________________________________________________ 13  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
0
1
0
1
0
0
1
0
0
0
SDA  
START  
ADDRESS BYTE  
(DEVICE 0)  
ACK  
COMMAND BYTE  
ADDRESSING DAC1  
ACK  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
ADDRESS BYTE  
(DEVICE 1)  
ACK  
CONDITION  
DEVICE 0's  
DAC1 INPUT LATCH  
SET TO FULL SCALE  
REPEATED START  
CONDITION  
(
)
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
0
SDA  
ACK  
OUTPUT BYTE  
(FULL SCALE)  
ACK  
COMMAND BYTE  
(ADDRESSING DAC2)  
STOP  
CONDITION  
DEVICE 1's  
DAC2 INPUT LATCH ONLY DEVICE 1's DAC2 OUTPUT LATCH SET TO FULL  
(
)
SET TO FULL SCALE  
(
SCALE. DEVICE 0's OUTPUT LATCHES UNCHANGED.  
)
0/MAX521  
Figure 12. Repeated START Conditions  
0 OR AD2  
(RST) (PD)  
0 1 1 0  
(a)  
SDA  
0
0
1
1
AD1 AD0 0  
0
0
0
INTERRUPTED  
COMMAND BYTE  
ADDRESS BYTE  
ACK  
EARLY  
MAX520/MAX521's STATES  
START  
STOP CONDITION REMAIN UNCHANGED  
(
CONDITION  
)
0 OR AD2  
AD1 AD0 0  
(b)  
SDA  
(PD)  
0 RST 1  
0
1
0
1
0
0
0
0
0
0
0
1
1
1
0
0
INTERRUPTED  
OUTPUT BYTE  
ADDRESS BYTE  
ACK  
COMMAND BYTE  
(POWER DOWN)  
ACK  
MAX520/MAX521 POWER DOWN;  
INPUT LATCHES UNCHANGED IF  
RST = 0, DAC OUTPUTS RESET IF  
RST = 1.  
START  
CONDITION  
EARLY  
STOP CONDITION  
(
)
Figure 13. Early STOP Conditions  
Early Stop Conditions  
words into equivalent analog output voltages in propor-  
tion to the a p p lie d re fe re nc e volta g e s . For b oth  
devices, DAC0–DAC3 each have separate reference  
inputs, while the MAX521s DAC4–DAC7 all share a  
common reference input. Figure 14 shows a simplified  
diagram of one DAC.  
The addressed device recognizes a STOP condition at  
any point in a transmission. If the STOP occurs during a  
command byte, all previous uninterrupted command  
and output byte pairs are accepted, the interrupted  
command byte is ignored, and the transmission ends  
(Figure 13a). If the STOP occurs during an output byte,  
all previous uninterrupted command and output byte  
pairs are accepted, the final command bytes PD and  
RST bits are accepted, the interrupted output byte is  
ignored, and the transmission ends (Figure 13b).  
Reference Inputs  
The MAX520/MAX521 can be used for multiplying appli-  
cations. The reference accepts a 0V to V  
voltage,  
DD  
both DC and AC signals. The voltage at each REF input  
s e ts the full-s c a le outp ut volta g e for its re s p e c tive  
DAC(s). The reference voltage must be positive. The  
DACs input impedance is code dependent, with the  
lowest value occurring when the input code is 55 hex or  
0101 0101, and the maximum value occurring when the  
input code is 00 hex. Since the REF input resistance  
An a lo g S e c t io n  
DAC Operation  
The MAX520 contains four matched voltage-output  
DACs, and the MAX521 contains eight. The DACs are  
inverted R-2R ladder networks that convert 8-bit digital  
14 ______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
MAX5 2 0 Un b u ffe re d DAC Ou t p u t s  
The unbuffered DAC outputs (OUT0–OUT3) connect  
directly to the internal 16kR-2R network. The outputs  
swing from 0V to V  
.
DD  
The MAX520 has no output buffer amplifiers, giving it  
very low supply current. The output-offset voltage is  
lower without the output buffer, and the output can also  
slew and settle faster if capacitive loading is minimized.  
Resistive loading should be very light for highest accu-  
racy. Any output loading generates some gain error,  
increasing full-scale error. The R-2R ladders output  
resistance is 16k, so a 1µA output current creates a  
16mV error. Linearity is not affected because the ladder  
output resistance does not change with DAC code.  
Ladder-resistance changes with temperature are also  
very small.  
OUT_  
(MAX521)  
R
R
R
OUT_  
(MAX520)  
2R  
2R  
D0  
2R  
D5  
2R  
D6  
2R  
D7  
REF_  
AGND  
DACs a re ofte n us e d in trimming a p p lic a tions to  
replace hardware potentiometers. Figure 15a shows a  
typical application, which requires a buffered output so  
that a precise current can be injected into the summing  
SHOWN FOR ALL 1s ON DAC  
Figure 14. DAC Simplified Circuit Diagram  
node through precision resistor R . For this application,  
the MAX520A features a precise ±1% (T = +25°C,  
A
(R ) is code dependent, it must be driven by a circuit  
IN  
T
with low output impedance (no more than R ÷ 2000) to  
IN  
±2.5% over temperature) factory-trimmed output resis-  
tance. Because the MAX520A’s output resistance is  
p re c is e ly trimme d , the re is no ne e d for a n inte rna l  
buffer or external precision resistor (Figure 15b). For  
applications where the output resistance value is not  
critical, use the MAX520B.  
maintain output linearity. The REF input capacitance is  
also code dependent, with the maximum value occur-  
ring at code FF hex (typically 30pF for the MAX520/  
MAX521s REF0–REF3, and 120pF for the MAX521s  
REF4). The output voltage for any DAC can be repre-  
sented by a digitally programmable voltage source as:  
V
= (N x V ) / 256, where N is the numerical value  
OUT  
REF  
All DACs exhibit output glitches during code transitions.  
An output filter is sometimes used to reduce these  
glitches in sensitive applications. The MAX520 simpli-  
fies output filtering because its internal resistive ladder  
network serves as the R” in an RC filter. Simply con-  
nect a small capacitor from the DAC output to ground.  
See the Typical Operating Characteristics for oscillo-  
scope photos of the worst-case 1LSB step change both  
without and with 25pF of capacitance on the MAX520s  
output.  
of the DACs binary input code. Table 1 shows the  
unipolar code.  
Table 1. Unipolar Code Table  
DAC CONTENTS  
ANALOG OUTPUT  
255  
+ VREF (———)  
256  
11111111  
129  
+ VREF (———)  
256  
10000001  
10000000  
01111111  
MAX5 2 1 Ou t p u t Bu ffe r Am p lifie rs  
The MAX521 voltage outputs (OUT0–OUT7) are inter-  
nally buffered precision unity-gain followers that slew  
128  
+ VREF (———) = ——  
256  
V
REF  
2
up to 1V/µs. The outputs can swing from 0V to V  
.
DD  
127  
With a 0V to 4V (or 4V to 0V) output transition, the  
amplifier outputs typically settle to 1/2LSB in 6µs when  
loaded with 10kin parallel with 100pF. The buffer  
amplifiers are stable with any combination of resistive  
loads 2kand capacitive loads 300pF.  
+ VREF (———)  
256  
1
+ VREF (———)  
256  
00000001  
00000000  
0V  
______________________________________________________________________________________ 15  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
R
F
R
F
R
IN  
R
IN  
R
T
16k  
DAC  
DAC  
(1%)  
(1%)  
MAX520A  
0/MAX521  
Figure 15a. Typical Trimming Circuit  
Figure 15b. MAX520A Trimming Circuit  
__________Ap p lic a t io n s In fo rm a t io n  
SYSTEM GND  
S h u t d o w n Mo d e  
In shutdown mode, the MAX520/MAX521 reference  
inputs are disconnected from the R-2R ladder inputs,  
which saves power when the reference is not powered  
down. In addition, the MAX521s output buffers are dis-  
a b le d , g re a tly re d uc ing the s up p ly c urre nt. The  
MAX520s operating supply current does not change in  
shutdown mode. The Command Byte and Output Byte  
s e c tion d e s c rib e s how to e nte r a nd e xit s hutd own  
mode.  
PIN1  
OUT2  
OUT1  
OUT0  
REF1  
REF0  
OUT3  
REF2  
REF3  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
Bypass V with a 0.1µF capacitor, located as close to  
DD  
V
DD  
a nd DGND a s p os s ib le . The a na log g round  
(AGND) and digital ground (DGND) pins should be  
connected in a “starconfiguration to the highest quali-  
ty ground available, which should be located as close  
to the MAX521 as possible.  
Figure 16. PC Board Layout for Minimizing Crosstalk (MAX521  
bottom view, DIP package)  
Careful PC board layout minimizes crosstalk among  
DAC outp uts , re fe re nc e inp uts , a nd d ig ita l inp uts .  
Figure 16 shows the suggested PC board layout to mini-  
mize crosstalk.  
16 ______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
___________________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
OUT1  
OUT0  
REF1  
REF0  
DGND  
AGND  
N.C.  
OUT2  
OUT3  
REF2  
REF3  
N.C.  
OUT1  
OUT0  
REF1  
N.C.  
1
2
OUT2  
OUT3  
REF2  
REF3  
REF4  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
OUT2  
OUT3  
REF2  
N.C.  
OUT1  
OUT0  
REF1  
REF0  
1
2
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
3
3
4
4
4
MAX521  
MAX521  
MAX520  
REF0  
AGND  
N.C.  
5
DGND  
AGND  
SCL  
REF3  
5
5
REF4  
6
V
DD  
V
DD  
6
6
V
DD  
7
AD1  
N.C.  
AD2  
AD1  
AD0  
7
7
SCL  
AD1  
N.C.  
AD0  
OUT7  
DGND  
8
SDA  
AD0  
8
8
N.C.  
SDA  
SCL  
SDA  
OUT4  
OUT5  
9
OUT7  
OUT6  
9
9
10  
11  
12  
10  
10  
OUT4  
OUT5  
DIP  
SSOP  
13 OUT6  
SO/SSOP  
________________________________________________Fu n c t io n a l Dia g ra m s (c o n t in u e d )  
SDA SCL  
REF2 REF1 REF0  
OUT0  
OUT1  
OUT2  
8
8
8
INPUT  
LATCH 0  
OUTPUT  
LATCH 0  
DAC0  
DAC1  
DAC2  
MAX521  
1
INPUT  
LATCH 1  
OUTPUT  
LATCH 1  
8-BIT  
SHIFT REGISTER  
1
INPUT  
LATCH 2  
OUTPUT  
LATCH 2  
ADDRESS  
COMPARATOR  
1
START/STOP  
DETECTOR  
OUT3  
8
INPUT  
LATCH 3  
OUTPUT  
LATCH 3  
DAC3  
1
1
OUT4  
OUT5  
OUT6  
OUT7  
8
8
8
8
INPUT  
OUTPUT  
LATCH 4  
DAC4  
DAC5  
DAC6  
DAC7  
DECODE  
8
LATCH 4  
1
8
INPUT  
OUTPUT  
LATCH 5  
LATCH 5  
1
INPUT  
OUTPUT  
LATCH 6  
LATCH 6  
1
INPUT  
OUTPUT  
LATCH 7  
LATCH 7  
AD0  
AD1  
REF3 REF4  
______________________________________________________________________________________ 17  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
_________________Ch ip To p o g ra p h ie s  
TUE  
(LSB)  
MAX520  
PART†  
TEMP. RANGE PIN-PACKAGE  
AGND  
REF0  
DGND  
MAX520ACAP  
MAX520BCAP  
MAX520AC/D  
MAX520BC/D  
MAX520AEPE  
MAX520BEPE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
2
2
1
2
1
2
1
2
2
20 SSOP  
REF1  
OUT0  
Dice*  
SCLK  
Dice*  
SDATA  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
20 SSOP  
MAX520AEWE -40°C to +85°C  
MAX520BEWE -40°C to +85°C  
OUT1  
0. 121"  
(3. 073mm)  
OUT2  
MAX520AEAP  
MAX520BEAP  
MAX520AMJE  
MAX520BMJE  
MAX521ACPP  
MAX521BCPP  
MAX521ACWG  
MAX521BCWG  
MAX521ACAG  
MAX521BCAG  
MAX521BC/D  
MAX521AEPP  
MAX521BEPP  
-40°C to +85°C  
-40°C to +85°C  
AD0  
20 SSOP  
0/MAX521  
-55°C to +125°C 16 CERDIP  
-55°C to +125°C 16 CERDIP  
AD1  
AD2  
OUT3  
REF2  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
24 Wide SO  
24 Wide SO  
24 SSOP  
REF3  
OUT3  
V
DD  
0. 098"  
(2. 489mm)  
24 SSOP  
MAX521  
Dice*  
OUT0  
OUT2  
REF2  
REF1  
OUT1  
20 Plastic DIP  
20 Plastic DIP  
24 Wide SO  
24 Wide SO  
24 SSOP  
REF0  
REF3  
MAX521AEWG -40°C to +85°C  
MAX521BEWG -40°C to +85°C  
MAX521AEAG  
MAX521BEAG  
MAX521BMJP  
-40°C to +85°C  
-40°C to +85°C  
DGND  
AGND  
24 SSOP  
-55°C to +125°C 20 CERDIP  
* Dice are specified at T = +25°C, DC parameters only.  
A
MAX520 A” grade parts include a 1%-accurate, factory-trimmed  
output resistance.  
0. 212"  
(5. 385mm)  
REF4  
AGND  
SCL  
V
DD  
AD1  
SDA  
AD0  
OUT4 OUT5 OUT6 OUT7  
0. 125"  
(3. 175mm)  
TRANSISTOR COUNT: 4518  
SUBSTRATE CONNECTED TO V  
DD  
18 ______________________________________________________________________________________  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
0/MAX521  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
21-0043A  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.093  
MAX  
0.104  
0.012  
0.019  
0.013  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
7.60  
D
A
A1 0.004  
0°- 8°  
B
C
E
e
0.014  
0.009  
0.291  
A
0.101mm  
0.004in.  
1.27  
0.050  
e
B
A1  
H
L
0.394  
0.016  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
C
L
INCHES  
MILLIMETERS  
MAX  
PINS  
DIM  
MIN MAX MIN  
E
H
Wide SO  
SMALL-OUTLINE  
PACKAGE  
0.398 0.413 10.10 10.50  
0.447 0.463 11.35 11.75  
0.496 0.512 12.60 13.00  
0.598 0.614 15.20 15.60  
D
D
D
D
D
16  
18  
20  
24  
28  
(0.300 in.)  
0.697 0.713 17.70 18.10  
21-0042A  
______________________________________________________________________________________ 19  
Qu a d /Oc t a l, 2 -Wire S e ria l 8 -Bit DACs  
w it h Ra il-t o -Ra il Ou t p u t s  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.068  
MAX  
0.078  
0.008  
0.015  
0.008  
MIN  
1.73  
0.05  
0.25  
0.09  
MAX  
1.99  
0.21  
0.38  
0.20  
A
A1 0.002  
B
C
D
E
e
0.010  
0.004  
SEE VARIATIONS  
α
0.205  
0.209  
5.20  
5.38  
E
H
0.0256 BSC  
0.65 BSC  
H
L
0.301  
0.311  
0.037  
8˚  
7.65  
0.63  
0˚  
7.90  
0.95  
8˚  
0.025  
0˚  
C
α
L
INCHES  
MILLIMETERS  
0/MAX521  
DIM PINS  
MAX  
6.33  
MIN MAX MIN  
0.239 0.249 6.07  
0.239 0.249 6.07  
0.278 0.289 7.07  
0.317 0.328 8.07  
0.397 0.407 10.07  
e
D
D
D
D
D
14  
16  
20  
24  
28  
6.33  
SSOP  
SHRINK  
SMALL-OUTLINE  
PACKAGE  
7.33  
A
8.33  
10.33  
21-0056A  
B
A1  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY