MAX532AMJE/883B [MAXIM]

D/A Converter, 2 Func, Serial Input Loading, 2.5us Settling Time, CDIP16, 0.300 INCH, CERDIP-16;
MAX532AMJE/883B
型号: MAX532AMJE/883B
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 2 Func, Serial Input Loading, 2.5us Settling Time, CDIP16, 0.300 INCH, CERDIP-16

CD 转换器
文件: 总16页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0046; Rev. 1; 3/94  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX532 is a complete, dual, serial-input, 12-bit  
multiplying digital-to-analog converter (MDAC) with out-  
put amplifiers. No external user trims are required to  
achieve full specified performance. The MAX532s 3-  
wire serial interface minimizes the number of package  
pins, so it uses less board space than parallel-interface  
parts. The interface is SPI™, QSPIand Microwire™  
compatible. A serial output, DOUT, allows cascading  
of two or more MAX532s and read-back of the data  
written to the device.  
Two 12-Bit MDACs with Output Amplifiers  
Fast, 6MHz 3-Wire Interface  
SPI, QSPI, and Microwire Compatible  
±12V Output Swing  
±10mA Output Current  
2.5µs Settling Time to ±1/2LSB  
Guaranteed Monotonic Over Temperature  
Low Integral Nonlinearity: ±1/2LSB Max  
Low Gain Tempco: 2ppm/°C  
Operates from ±12V to ±15V Supplies  
Power-On Reset  
The devices serial interface minimizes digital-noise  
feedthrough from its logic pins to its analog outputs.  
Serial interfacing also simplifies opto-coupler-isolated  
or transformer-isolated applications.  
The MAX532 is specified with ±12V to ±15V power sup-  
plies. All logic inputs are TTL and CMOS compatible. It  
comes in space-saving 16-pin DIP and wide SO packages.  
Available in 16-Pin DIP and Wide SO Packages  
________________________Ap p lic a t io n s  
Automatic Test Equipment  
______________Ord e rin g In fo rm a t io n  
Arbitrary Waveform Generators  
Programmable-Gain Amplifiers  
Motion Control Systems  
ERROR  
PART  
TEMP. RANGE PIN-PACKAGE  
(LSBs)  
±1/2  
±1  
MAX532ACPE  
MAX532BCPE  
MAX532ACWE  
MAX532BCWE  
MAX532BC/D  
0°C to +70°C 16 Plastic DIP  
0°C to +70°C 16 Plastic DIP  
0°C to +70°C 16 Wide SO  
0°C to +70°C 16 Wide SO  
0°C to +70°C Dice*  
Servo Controls  
±1/2  
±1  
±1  
________________Fu n c t io n a l Dia g ra m  
Ordering Information continued on last page.  
* Contact factory for dice specifications.  
V
DD  
__________________P in Co n fig u ra t io n  
MAX532  
DACA  
LATCH  
RFBA  
TOP VIEW  
VREFA  
DIN  
DACA  
VOUTA  
AGNDA  
RFBA  
VREFA  
VOUTA  
AGNDA  
V
1
2
3
4
5
6
7
8
DD  
16  
15  
14  
13  
12  
11  
10  
9
LDAC  
CS  
24-BIT SHIFT  
REGISTER  
DOUT  
SCLK  
MAX532  
DIN  
RFBB  
CS  
AGNDB  
VOUTB  
VREFB  
RFBB  
DOUT  
SCLK  
DGND  
DACB  
VOUTB  
AGNDB  
LDAC  
DACB  
LATCH  
VREFB  
V
SS  
V
DGND  
DIP/Wide SO  
SS  
™Microwire is a trademark of National Semiconductor Corp. SPI and QSPI are trademarks of Motorola, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
ABSOLUTE MAXIMUM RATINGS  
Pin Voltages  
Operating Temperature Ranges:  
V
to DGND, AGNDA, AGNDB........................-0.3V to +17V  
to DGND, AGNDA, AGNDB (Note 1) ..........+0.3V to -17V  
MAX532_C__ ......................................................0°C to +70°C  
MAX532_E__....................................................-40°C to +85°C  
MAX532_MJE ................................................-55°C to +125°C  
Junction Temperatures:  
DD  
V
SS  
VREFA, VREFB.............................(V - 0.3V) to (V + 0.3V)  
AGNDA, AGNDB.....................(DGND - 0.3V) to (V + 0.3V)  
SS  
DD  
DD  
VOUTA, VOUTB ...........................(V - 0.3V) to (V + 0.3V)  
MAX532_C__, E__........................................................+150°C  
MAX532_MJE...............................................................+175°C  
Storage Temperature Range ........................... -65°C to +160°C  
Lead Temperature (soldering, 10sec) ........................... +300°C  
SS  
DD  
RFBA, RFBB.................................(V - 0.3V) to (V + 0.3V)  
SS  
DD  
MAX532  
SCLK, DIN, DOUT, LDAC, CS ..(DGND - 0.3V) to (V + 0.3V)  
DD  
DOUT Sink Current .............................................................20mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW  
Wide SO (derate 9.52mW/°C above +70°C)................762mW  
CERDIP (derate 10.00mW/°C above +70°C)...............800mW  
Note 1: If V is open-circuited with V and either AGND applied, the V pin will float positive, exceeding the Absolute Maximum Ratings.  
SS  
DD  
SS  
A Schottky diode connected between V and GND ensures the maximum ratings will not be exceeded.  
SS  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(VDD = 11.4V to 16.5V, V = -11.4V to -16.5V, AGNDA = AGNDB = DGND = 0V, VREFA and VREFB = +10V, R = 2k,  
SS  
L
C
= 100pF, VOUT_ connected to RFB_, TA = TMIN to TMAX, unless otherwise noted.)  
L
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (Note 1)  
Resolution  
12  
Bits  
LSB  
LSB  
MAX532A  
MAX532B  
±1/2  
±1  
Relative Accuracy  
INL  
Differential Nonlinearity  
Guaranteed monotonic  
±1  
T
= +25°C, MAX532_  
±2  
A
DAC latch loaded  
with all 0s  
T
A
= T  
to T  
, MAX532A  
, MAX532B  
Zero-Code Offset Error  
±3  
mV  
MIN  
MAX  
T
A
= T  
to T  
±4  
MIN MAX  
Zero-Code Offset  
Temperature Coefficient  
DAC latch loaded with all 0s  
±5  
µV/°C  
MAX532A  
MAX532B  
MAX532A  
MAX532B  
±2  
±5  
±4  
±7  
T
= +25°C, DAC latch  
A
loaded with all 1s  
= T to T , DAC  
MAX  
Gain Error  
LSB  
T
A
MIN  
latch loaded with all 1s  
Gain-Error Temperature  
Coefficient  
ppm/°C  
of FSR  
±2  
REFERENCE INPUTS (VREFA, VREFB)  
VREFA, VREFB Input  
Resistance  
8
10  
13  
kΩ  
VREFA, VREFB Input  
Resistance Matching  
±0.5  
±3.0  
%
2
_______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
ELECTRICAL CHARACTERISTICS (continued)  
(VDD = 11.4V to 16.5V, V = -11.4V to -16.5V, AGNDA = AGNDB = DGND = 0V, VREFA and VREFB = +10V, R = 2k, C = 100pF,  
SS  
L
L
VOUT_ connected to RFB_, TA = TMIN to TMAX, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, DIN, LDAC, CS)  
V
Input High Voltage  
Input Low Voltage  
Input Current  
2.4  
V
V
INH  
V
INL  
0.8  
±1  
8
Digital inputs at 0V or V  
µA  
pF  
DD  
Input Capacitance (Note 2)  
DIGITAL OUTPUT (DOUT) (Note 3)  
I
= 5mA  
0.08  
0.2  
0.4  
±10  
15  
SINK  
V
Output Voltage Low  
Output High Leakage  
V
OL  
I
= 16mA  
= 0V to V  
DD  
SINK  
I
V
DOUT  
µA  
LKG  
Output High Capacitance  
(Note 2)  
C
pF  
OUT  
ANALOG OUTPUTS (VOUTA, VOUTB)  
DC Output Impedance  
0.2  
20  
Short-Circuit Current  
VOUTA, VOUTB connected to AGNDA, AGNDB  
mA  
(V - 2.5)  
DD  
to  
Output Voltage Swing  
V
(V + 2.5)  
SS  
POWER REQUIREMENTS  
V
Positive Supply Voltage  
Negative Supply Voltage  
11.4  
16.5  
V
V
DD  
V
SS  
-11.4  
-16.5  
Full scale/V , V = 11.4V to 16.5V, VREF = -8.9V,  
DAC latches loaded with all 1s  
DD DD  
±0.035  
±0.035  
Power-Supply Rejection  
PSR  
LSB/%  
Full scale/V , V = -11.4V to -16.5V, VREF = 8.9V,  
SS SS  
DAC latches loaded with all 1s  
I
Positive Supply Current  
Negative Supply Current  
AC CHARACTERISTICS  
Output unloaded  
Output unloaded  
5
4
10  
6
mA  
mA  
DD  
I
SS  
Voltage-Output  
Settling Time  
Settling time to within 1/2 LSB of final DAC value; DAC  
latch alternately loaded with all 0s and all 1s  
2.5  
8
µs  
Slew Rate  
V/µs  
nV-s  
Digital-to-Analog  
Glitch Impulse  
DAC latch alternately loaded with 011...11 and 100...00  
60  
VREFA = 20V 10kHz  
p-p  
VREFA to VOUTB  
VREFB to VOUTA  
sine wave; DAC latches  
loaded with all 0s  
-100  
-100  
Channel-to-Channel  
Isolation  
dB  
VREFB = 20V 10kHz  
p-p  
sine wave; DAC latches  
loaded with all 0s  
_______________________________________________________________________________________  
3
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
ELECTRICAL CHARACTERISTICS (continued)  
(VDD = 11.4V to 16.5V, V = -11.4V to -16.5V, AGNDA = AGNDB = DGND = 0V, VREFA and VREFB = +10V, R = 2k, C = 100pF,  
SS  
L
L
VOUT_ connected to RFB_, TA = TMIN to TMAX, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Multiplying Feedthrough  
Error  
VREF = 20V 10kHz sine wave;  
p-p  
DAC latch loaded with all 0s  
-77  
1.0  
125  
-90  
dB  
MAX532  
Unity-Gain Small-Signal  
Bandwidth  
VREF = 100mV sine wave;  
p-p  
DAC latch loaded with all 1s  
MHz  
kHz  
dB  
VREF = 20V sine wave;  
p-p  
DAC latch loaded with all 1s  
Full-Power Bandwidth  
VREF = 6V  
, 1kHz sine wave;  
RMS  
Total Harmonic Distortion  
THD  
DAC latch loaded with all 1s  
Digital Feedthrough  
Digital Crosstalk  
CS = 1; transitions on SCLK, LDAC, DIN  
DACA code all 1s, DACB code transition from all 0s to all 1s  
0.1Hz to 10Hz  
1.1  
10  
2
nV-s  
nV-s  
µV  
RMS  
Output Noise Voltage  
Note 1: Static performance tested at V = +15V, V = -15V. Performance over supplies guaranteed by PSR test.  
DD  
SS  
Note 2: Guaranteed by design. Not subject to production testing.  
Note 3: Open-drain output.  
TIMING CHARACTERISTICS  
(VDD = 11.4V to 16.5V, V = -11.4V to -16.5V, AGNDA = AGNDB = DGND = 0V) (Notes 4, 5)  
SS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
SCLK Clock Frequency  
6.25  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK  
t
SCLK Pulse Width High  
80  
80  
50  
0
CH  
t
SCLK Pulse Width Low  
CL  
t
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
CS Rise to SCLK Rise Setup Time  
SCLK Fall to CS Fall Hold Time  
SCLK Rise to CS Rise Hold Time  
CS Pulse Width High  
DS  
t
DH  
t
50  
50  
5
CSS0  
t
CSS1  
t
CSH0  
t
80  
120  
0
CSH1  
t
CSW  
t
C
C
C
= 20pF, R  
= 20pF, R  
= 20pF, R  
= 1kto 5V  
SCLK Fall to DOUT Valid (Note 6)  
CS Fall to DOUT Enable (Note 7)  
CS Rise to DOUT Disable (Note 7)  
LDAC Pulse Width Low  
200  
100  
60  
DO  
L
L
L
PULL-UP  
PULL-UP  
PULL-UP  
t
= 1kto 5V  
= 1kto 5V  
DV  
t
TR  
t
60  
LDAC  
t
CS Rise to LDAC Fall Setup Time  
100  
LDACS  
Note 4: All input signals are specified with t = t 5ns. Logic input swing is 0V to 5V.  
R
F
Note 5: See Figure 1.  
Note 6: Timing is for SCLK fall to DOUT fall to 0.8V, or for SCLK fall to DOUT rise to 2.4V. Additional time must be added for any  
larger passive RC pull-up delay.  
Note 7: DOUT enable: DOUT falls to 4.5V from 5.0V. DOUT disable: DOUT rises to 0.5V from 0V.  
4
_______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 15V, V = -15V, R = 2k, C = 100pF, unless otherwise noted.)  
DD  
SS  
L
L
OUTPUT VOLTAGE SWING  
vs. RESISTIVE LOAD  
NOISE SPECTRAL DENSITY  
LARGE-SIGNAL FREQUENCY RESPONSE  
25  
5
0
VREF = 20V at 1kHz  
VREF = 0V  
DAC CODE = 11...111  
GAIN = -1  
p-p  
300  
200  
100  
20  
15  
10  
5
-5  
-10  
-15  
VREF = 20Vp-p  
DAC CODE = 11...111  
GAIN = -1  
-20  
-25  
-30  
-35  
-40  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (BANDWIDTH = 80kHz)  
SMALL-SIGNAL FREQUENCY RESPONSE  
MULTIPLYING FEEDTHROUGH ERROR  
5
-94  
-35  
-40  
-45  
-50  
-55  
VREF = 6V  
RMS  
DAC CODE = 111...111  
VREFA = 20V  
p-p  
VREFB = AGNDB  
DAC CODE = 00...00  
-96  
-98  
0
-5  
VREF = 100mV  
p-p  
DAC CODE = 11...111  
-100  
-102  
-104  
-106  
-10  
-15  
-60  
-65  
-70  
-75  
-80  
-85  
-20  
-25  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (BANDWIDTH > 500kHz)  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VREF = 6V  
RMS  
DAC CODE = 111...111  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
_________________________________________________________________________________________________  
5
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 15V, V = -15V, R = 2k, C = 100pF, unless otherwise noted.)  
DD  
SS  
L
L
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
MAX532  
AGNDA  
A
AGNDA  
A
A = V , 50mV/div  
OUTA  
A = VOUTA, 5V/div  
TIMEBASE = 2µs/div  
= ±100mV SQUARE WAVE  
TIMEBASE = 2µs/div  
VREFA = ±10V SQUARE WAVE  
V
REFA  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
RFBA  
FUNCTION  
Feedback Resistor for DACA  
Reference Input for DACA  
Voltage Output for DACA  
Analog Ground for DACA  
Analog Ground for DACB  
Voltage Output for DACB  
Reference Input for DACB  
Feedback Resistor for DACB  
Negative Supply Voltage  
Digital Ground  
2
VREFA  
VOUTA  
AGNDA  
AGNDB  
VOUTB  
VREFB  
RFBB  
3
4
5
6
7
8
V
SS  
9
10  
11  
DGND  
SCLK  
Serial Clock Input  
Serial Data Output. Open-drain N-channel MOSFET output: requires external pull-up resis-  
tor. Data on DOUT changes on the falling edge of SCLK. Serial output data is delayed 24  
clock cycles from DIN.  
12  
DOUT  
Serial Data Input. CMOS- and TTL-compatible input. Data is clocked into DIN on the rising  
edge of SCLK. CS must be low for data to be clocked in.  
13  
14  
DIN  
CS  
Chip-Select Input, active low. Data is shifted in and out when CS is low. DAC latches are  
updated when CS is high and LDAC is low.  
Asynchronous Load DAC Input, active low. DAC latches are updated when CS is high and  
LDAC is low.  
15  
16  
LDAC  
V
DD  
Positive Supply Voltage  
6
_______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
____________________________________________________________Tim in g Dia g ra m s  
t
CSW  
t
t
CSH1  
LDACS  
CS  
t
CSHO  
t
CSS1  
t
t
CH  
t
CL  
CSSO  
SCLK  
t
DS  
t
DH  
D0  
D1  
Q1  
D23  
DIN  
t
DV  
t
D0  
t
TR  
Q0  
Q23  
D0  
DOUT  
LDAC  
t
LDAC  
DACS  
UPDATED  
Figure 1. Timing Diagram  
_______________________________________________________________________________________  
7
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
_______________________________________________Tim in g Dia g ra m s (c o n t in u e d )  
CS  
DACS  
MAX532  
UPDATED  
SCLK  
DIN  
D23  
D16  
D15 D14 D13 D12 D11..........  
LSB DACB MSB DACA  
............................................  
D1 D0  
Q1 Q0  
MSB DACB  
LSB DACA  
D23  
DOUT  
Q23 Q22  
Q16 Q15 Q14 Q13 Q12 Q11..........  
D23  
.....................................  
MSB DACA FROM  
PREVIOUS WRITE  
MSB DACB FROM  
PREVIOUS WRITE  
Figure 2. 3-Wire Interface Timing Diagram (LDAC = DGND)  
CS  
SCLK  
DIN  
D23  
D16  
Q16  
D15 D14 D13 D12 D11..........  
LSB DACB MSB DACA  
............................................  
D1 D0  
MSB DACB  
LSB DACA  
DOUT  
LDAC  
Q23 Q22  
Q15 Q14 Q13 Q12 Q11..........  
MSB DACA FROM  
PREVIOUS WRITE  
Q1 Q0  
D23  
D23  
...................................  
MSB DACB FROM  
PREVIOUS WRITE  
DACS  
UPDATED  
Figure 3. 4-Wire Inferface Timing Diagam  
8
_______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
5V  
5V  
1k  
1k  
SS  
SCLK  
SK  
DOUT  
MISO  
DIN  
SO  
SI  
DIN  
MOSI  
SCK  
MAX532  
MAX532  
MICROWIRE  
PORT  
SPI  
PORT  
DOUT  
SCLK  
CS  
I/O  
I/O  
CS  
I/O  
I/O  
LDAC  
LDAC  
CPOL = 0, CPHA = 0  
THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE  
MAX532, BUT MAY BE USED FOR READ-BACK PURPOSES.  
THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX532,  
BUT MAY BE USED FOR READ-BACK PURPOSES.  
Figure 4. Connections for Microwire  
Figure 5. Connections for SPI  
the devices 24-bit shift register. The data at DOUT is  
delayed 24 clock cycles from the data at DIN (see  
Figures 2 and 3, and the Functional Diagram). DOUT  
is an open-drain N-channel MOSFET that requires an  
external pull-up resistor (typically 1kif pulled up to  
+5V, and 3kif pulled up to +12V or +15V). Logic lev-  
els are guaranteed with sink currents up to 5mA (see  
Electrical Characteristics). Output data changes on the  
falling edge of SCLK when CS is low. If CS is high,  
DOUT is three-state (high-impedance).  
_______________De t a ile d De s c rip t io n  
Dig it a l In t e rfa c e  
The MAX532 is Microwire and SPI compatible (Figures  
4 and 5). Both DACs are programmed by writing three  
8-bit words (see Figures 2 and 3, and the Functional  
Diagram). Serial data is clocked into the data registers  
MSB first, with DACB information preceding DACA  
information. Data is clocked in on the rising edge of  
SCLK while CS is low. With CS high, data can not be  
clocked into DIN, and DOUT is high impedance. SCLK  
can be driven at rates up to 6.25MHz.  
Da is y-Ch a in in g De vic e s  
Any number of MAX532s can be daisy-chained by con-  
necting the DOUT pin of one device (with a pull-up  
resistor) to the DIN pin of the following device in the  
chain (Figure 6).  
The MAX532 uses either a 3-wire or a 4-wire serial  
interface. Three wires may be used (CS, DIN, SCLK)  
b y tying LDAC low. With LDAC low, the DACs a re  
up d a te d s imulta ne ous ly whe n CS g oe s hig h (s e e  
Figure 2 and the Functional Diagram). The 3-wire inter-  
face may be used if the MAX532 is used alone, or if two  
or more MAX532s are cascaded (DOUT of one device  
tied to DIN of the other) (Figure 6).  
When daisy-chaining devices, t  
(CS low to SCLK  
CSS0  
high), must be the greater of t + t or t + (t + t  
DV  
DS  
DS  
RC  
TR  
- t ), where t  
is the CS pulse width used in the sys-  
CS  
CSW  
tem and the term (t + t - t  
) accounts for the time  
RC  
TR CSW  
spent charging the DOUT capacitance with the external  
pull-up resistor. So, for t < 250ns, t is simply t  
The 4-wire interface (LDAC, CS, DIN, SCLK) is required  
if several serial devices are tied to the same data line,  
a nd it is d e s ira b le to up d a te the m s imulta ne ous ly  
(Figure 7). With the 4-wire interface, the DACs are  
updated when LDAC goes low (see Figure 3 and the  
Functional Diagram).  
RC  
CSS0  
DV  
+ t . Calculate t using the following equation:  
DS  
RC  
t
= R x C x ln (V  
/(V  
- 2.4V))  
RC  
P
PULL-UP PULL-UP  
where V  
is the voltage that the pull-up resistor  
PULL-UP  
is connected to, R is the value of the pull-up resistor,  
P
A serial output, DOUT, allows cascading of two or more  
MAX532s and allows read-back of the data written to  
and C is the capacitance at DOUT. Values of t  
given in Table 1.  
are  
RC  
_______________________________________________________________________________________  
9
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
+5V  
+5V  
+5V  
R
1k  
R
R
P
P
P
1k  
1k  
MAX532  
MAX532  
MAX532  
LDAC  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
MAX532  
DOUT  
DOUT  
DOUT  
LDAC  
LDAC  
TO OTHER  
SERIAL DEVICES  
MAX532  
LDAC  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
Figure 6. Daisy-chained or individual MAX532s are simultaneously updated by bringing CS high when using the 3-wire interface  
(LDAC = DGND).  
DIN  
SCLK  
LDAC  
CS1  
CS2  
CS3  
TO OTHER  
SERIAL DEVICES  
CS  
CS  
CS  
LDAC  
SCLK  
DIN  
LDAC  
LDAC  
MAX532  
MAX532  
SCLK  
MAX532  
SCLK  
DIN  
DIN  
Figure 7. Multiple devices sharing a common DIN line may be simultaneously updated by bringing LDAC low. CS1, CS2, CS3, . . .,  
are driven separately, thus controlling which data are written to devices 1, 2, 3, . . . .  
10 ______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
Dig it a l-t o -An a lo g S e c t io n  
Table 1. t Delay Times  
RC  
Figure 8 shows a simplified circuit diagram for one of  
the DACs and the output amplifier.  
V
(V)  
C (pF)  
20  
R
P
(k)  
1
t
RC  
(ns)  
PULL-UP  
4.5  
15  
A s e g me nte d s c he me is us e d to imp rove line a rity,  
whereby the two MSBs of the 12-bit data word are  
decoded to drive the three switches, SA, SB, and SC.  
The remaining ten bits drive the switches S0 through S9  
in a standard R-2R ladder configuration.  
4.5  
35  
1
27  
38  
76  
114  
14  
25  
35  
71  
106  
12  
21  
29  
59  
88  
4.5  
50  
1
4.5  
100  
150  
20  
1
4.5  
1
Each of the switches, SA, SB, and SC, steers 1/4 of the  
total reference current with the remaining 1/4 passing  
through the R-2R section.  
11.4  
11.4  
11.4  
11.4  
11.4  
13.5  
13.5  
13.5  
13.5  
13.5  
3
35  
3
50  
3
The output amplifier and feedback resistor perform the  
current-to-voltage conversion, giving the following:  
100  
150  
20  
3
3
VOUT_ = -D x VREF_,  
3
where _ denotes A or B, and D is the fractional representa-  
tion of the digital word. (D can be set from 0 to 4095/4096.)  
35  
3
50  
3
100  
150  
3
+12V to +15V  
3
V
DD  
RFBA  
With the values of t  
given in Table 1, t  
is always  
RC  
CSS0  
given by t + t  
. For different values of R or C, t  
DV  
DS  
RC  
must be calculated to determine t  
.
CSS0  
VREFA  
VOUTA  
V
IN  
DACA  
V
OUT  
Additionally, the maximum clock frequency is limited to  
1
MAX532  
DGND  
V
SS  
AGNDA  
f
(max) = ————————————— .  
CLK  
2 x (t  
+ t -15ns + t  
)
DO  
RC  
DS  
-12V to -15V  
For example, with t  
= 15ns (5V ±10% supply with  
RC  
1kpull-up), the maximum clock frequency is 2MHz.  
Figure 9. Unipolar Binary Operation  
VREF_  
R
R
R
2R  
SC  
2R  
SB  
2R  
2R  
S9  
2R  
S8  
2R  
S0  
2R  
SA  
R/2  
RFB_  
VOUT_  
AGND_  
SHOWN FOR ALL 1s ON DAC  
Figure 8. Simplified D/A Circuit Diagram  
______________________________________________________________________________________ 11  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
Ou t p u t Am p lifie rs  
__________Ap p lic a t io n s In fo rm a t io n  
The output amplifiers are stable with any combination  
of resistive loads 2kand capacitive loads 100pF.  
They are internally compensated, and settle to ±0.01%  
FSR (1/2LSB) in 2.5µs.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For best system performance, use printed circuit boards  
with separate analog and digital ground planes. Wire-  
wrap boards are not recommended. The two ground  
planes should be tied together at the low-impedance  
power-supply source, as shown in Figure 11.  
Un ip o la r Co n fig u ra t io n  
Figure 9 shows DACA connected for unipolar binary  
operation. Similar connections apply for DACB. When  
MAX532  
The board layout should ensure that digital and analog  
signal lines are kept separate from each other as much  
as possible. Do not run analog and digital lines parallel  
to one another.  
V
IN  
is an AC signal, the circuit performs two-quadrant  
multiplication. Table 2 shows the codes for this circuit.  
Bip o la r Op e ra t io n  
The output amplifiers are sensitive to high-frequency  
Figure 10 shows the MAX532 connected for bipolar  
operation. The coding is offset binary, as shown in  
noise in the V  
and V power supplies. Bypass  
DD  
SS  
these supplies to the analog ground plane with 0.1µF  
and 10µF bypass capacitors. Minimize capacitor lead  
lengths for best noise rejection.  
Table 3. When V is an AC signal, the circuit performs  
IN  
four-quadrant multiplication. To maintain gain error  
specifications, resistors R1, R2, and R3 should be ratio-  
matched to 0.01%.  
Table 2. Unipolar Code Table  
Table 3. Bipolar Code Table  
DAC Latch Contents  
DAC Latch Contents  
Analog Output, V  
Analog Output, V  
OUT  
OUT  
MSB  
LSB  
MSB  
LSB  
-V x (4095/4096)  
+V x (2047/2048)  
IN  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
IN  
-V x (2048/4096) = -1/2V  
IN  
+V x (1/2048)  
IN  
IN  
-V x (1/4096)  
IN  
0V  
-V x (1/2048)  
IN  
0V  
-V + (2048/2048) = -V  
IN  
1LSB = V /4096  
IN  
IN  
1LSB = V /2048  
IN  
R2  
20k  
ANALOG  
SUPPLY  
DIGITAL  
SUPPLY  
R1  
20k  
V
OUT  
+12V to +15V  
+15V  
-15V  
AGND  
+5V  
DGND  
R3  
10k  
V
DD  
RFB_  
V
IN  
VREF_  
VOUT_  
DAC_  
MAX532  
SS  
V
V
AGNDA  
AGNDB  
DGND  
+5V  
DGND  
DD  
SS  
V
AGND_  
DGND  
DIGITAL  
CIRCUITRY  
-12V to -15V  
MAX532  
Figure 10. Bipolar Operation  
Figure 11. Power-Supply Grounding  
12 ______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
P ro g ra m m a b le -Ga in Am p lifie r (P GA)  
The DAC/amplifier combination, along with access to  
the feedback resistors, makes the MAX532 ideal as a  
programmable-gain amplifier. In this application, the  
DAC functions as a programmable resistor in the feed-  
back loop. This type of configuration is shown in Figure  
12, and is suitable for AC gain control. The DAC code  
controls the gain for the PGA. As the code decreases,  
the effective DAC resistance increases, and so the gain  
also increases. The transfer function is given by:  
MAX532  
R/2  
VREFA  
VOUTA  
2
3
DACA  
4096  
CODE  
R
2
RFBA  
1
V
IN  
V
OUT  
V
/V = -REQA/RFBA,  
OUT IN  
where RFBA is the value of the feedback resistor (R/2),  
and REQA is the effective DAC resistance controlled  
by the digital input code:  
AGNDA  
4
V
-4096  
CODE  
OUT  
=
V
IN  
R
4096  
REQA = —— (————) ,  
CODE  
2
Figure 12. Programmable-Gain Amplifer  
where CODE is the DAC code in decimal.  
The transfer function is thus:  
V
-4096  
——— = ———  
CODE  
OUT  
V
IN  
12  
The code may be programmed between 1 and (2 -1).  
The zero code is not allowed, as it results in an open-  
loop amplifier response.  
P o w e r-On Re s e t  
On p owe r-up , the inte rna l DAC la tc he s a re s e t to  
00 . . . . .00.  
______________________________________________________________________________________ 13  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
ERROR  
PART  
TEMP. RANGE PIN-PACKAGE  
(LSBs)  
±1/2  
±1  
RFBA  
V
DD  
VREFA  
LDAC  
MAX532AEPE  
MAX532BEPE  
MAX532AEWE  
MAX532BEWE  
MAX532AMJE  
MAX532BMJE  
-40°C to +85°C 16 Plastic DIP  
-40°C to +85°C 16 Plastic DIP  
-40°C to +85°C 16 Wide SO  
-40°C to +85°C 16 Wide SO  
-55°C to +125°C 16 CERDIP**  
-55°C to +125°C 16 CERDIP**  
CS  
±1/2  
±1  
MAX532  
VOUTA  
AGNDA  
±1/2  
±1  
DIN  
**Contact factory for availability and processing to MIL-STD-883B.  
0. 250"  
(6. 35mm)  
AGNDB  
VOUTB  
DOUT  
SCLK  
RFBB  
V
SS  
DGND  
VREFB  
V
SS  
0. 140"  
(3. 56mm)  
TRANSISTOR COUNT: 1324;  
SUBSTRATE CONNECTED TO V  
.
DD  
14 ______________________________________________________________________________________  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
D1  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.27  
0.20  
18.92  
0.13  
7.62  
6.10  
0.150  
0.080  
0.022  
0.065  
0.012  
0.765  
0.030  
0.325  
0.280  
3.81  
2.03  
0.56  
1.65  
0.30  
19.43  
0.76  
8.26  
7.11  
B
0.016  
B1 0.050  
C
D
0.008  
0.745  
E
D1 0.005  
0.300  
E1 0.240  
E
E1  
D
e
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
A3  
e
A
B
A2  
A1  
A
L
e
0.115  
0˚  
0.400  
0.150  
15˚  
10.16  
3.81  
L
2.92  
0˚  
α
15˚  
21-587A  
α
16-PIN PLASTIC  
DUAL-IN-LINE  
PACKAGE  
C
e
B1  
e
e
A
B
B
INCHES  
MILLIMETERS  
DIM  
MIN  
0.093  
MAX  
0.104  
0.012  
0.019  
0.013  
0.413  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
10.10  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
10.50  
7.60  
A
A1 0.004  
B
C
D
E
e
0.014  
0.009  
0.398  
0.291  
E
H
0.050 BSC  
1.27 BSC  
H
h
0.394  
0.010  
0.016  
0˚  
0.419  
0.030  
0.050  
8˚  
10.00  
0.25  
0.40  
0˚  
10.65  
0.75  
1.27  
L
α
8˚  
21-589B  
h x 45˚  
D
α
A
0.127mm  
0.004in.  
16-PIN PLASTIC  
SMALL-OUTLINE  
(WIDE)  
e
A1  
C
B
L
PACKAGE  
______________________________________________________________________________________ 15  
Du a l, S e ria l-In p u t ,  
Vo lt a g e -Ou t p u t , 1 2 -Bit MDAC  
MAX532  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY