MAX533AMJE [MAXIM]

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers; 2.7V ,低功耗, 8位四路DAC,具有轨至轨输出缓冲器
MAX533AMJE
型号: MAX533AMJE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
2.7V ,低功耗, 8位四路DAC,具有轨至轨输出缓冲器

文件: 总16页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1080; Rev 0; 6/96  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX533 serial-input, voltage-output, 8-bit quad  
digital-to-analog converter (DAC) operates from a sin-  
gle +2.7V to +3.6V supply. Internal precision buffers  
swing rail to rail, and the reference input range includes  
both ground and the positive rail. The MAX533 features  
a 1µA shutdown mode.  
+2.7V to +3.6V Single-Supply Operation  
Ultra-Low Supply Current:  
0.7mA while Operating  
1µA in Shutdown Mode  
Ultra-Small 16-Pin QSOP Package  
The serial interface is double buffered: a 12-bit input  
shift register is followed by four 8-bit buffer registers  
and four 8-bit DAC registers. The 12-bit serial word  
consists of eight data bits and four control bits (for DAC  
selection and special programming commands). Both  
the input and DAC registers can be updated indepen-  
dently or simultaneously with a single software com-  
mand. Two additional asynchronous control pins, LDAC  
and CLR, provide simultaneous updating or clearing of  
the input and DAC registers.  
Ground to V  
Reference Input Range  
DD  
Output Buffer Amplifiers Swing Rail to Rail  
10MHz Serial Interface, Compatible with SPI, QSPI  
(CPOL = CPHA = 0 or CPOL = CPHA = 1), and  
Microwire  
Double-Buffered Registers for Synchronous  
Updating  
Serial Data Output for Daisy Chaining  
The interface is compatible with SPI™, QSPI™ (CPOL =  
CPHA = 0 or CPOL = CPHA = 1), and Microwire. A  
buffered data output allows daisy chaining of serial  
devices.  
Power-On Reset Clears Serial Interface and Sets  
All Registers to Zero  
Software Shutdown  
In addition to 16-pin DIP and CERDIP packages, the  
MAX533 is available in a 16-pin QSOP that occupies  
the same area as an 8-pin SO.  
Software-Programmable Logic Output  
Asynchronous Hardware Clear Resets All Internal  
Registers to Zero  
________________________Ap p lic a t io n s  
Digital Gain and Offset Adjustments  
Programmable Attenuators  
______________Ord e rin g In fo rm a t io n  
Programmable Current Sources  
Portable Instruments  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX533ACPE  
MAX533BCPE  
MAX533ACEE  
MAX533BCEE  
MAX533BC/D  
MAX533AEPE  
MAX533BEPE  
MAX533AEEE  
MAX533BEEE  
MAX533AMJE  
MAX533BMJE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1  
±2  
±1  
±2  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
__________________P in Co n fig u ra t io n  
16 QSOP  
TOP VIEW  
Dice*  
OUTB  
OUTA  
REF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
OUTC  
OUTD  
AGND  
-40°C to +85°C 16 Plastic DIP  
-40°C to +85°C 16 Plastic DIP  
-40°C to +85°C 16 QSOP  
-40°C to +85°C 16 QSOP  
UPO  
PDE  
MAX533  
V
DD  
-55°C to +125°C 16 CERDIP**  
-55°C to +125°C 16 CERDIP**  
12 DGND  
11 DIN  
LDAC  
CLR  
*Dice are tested at T = +25°C.  
A
10  
9
SCLK  
CS  
**Contact factory for availability and processing to MIL-STD-883.  
DOUT  
Functional Diagram appears at end of data sheet.  
DIP/QSOP  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to DGND ..............................................................-0.3V, +6V  
Continuous Power Dissipation (T = +70°C)  
A
V
to AGND...............................................................-0.3V, +6V  
Plastic DIP (derate 10.53mW/°C above +70°C) .........842mW  
QSOP (derate 8.3mW/°C above +70°C).....................667mW  
CERDIP (derate 10.00mW/°C above +70°C)..............800mW  
Operating Temperature Ranges  
DD  
Digital Input Voltage to DGND ....................................-0.3V, +6V  
Digital Output Voltage to DGND....................-0.3V, (V + 0.3V)  
AGND to DGND..................................................................±0.3V  
DD  
REF................................................................-0.3V, (V + 0.3V)  
MAX533 _ C_ E ..................................................0°C to +70°C  
MAX533 _ E_ E ...............................................-40°C to +85°C  
MAX533 _ MJE .............................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
OUT_ ...........................................................................-0.3V, V  
DD  
MAX53  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V, V  
= 2.5V, AGND = DGND = 0V, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF  
L
L
A
MIN  
Typical values are at V = +3V and T = +25°C.)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY  
Resolution  
8
Bits  
MAX533A  
MAX533B  
±1  
Integral Nonlinearity  
(Note 1)  
INL  
LSB  
±2  
Differential Nonlinearity (Note 1)  
Zero-Code Error  
DNL  
ZCE  
Guaranteed monotonic (all codes)  
Code = 00 hex  
±1.0  
±20  
LSB  
mV  
Zero-Code-Error Supply  
Rejection  
Code = 00 hex, V = 2.7V to 3.6V  
DD  
1
LSB  
Zero-Code Temperature  
Coefficient  
Code = 00 hex  
Code = FF hex  
±10  
±10  
µV/°C  
mV  
Full-Scale Error  
±30  
1
Full-Scale Error Supply  
Rejection  
Code = FF hex, V = 2.7V to 3.6V  
DD  
LSB  
Full-Scale Temperature  
Coefficient  
Code = FF hex  
µV/°C  
REFERENCE INPUTS  
Input Voltage Range  
Input Resistance  
0
V
V
DD  
322  
460  
10  
598  
kΩ  
pF  
dB  
dB  
Input Capacitance  
Channel-to-Channel Isolation  
AC Feedthrough  
(Note 2)  
(Note 3)  
-60  
-70  
DAC OUTPUTS  
Output Voltage Range  
Load Regulation  
R
= open  
0
V
V
L
REF  
Code = FF hex, R from 10kto ∞  
0.25  
LSB  
L
2
_______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V, V  
= 2.5V, AGND = DGND = 0V, R = 10k, C = 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF  
L
L
A
MIN  
Typical values are at V = +3V and T = +25°C.)  
DD  
A
PARAMETER  
DIGITAL INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
0.7V  
V
V
IH  
DD  
V
IL  
0.3V  
DD  
I
IN  
V
= 0V or V  
DD  
±1.0  
10  
µA  
pF  
IN  
Input Capacitance  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
C
(Note 4)  
IN  
V
OH  
I
= TBDmA  
V - 0.5  
DD  
V
V
SOURCE  
V
OL  
I
= 1.6mA  
0.4  
SINK  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
CODE = FF hex  
0.6  
6
V/µs  
µs  
To 1/2LSB, from code 00 to code FF hex  
(Note 5)  
Output Settling Time  
Digital Feedthrough and  
Crosstalk  
VREF = 0V, code 00 to code FF hex (Note 6)  
Code 80 hex to code 7F hex  
5
nV-s  
nV-s  
Digital-to-Analog Glitch Impulse  
50  
-70  
V
REF  
= 2.5Vp-p at 1kHz, V = 3V,  
DD  
Signal-to-Noise Plus  
Distortion Ratio  
code = FF hex  
SINAD  
dB  
V
REF  
= 2.5Vp-p at 10kHz  
-62  
380  
60  
Multiplying Bandwidth  
Wideband Amplifier Noise  
POWER SUPPLIES  
V
REF  
= 0.5Vp-p, 3dB bandwidth  
kHz  
µV  
RMS  
Power-Supply Voltage  
V
2.7  
3.6  
1.3  
1.5  
10  
V
DD  
MAX533C/E  
MAX533M  
0.68  
0.68  
1
Supply Current  
I
DD  
mA  
µA  
Shutdown Current  
TIMING CHARACTERISTICS  
(V = +2.7V to +3.6V, V  
= 2.5V, AGND = DGND = 0V, C  
= 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF  
DOUT  
A
MIN  
Typical values are at V = +3V and T = +25°C.)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
V
Rise to CS Fall Setup Time  
DD  
t
µs  
VDCS  
LDAC  
(Note 4)  
60  
40  
50  
40  
50  
40  
50  
90  
100  
20  
25  
t
ns  
ns  
ns  
ns  
LDAC Pulse Width Low  
CS Rise to LDAC Fall Setup  
Time (Note 7)  
t
CLL  
20  
25  
t
CLR Pulse Width Low  
CS Pulse Width High  
CLW  
t
CSW  
_______________________________________________________________________________________  
3
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
TIMING CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V, V  
= 2.5V, AGND = DGND = 0V, C  
= 100pF, T = T  
to T , unless otherwise noted.  
MAX  
DD  
REF  
DOUT  
A
MIN  
Typical values are at V = +3V and T = +25°C.)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SERIAL-INTERFACE TIMING  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
10  
SCLK Clock Frequency (Note 8)  
f
MHz  
ns  
CLK  
MAX53  
8.3  
40  
50  
40  
50  
40  
50  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
CH  
t
ns  
CL  
CS Fall to SCLK Rise Setup  
Time  
t
ns  
CSS  
t
0
ns  
SCLK Rise to CS Rise Hold Time  
CSH  
MAX533C/E  
MAX533M  
40  
50  
0
DIN to SCLK Rise to Setup Time  
DIN to SCLK Rise to Hold Time  
t
DS  
t
ns  
ns  
DH  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
MAX533C/E  
MAX533M  
200  
230  
210  
250  
SCLK Rise to DOUT Valid  
Propagation Delay (Note 9)  
t
t
DO1  
DO2  
SCLK Fall to DOUT Valid  
Propagation Delay (Note 10)  
ns  
ns  
ns  
40  
50  
40  
50  
t
SCLK Rise to CS Fall Delay  
CS0  
CS1  
CS Rise to SCLK Rise Setup  
Time  
t
Note 1: INL and DNL are measured with R referenced to ground. Nonlinearity is measured from the first code that is greater than  
L
or equal to the maximum offset specification to code FF hex (full scale). See DAC Linearity and Voltage Offset section.  
Note 2:  
Note 3:  
V
= 2.5Vp-p, 10kHz. Channel-to-channel isolation is measured by setting one DACs code to FF hex and setting all  
REF  
other DACs codes to 00 hex.  
= 2.5Vp-p, 10kHz. DAC code = 00 hex.  
V
REF  
Note 4: Guaranteed by design, not production tested.  
Note 5: Output settling time is measured from the 50% point of the rising edge of CS to 1/2LSB of V  
’s final value.  
OUT  
Note 6: Digital crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other  
DAC.  
Note 7: If LDAC is activated prior to CSs rising edge, it must stay low for t  
or longer after CS goes high.  
LDAC  
Note 8: When DOUT is not used. If DOUT is used, f  
max is 4MHz, due to the SCLK to DOUT propagation delay.  
CLK  
Note 9: Serial data clocked out at SCLK’s rising edge (measured from 50% of the clock edge to 20% or 80% of V ).  
DD  
Note 10: Serial data clocked out at SCLK’s falling edge (measured from 50% of the clock edge to 20% or 80% of V ).  
DD  
4
_______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +3V, T = +25°C, unless otherwise noted.)  
DD  
A
DAC ZERO-CODE OUTPUT VOLTAGE vs.  
OUTPUT SINK CURRENT  
DAC FULL-SCALE OUTPUT VOLTAGE vs.  
OUTPUT SOURCE CURRENT  
SUPPLY CURRENT vs.  
TEMPERATURE  
1.50  
5.0  
4.5  
4.0  
3.5  
1000  
800  
600  
400  
DAC CODE = FF HEX  
DAC CODE = 00 HEX  
V
= V = 5.0V  
DD REF  
1.25  
1.00  
0.75  
LOAD TO V  
DD  
V
DD  
= +5.0V  
V = +3.0V  
DD  
V
REF  
= +4.5V  
V
REF  
= +2.5V  
DAC CODE = FF HEX  
LOAD TO GND  
V
= V = 3.0V  
DD REF  
DAC CODE = 00 HEX  
0.50  
0.25  
0
3.0  
2.5  
2.0  
V
= V = 5.0V  
DD REF  
200  
0
V
= V = 3.0V  
DD REF  
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10  
12  
-55 -35 -15  
5
25 45 65 85 105 125  
DAC OUTPUT SINK CURRENT (mA)  
DAC OUTPUT SOURCE CODE (mA)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT vs.  
TEMPERATURE  
SUPPLY CURRENT vs.  
REFERENCE VOLTAGE (V = +3.0V)  
DD  
SUPPLY CURRENT vs.  
REFERENCE VOLTAGE (V = +5.0V)  
DD  
5
3
3
2
1000  
800  
600  
400  
1000  
800  
600  
400  
ALL DAC CODES = FF HEX  
ALL DAC CODES = 00 HEX  
ALL DAC CODES = FF HEX  
ALL DAC CODES = 00 HEX  
V
DD  
= +5.0V  
V
DD  
= +3.0V  
1
0
200  
0
200  
0
-55 -35 -15  
5
25 45 65 85 105 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
THD + NOISE AT DAC OUTPUT vs.  
REFERENCE AMPLITUDE  
THD + NOISE AT DAC OUTPUT vs.  
REFERENCE FREQUENCY  
-20  
-30  
-40  
V
= +3.0V  
= SINE WAVE  
DD  
V
DD  
= +3.0V  
V
REF  
V
REF  
= SINE WAVE  
CENTERED AT 1.2V  
DAC C0DE = FF HEX  
80kHz LOWPASS FILTER  
-30  
-40  
-50  
-60  
-70  
CENTERED AT 1.2V  
DAC CODE = FF HEX  
500kHz LOWPASS FILTER  
V
= 20kHz  
-50  
REF  
V
REF  
= 2V  
p-p  
V
REF  
= 1V  
P-P  
-60  
-70  
V
REF  
= 1kHz  
V
REF  
= 0.5V  
p-p  
0
0.5  
1.0  
1.5  
2.0  
1
0.1  
1
10  
100  
REFERENCE AMPLITUDE (V  
)
p-p  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3V, T = +25°C, unless otherwise noted.)  
DD  
A
REFERENCE INPUT FREQUENCY RESPONSE  
REFERENCE FEEDTHROUGH vs. FREQUENCY  
5
0
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= +3.0V  
= 3V SINE WAVE  
p-p  
DD  
V
REF  
DAC CODE = 00 HEX  
MAX53  
-5  
-10  
-15  
-20  
-25  
-30  
V
= 0.1V SINE WAVE  
p-p  
REF  
CENTERED AT 2.5V  
DAC CODE = FF HEX  
V
DD  
= +3.0V  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
WORST-CASE 1LSB DIGITAL  
STEP CHANGE (NEGATIVE)  
WORST-CASE 1LSB DIGITAL  
STEP CHANGE (POSITIVE)  
MAX533-TOC11  
MAX533-TOC10  
CS  
CS  
2V/div  
2V/div  
OUTA  
50mV/div  
OUTA  
50mV/div  
s/div  
DAC CODE = 80 TO 7F hex  
s/div  
V
V
REF  
= 3.0V  
= 2.5V  
DD  
V
V
REF  
= 3.0V  
= 2.5V  
DAC CODE = 7F TO 80 hex  
NO LOAD  
DD  
NO LOAD  
CLOCK FEEDTHROUGH  
POSITIVE SETTLING TIME  
MAX533-TOC13  
MAX533-TOC14  
SCLK  
2V/div  
CS  
2V/div  
OUTA  
1V/div  
OUTA  
10mV/div  
s/div  
s/div  
V
= 2.5V  
SCLK = 333kHz  
REF  
V
V
REF  
= 3.0V  
= 2.5V  
DD  
DAC CODE = 00 TO FF hex  
NO LOAD  
DAC CODE = 80 hex  
NO LOAD  
SCLK t = t = 25ns  
R
F
V
DD  
= 3.0V  
6
_______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3V, T = +25°C, unless otherwise noted.)  
DD  
A
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
MAX533-TOC15  
MAX533-TOC16  
CS  
CS  
2V/div  
2V/div  
OUTA  
1V/div  
OUTA  
1V/div  
s/div  
s/div  
DAC CODE = FF TO 00 hex  
NO LOAD  
V
V
REF  
= 3.0V  
= 2.5V  
V
V
REF  
= 3.0V  
= 2.5V  
DAC CODE = 01 TO FF hex  
NO LOAD  
DD  
DD  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
2
3
4
5
OUTB  
OUTA  
REF  
DAC B Voltage Output  
DAC A Voltage Output  
Reference-Voltage Input  
UPO  
Software-Programmable Logic Output  
PDE  
Power-Down Enable. Must be high to enter software shutdown mode.  
Load DAC Input (active low). Driving this asynchronous input low (level sensitive) transfers the contents  
of each input latch to its respective DAC latch.  
6
7
LDAC  
CLR  
Clear DAC Input (active low). Driving CLR low asynchronously clears the input and DAC registers, and  
sets all DAC outputs to zero.  
Serial Data Output. Sinks and sources current. Data at DOUT can be clocked out on the rising or falling  
edge of SCLK (Table 1).  
8
DOUT  
CS  
Chip-Select Input (active low). Data is shifted in and out when CS is low. Programming commands are  
executed when CS returns high.  
9
Serial Clock Input. Data is clocked in on the rising edge and clocked out on the falling (default) or rising  
edge (A0 = A1 = 1, see Table 1).  
10  
SCLK  
11  
12  
13  
14  
15  
16  
DIN  
Serial Data Input. Data is clocked in on the rising edge of SCLK.  
Digital Ground  
DGND  
V
DD  
Power Supply, +2.7V to +3.6V  
Analog Ground  
AGND  
OUTD  
OUTC  
DAC D Voltage Output  
DAC C Voltage Output  
_______________________________________________________________________________________  
7
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
INSTRUCTION  
EXECUTED  
CS  
• • •  
• • •  
SCLK  
MAX53  
DIN  
• • •  
C1  
A1  
C0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
A1 A0 C1 C0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
A0  
DACA  
DACD  
DOUT  
MODE 1  
• • •  
A1  
A1  
A0 C1 C0 D7  
D0  
D6 D5 D4 D3 D2 D1  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1 D0  
A1  
A1  
DATA FROM PREVIOUS DATA INPUT  
DATA FROM PREVIOUS DATA INPUT  
DOUT  
MODE 0  
(DEFAULT)  
• • •  
D0  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1 D0  
A1 A0 C1 C0 D7  
D6 D5 D4 D3 D2 D1  
A1  
Figure 1. 3-Wire Interface Timing  
CS  
t
CSW  
t
CSH  
t
t
t
CH  
t
CP  
CS0  
CSS  
t
CS1  
t
CL  
SCLK  
DIN  
t
DS  
t
DH  
t
D02  
t
D01  
DOUT  
LDAC  
t
CLL  
t
LDAC  
Figure 2. Detailed Serial-Interface Timing Diagram  
_______________________________________________________________________________________  
8
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
Serial Input Data Format and Control Codes  
_______________De t a ile d De s c rip t io n  
The 12-bit serial input format shown in Figure 3 com-  
prises two DAC address bits (A1, A0), two control bits  
(C1, C0), and eight bits of data (D7...D0).  
S e ria l In t e rfa c e  
At p owe r-on, the s e ria l inte rfa c e a nd a ll d ig ita l-to-  
analog converters (DACs) are cleared and set to code  
zero. The serial data output (DOUT) is set to transition  
on SCLK's falling edge.  
The 4-bit address/control code configures the DAC as  
shown in Table 1.  
Load Input Register, DAC Registers Unchanged  
(Single Update Operation)  
The MAX533 c ommunic a te s with mic rop roc e s s ors  
through a synchronous, full-duplex, 3-wire interface  
(Figure 1). Data is sent MSB first and can be transmit-  
ted in one 4-bit and one 8-bit (byte) packet or in one  
12-bit word. If a 16-bit word is used, the first four bits  
are ignored. A 4-wire interface adds a line for LDAC  
and allows asynchronous updating. The serial clock  
(SCLK) synchronizes the data transfer. Data is transmit-  
ted and received simultaneously.  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
Address  
0
1
8-Bit Data  
(LDAC = H)  
When performing a single update operation, A1 and A0  
select the respective input register. At the rising edge  
of CS, the selected input register is loaded with the cur-  
re nt s hift-re g is te r d a ta . All DAC outp uts re ma in  
unchanged. This preloads individual data in the input  
register without changing the DAC outputs.  
Figure 2 shows the detailed serial-interface timing.  
Please note that the clock should be low if it is stopped  
b e twe e n up d a te s . DOUT d oe s not g o into a hig h-  
impedance state if the clock idles or CS is high.  
Load Input and DAC Registers  
Serial data is clocked into the data registers in MSB-first  
format, with the address and configuration information  
preceding the actual DAC data. Data is clocked in on  
SCLK’s rising edge while CS is low. Data at DOUT is  
clocked out 12 clock cycles later, either at SCLK’s falling  
edge (default or mode 0) or rising edge (mode 1).  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
Address  
1
1
8-Bit Data  
(LDAC = H)  
This command directly loads the selected DAC register at  
CSs rising edge. A1 and A0 set the DAC address. Current  
shift-register data is placed in the selected input and DAC  
registers.  
Chip select (CS) must be low to enable the DAC. If CS  
is high, the interface is disabled and DOUT remains  
unchanged. CS must go low at least 40ns before the  
first rising edge of the clock pulse to properly clock in  
the firs t b it. With CS low, d a ta is c loc ke d into the  
MAX533s internal shift register on the rising edge of  
the external serial clock. Always clock in the full 12 bits  
because each time CS goes high the bits currently in  
the input shift register are interpreted as a command.  
SCLK can be driven at rates up to 10MHz.  
For example, to load all four DAC registers simultaneously  
with individual settings (DAC A = 0.5V, DAC B = 1V,  
DAC C = 1.5V, and DAC D = 2V), four commands are  
re q uire d . Firs t, p e rform thre e s ing le inp ut re g is te r  
update operations for DACs A, B, and C (C1 = 0). The  
final command loads input register D and updates all  
four DAC registers from their respective input registers.  
Software “LDAC ” Command  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
0
x
x
x
x
x
x
x
x
THIS IS THE FIRST BIT SHIFTED IN  
MSB  
LSB  
(LDAC = 1)  
A1  
A0  
C1 C0 ..  
D
.
7
D1 D6 D0  
DOUT  
DIN  
All DAC registers are updated with the contents of their  
respective input registers at CSs rising edge. With the  
exception of using CS to execute, this performs the  
same function as the asynchronous LDAC.  
8-BIT DAC DATA  
CONTROL AND  
ADDRESS BITS  
Figure 3. Serial Input Format  
_______________________________________________________________________________________  
9
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
12-BIT SERIAL WORD  
LDAC  
FUNCTION  
A1  
A0  
C1  
C0  
D7 . . . . . . . . D0  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
8-bit DAC data  
8-bit DAC data  
8-bit DAC data  
8-bit DAC data  
1
1
1
1
Load input register A; all DAC outputs unchanged.  
Load input register B; all DAC outputs unchanged.  
Load input register C; all DAC outputs unchanged.  
Load input register D; all DAC outputs unchanged.  
MAX53  
0
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
8-bit DAC data  
8-bit DAC data  
8-bit DAC data  
8-bit DAC data  
1
1
1
1
Load input register A; all DAC outputs updated  
Load input register B; all DAC outputs updated  
Load input register C; all DAC outputs updated  
Load input register D; all DAC outputs updated.  
Software LDAC commands. Update all DACs from  
their respective input registers. Also bring the part out  
of shutdown mode.  
0
1
0
0
X X X X X X X X  
1
Load all DACs with shift-register data. Also bring the  
part out of shutdown mode.  
1
0
0
0
8-bit DAC data  
X
1
0
0
0
1
0
1
0
0
1
1
0
0
0
0
0
X X X X X X X X  
X X X X X X X X  
X X X X X X X X  
X X X X X X X X  
X
X
X
X
Software shutdown (provided PDE is high)  
UPO goes low.  
UPO goes high.  
No operation (NOP); shift data in shift registers.  
Set DOUT phase—SCLK rising (mode 1). DOUT  
clocked out on rising edge of SCLK. All DACs updated  
from their respective input registers.  
1
1
1
0
1
1
0
0
X X X X X X X X  
X X X X X X X X  
X
X
Set DOUT phase—SCLK falling (mode 0). DOUT  
clocked out on falling edge of SCLK. All DACs up-  
dated from their respective registers (default).  
Load All DACs with Shift-Register Data  
User-Programmable Output (UPO)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
8-Bit Data  
UPO  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
Output  
1
0
0
0
0
0
0
1
1
1
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Low  
(LDAC = X)  
High  
All four DAC registers are updated with shift-register  
data. This command allows all DACs to be set to any  
analog value within the reference range. This command  
can be used to substitute CLR if code 00 hex is pro-  
grammed, which clears all DACs.  
(LDAC = X)  
User-programmable logic output for controlling another  
device across an isolated interface. Example devices  
are gain control of an amplifier, a 4mA to 20mA amplifi-  
er, and a polarity output for a motor speed control.  
Software Shutdown  
No Operation (NOP)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
1
1
0
0
x
x
x
x
x
x
x
x
0
0
0
0
x
x
x
x
x
x
x
x
(LDAC = X, PDE = H)  
(LDAC = X)  
Shuts down all output buffer amplifiers, reducing sup-  
ply current to 10µA max.  
The NOP command (no operation) allows data to be  
shifted through the MAX533 shift register without affect-  
ing the input or DAC registers. This is useful in daisy  
chaining (also see the Daisy Chaining Devices section).  
10 ______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
For this command, the data bits are “Don't Cares.” As  
Serial Data Output  
DOUT is the internal shift registers output. DOUT can  
be programmed to clock out data on SCLK’s falling  
edge (mode 0) or rising edge (mode 1). In mode 0, out-  
put data lags input data by 12.5 clock cycles, maintain-  
ing compatibility with Microwire and SPI. In mode 1,  
output data lags input data by 12 clock cycles. On  
power-up, DOUT defaults to mode 0 timing. DOUT  
never three-states; it always actively drives either high  
or low and remains unchanged when CS is high.  
an example, three MAX533s are daisy chained (A, B,  
and C), and devices A and C need to be updated. The  
36-bit-wide command would consist of one 12-bit word  
for device C, followed by an NOP instruction for device  
B and a third 12-bit word with data for device A. At CSs  
rising edge, device B will not change state.  
Set DOUT Phase—SCLK Rising (Mode 1)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
0
x
x
x
x
x
x
x
x
(LDAC = x)  
Mode 1 resets the serial-output DOUT to transition at  
SCLK’s rising edge. Once this command is issued,  
DOUTs phase is latched and will not change except on  
power-up or if the specific command to set the phase  
to falling edge is issued.  
SCLK  
DIN  
SK  
SO  
MAX533  
MICROWIRE  
PORT  
This command also loads all DAC registers with the con-  
tents of their respective input registers, and is identical to  
the “LDACcommand.  
I/0  
CS  
Set DOUT Phase—SCLK Falling (Mode 0, Default)  
A1 A0 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
0
x
x
x
x
x
x
x
x
(LDAC = x)  
Figure 4. Connections for Microwire  
This command resets DOUT to transition at SCLK’s falling  
edge. The same command also updates all DAC registers  
with the contents of their respective input registers, identical  
to the “LDAC” command.  
LDAC Operation (Hardware)  
LDAC is typically used in 4-wire interfaces (Figure 7). This  
command is level sensitive, and it allows asynchronous  
hardware control of the DAC outputs. With LDAC low, the  
DAC registers are transparent, and any time an input regis-  
ter is updated, the DAC output immediately follows.  
MAX533  
DIN  
SCLK  
CS  
MOSI  
SPI/QSPI  
PORT  
SCK  
I/0  
Clear DACs with CLR  
Strobing the CLR pin low causes an asynchronous  
clear of input and DAC registers and sets all DAC out-  
puts to zero. Similar to the LDAC pin, CLR can be  
invoked at any time, typically when the device is not  
selected (CS = H). When the DAC data is all zeros, this  
function is equivalent to the Update all DACs from Shift  
Registers” command.  
CPOL = 0, CPHA = 0  
Figure 5. Connections for SPI/QSPI  
______________________________________________________________________________________ 11  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
Interfacing to the Microprocessor  
The MAX533 is Microwire™ and SPI™/QSPI™ compati-  
ble. For SPI and QSPI, clear the CPOL and CPHA con-  
figuration bits (CPOL = CPHA = 0). The SPI/QSPI CPOL  
= CPHA = 1 c onfig ura tion c a n a ls o b e us e d if the  
DOUT output is ignored.  
An a lo g S e c t io n  
DAC Operation  
The MAX533 uses a matrix decoding architecture for  
the DACs, which saves power in the overall system.  
The external reference voltage is divided down by a  
resistor string placed in a matrix fashion. Row and col-  
umn d e c od e rs s e le c t the a p p rop ria te ta b from the  
resistor string to provide the needed analog voltages.  
The resistor string presents a code-independent input  
impedance to the reference and guarantees a mono-  
tonic output. Figure 8 shows a simplified diagram of the  
four DACs.  
The MAX533 can interface with Intel’s 80C5X/80C3X  
family in mode 0 if the SCLK clock polarity is inverted.  
More universally, if a serial port is not available, three  
lines from one of the parallel ports can be used for bit  
manipulation.  
MAX53  
Digital feedthrough at the voltage outputs is greatly  
minimized by operating the serial clock only to update  
the registers. Also see the Clock Feedthrough photo in  
the Typ ic a l Op e ra ting Cha ra c te ris tic s s e c tion. The  
clock idle state is low.  
Reference Input  
The voltage at REF sets the full-scale output voltage for  
all four DACs. The 460ktypical input impedance at  
REF is code independent. The output voltage for any  
DAC can be represented by a digitally programmable  
voltage source as follows:  
Daisy-Chaining Devices  
Any number of MAX533s can be daisy-chained by con-  
necting DOUT of one device to DIN of the following  
de vic e in the c ha in. The NOP instruc tion (Ta ble 1)  
allows data to be passed from DIN to DOUT without  
changing the input or DAC registers of the passing  
device. A 3-wire interface updates daisy-chained or  
individual MAX533s simultaneously by bringing CS  
high (Figure 6).  
V
OUT  
= (NB x V ) / 256  
REF  
where NB is the numerical value of the DACs binary  
input code.  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
MAX533  
MAX533  
MAX533  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
DOUT  
DOUT  
DOUT  
TO OTHER  
SERIAL DEVICES  
DEVICE B  
DEVICE A  
MAX533  
DEVICE C  
SCLK  
DIN  
CS  
SCLK  
DIN  
CS  
Figure 6. Daisy-chained or individual MAX533s are simultaneously updated by bringing CS high. Only three wires are required.  
12 ______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
DIN  
SCLK  
LDAC  
CS1  
CS2  
CS3  
TO OTHER  
SERIAL  
DEVICES  
CS  
CS  
CS  
MAX533  
MAX533  
MAX533  
LDAC  
LDAC  
LDAC  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
Figure 7. Multiple MAX533s sharing one DIN line. Simultaneously update by strobing LDAC, or specifically update by enabling an  
individual CS.  
Output Buffer Amplifiers  
All MAX533 voltage outputs are internally buffered by  
__________Ap p lic a t io n s In fo rm a t io n  
DAC Lin e a rit y a n d Vo lt a g e Offs e t  
The output buffer can have a negative input offset volt-  
age that would normally drive the output negative, but  
since there is no negative supply the output stays at 0V  
(Figure 9). When linearity is determined using the end-  
point method, it is measured between zero code (all  
inputs 0) and full-scale code (all inputs 1) after offset  
and gain error are calibrated out. However, in single-  
s up p ly op e ra tion the ne xt c od e a fte r ze ro ma y not  
change the output (Figure 9), so the lowest code that  
produces a positive output is the lower endpoint.  
p re c is ion unity-g a in followe rs tha t s le w a t a b out  
0.6V/µs. The outputs can swing from GND to V . With  
DD  
a 0V to +2.5V (or +2.5V to 0V) output transition, the  
amplifier outputs will typically settle to 1/2LSB in 6µs  
when loaded with 10kin parallel with 100pF.  
The buffer amplifiers are stable with any combination of  
resistive (10k) or capacitive loads.  
______________________________________________________________________________________ 13  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
REF  
R1  
R15  
R0  
D7  
R16  
MAX53  
D6  
D5  
D4  
OUTPUT  
VOLTAGE  
R255  
0V  
DAC CODE  
NEGATIVE  
OFFSET  
LSB DECODER  
D2 D1  
D3  
D0  
DAC A  
Figure 8. DAC Simplified Circuit Diagram  
Figure 9. Effect of Negative Offset (Single Supply)  
P o w e r S e q u e n c in g  
The voltage applied to REF should not exceed V at  
Table 2. Unipolar Code Table  
DD  
any time. If proper power sequencing is not possible,  
connect an external Schottky diode between REF and  
DAC CONTENTS  
ANALOG  
OUTPUT  
MSB  
LSB  
V
to ensure compliance with the absolute maximum  
DD  
ratings. Do not apply signals to the digital inputs before  
the device is fully powered up.  
255  
256  
1 1 1 1  
1 1 1 1  
+V  
(
––––  
)
)
REF  
P o w e r-S u p p ly Byp a s s in g  
a n d Gro u n d Ma n a g e m e n t  
Connect AGND and DGND together at the IC. This  
ground should then return to the highest-quality ground  
129  
1 0 0 0  
1 0 0 0  
0 1 1 1  
0 0 0 1  
0 0 0 0  
1 1 1 1  
+V  
(
––––  
REF  
256  
V
REF  
128  
–––  
2
+V  
(
––––  
)
= +  
available. Bypass V  
with a 0.1µF capacitor, located  
DD  
REF  
256  
as close to V and DGND as possible.  
DD  
127  
Careful PC board layout minimizes crosstalk among  
DAC outputs and digital inputs. Figure 10 shows sug-  
gested circuit board layout to minimize crosstalk.  
+V  
(
––––  
)
)
REF  
256  
1
0 0 0 0  
0 0 0 0  
0 0 0 1  
0 0 0 0  
+V  
(
––––  
REF  
Un ip o la r-Ou t p u t ,  
Tw o -Qu a d ra n t Mu lt ip lic a t io n  
In unipolar operation, the output voltages and the refer-  
ence input are the same polarity. Figure 11 shows the  
MAX533 unipolar configuration, and Table 2 shows the  
unipolar code.  
256  
0V  
1
-8  
Note: 1LSB = (V ) (2 ) = +VREF (––––)  
REF  
256  
14 ______________________________________________________________________________________  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
MAX53  
REFERENCE INPUT  
3
+3V  
13  
V
DD  
REFAB  
MAX533  
2
OUTA  
DAC A  
SYSTEM GND  
OUTC  
OUTB  
1
OUTB  
OUTC  
OUTD  
DAC B  
DAC C  
DAC D  
OUTD  
AGND  
OUTA  
REF  
SERIAL  
INTERFACE  
NOT SHOWN  
16  
15  
DGND  
12  
AGND  
14  
Figure 10. Suggested PC Board Layout for Minimizing  
Crosstalk (Bottom View)  
Figure 11. Unipolar Output Circuit  
_________________________________________________________Fu n c t io n a l Dia g ra m  
V
DD  
DOUT  
REF  
CLR LDAC  
PDE  
DGND  
AGND  
UPO  
DECODE  
CONTROL  
MAX533  
OUTA  
INPUT  
REGISTER A  
DAC  
REGISTER A  
DAC A  
DAC B  
DAC C  
DAC D  
OUTB  
OUTC  
OUTD  
12-BIT  
SHIFT  
REGISTER  
INPUT  
REGISTER B  
DAC  
REGISTER B  
INPUT  
REGISTER C  
DAC  
REGISTER C  
SR  
INPUT  
REGISTER D  
DAC  
REGISTER D  
CONTROL  
SCLK  
CS  
DIN  
______________________________________________________________________________________ 15  
2 .7 V, Lo w -P o w e r, 8 -Bit Qu a d DAC  
w it h Ra il-t o -Ra il Ou t p u t Bu ffe rs  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 6821  
MAX53  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
INCHES  
MILLIMETERS  
DIM  
DIM PINS  
MIN  
0.061  
MAX  
MIN  
MAX  
1.73  
0.25  
1.55  
0.31  
0.25  
MIN MAX MIN  
MAX  
4.98  
0.18  
8.74  
1.40  
8.74  
0.76  
9.98  
A
0.068  
1.55  
16 0.189 0.196 4.80  
16 0.0020 0.0070 0.05  
20 0.337 0.344 8.56  
20 0.0500 0.0550 1.27  
24 0.337 0.344 8.56  
24 0.0250 0.0300 0.64  
28 0.386 0.393 9.80  
28 0.0250 0.0300 0.64  
D
S
D
S
D
S
D
S
D
A1 0.004 0.0098 0.127  
A2 0.055  
0.061  
0.012  
1.40  
0.20  
0.19  
B
C
D
E
e
0.008  
A
0.0075 0.0098  
SEE VARIATIONS  
e
0.150  
0.157  
3.81  
3.99  
A1  
B
0.25 BSC  
0.635 BSC  
0.76  
21-0055A  
H
h
0.230  
0.010  
0.016  
0.244  
0.016  
0.035  
5.84  
0.25  
0.41  
6.20  
0.41  
0.89  
S
L
N
S
α
SEE VARIATIONS  
SEE VARIATIONS  
0°  
8°  
0°  
8°  
E
H
QSOP  
QUARTER  
SMALL-OUTLINE  
PACKAGE  
h x 45°  
α
A2  
N
E
L
C
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX533BC/D

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533BCEE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533BCEE+

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX533BCEE+T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX533BCPE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533BEEE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533BEEE+T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX533BEEE-T

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX533BEPE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX533BEPE+

D/A Converter, 4 Func, Serial Input Loading, 6us Settling Time, PDIP16, PLASTIC, DIP-16
MAXIM

MAX533BMJE

2.7V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM

MAX534

+5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers
MAXIM