MAX536BC/D [MAXIM]

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface; 校准,四通道,12位电压输出DAC,串行接口
MAX536BC/D
型号: MAX536BC/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface
校准,四通道,12位电压输出DAC,串行接口

转换器 数模转换器
文件: 总24页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0230; Rev 2a; 1/97  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Four 12-Bit DACs with Output Buffers  
The MAX536/MAX537 combine four 12-bit, voltage-output  
digital-to-analog converters (DACs) and four precision  
output amplifiers in a space-saving 16-pin package.  
Offset, gain, and linearity are factory calibrated to provide  
the MAX536s ±1LSB total unadjusted error. The MAX537  
operates with ±5V supplies, while the MAX536 uses -5V  
and +12V to +15V supplies.  
Simultaneous or Independent Control of Four  
DACs via a 3-Wire Serial Interface  
Power-On Reset  
SPI/QSPI and Microwire Compatible  
±1LSB Total Unadjusted Error (MAX536)  
Full 12-Bit Performance without Adjustments  
±5V Supply Operation (MAX537)  
Double-Buffered Digital Inputs  
Buffered Voltage Output  
Each DAC has a double-buffered input, organized as  
an input register followed by a DAC register. A 16-bit  
serial word is used to load data into each input/DAC  
register. The serial interface is compatible with either  
SPI/QSPI™ or Microwire, and allows the input and  
DAC registers to be updated independently or simulta-  
neously with a single software command. The DAC reg-  
isters can be simultaneously updated with a hardware  
LDAC pin. All logic inputs are TTL/CMOS compatible.  
16-Pin DIP/SO Packages  
______________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
1
MAX536ACPE  
MAX536BCPE  
MAX536ACWE  
MAX536BCWE  
MAX536BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
Dice*  
± ⁄  
2
________________________Ap p lic a t io n s  
±1  
1
Industrial Process Controls  
Automatic Test Equipment  
Digital Offset and Gain Adjustment  
Motion Control Devices  
± ⁄  
2
±1  
±1  
1
MAX536AEPE -40°C to +85°C  
MAX536BEPE -40°C to +85°C  
MAX536AEWE -40°C to +85°C  
MAX536BEWE -40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
± ⁄  
2
±1  
1
Remote Industrial Controls  
Microprocessor-Controlled Systems  
± ⁄  
2
±1  
1
MAX536AMDE -55°C to +125°C 16 Ceramic SB** ± ⁄  
2
MAX536BMDE -55°C to +125°C 16 Ceramic SB**  
±1  
________________Fu n c t io n a l Dia g ra m  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883.  
__________________P in Co n fig u ra t io n  
TOP VIEW  
V
DGND  
AGND  
DD  
TP  
V
SS  
SDO LDAC  
REFAB  
DECODE  
CONTROL  
MAX536/MAX537  
OUTA  
OUTB  
OUTC  
OUTD  
INPUT  
REG A  
DAC  
REG A  
DAC A  
OUTB  
OUTA  
OUTC  
OUTD  
V
1
2
3
4
5
6
7
8
16  
15  
INPUT  
REG B  
DAC  
REG B  
DAC B  
DAC C  
DAC D  
16-BIT  
SHIFT  
REGISTER  
V
SS  
14 DD  
INPUT  
REG C  
DAC  
REG C  
MAX536  
MAX537  
AGND  
TP  
13  
REFAB  
DGND  
LDAC  
SDI  
REFCD  
12  
11  
10  
9
INPUT  
REG D  
DAC  
REG D  
SDO  
SCK  
CS  
SR  
CONTROL  
SCK  
REFCD  
CS  
SDI  
DIP/SO  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to AGND or DGND  
Continuous Power Dissipation (T = +70°C)  
A
MAX536 ..................................................................-0.3V, +17V  
MAX537 ....................................................................-0.3V, +7V  
Plastic DIP (derate 10.53mW/°C above +70°C) .................842mW  
Wide SO (derate 9.52mW/°C above +70°C).................762mW  
Ceramic SB (derate 10.53mW/°C above +70°C)..................842mW  
Operating Temperature Ranges  
V
to AGND or DGND ...............................................-7V, +0.3V  
SS  
SDI, SCK, CS, LDAC, TP, SDO  
to AGND or DGND.....................................-0.3V, (V  
+ 0.3V)  
+ 0.3V)  
DD SS  
MAX53_AC_E/BC_E.............................................0°C to +70°C  
MAX53_AE_E/BE_E ..........................................-40°C to +85°C  
MAX53_AMDE/BMDE .....................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
REFAB, REFCD to AGND or DGND .............-0.3V, (V  
DD  
OUT_ to AGND or DGND .............................................V , V  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX536  
6/MAX537  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
Bits  
MAX536A  
±1.0  
±2.0  
±2.0  
±3.0  
±2.5  
±3.5  
±3.0  
±4.0  
T
= +25°C  
A
MAX536B  
MAX536AC  
MAX536BC  
MAX536AE  
MAX536BE  
MAX536AM  
MAX536BM  
Total Unadjusted Error  
(Note 1)  
TUE  
LSB  
T
A
= T to T  
MIN MAX  
MAX536A  
MAX536B  
±0.15 ±0.50  
±1  
Integral Nonlinearity  
INL  
LSB  
LSB  
Differential Nonlinearity  
DNL  
Guaranteed monotonic  
±1  
MAX536A  
±2.5  
T
A
= +25°C  
MAX536B  
±5.0  
MAX536AC  
MAX536BC  
MAX536AE  
MAX536BE  
MAX536AM  
MAX536BM  
±5.0  
±7.5  
Offset Error  
mV  
±6.1  
T
A
= T to T  
MIN MAX  
±8.5  
±7.5  
±10.0  
R = ∞  
-0.1  
-0.6  
±1.0  
±1.5  
±2.0  
L
Gain Error  
LSB  
MAX536_C/E  
MAX536_M  
R = 5k  
L
V
Power-Supply  
DD  
PSRR  
PSRR  
T
±0.02 ±0.125  
±0.03 ±0.30  
LSB/V  
LSB/V  
A
= +25°C, 10.8V < V < 16.5V  
DD  
Rejection Ratio  
V
Power-Supply  
SS  
T
= +25°C, -5.5V < V < -4.5V  
SS  
A
Rejection Ratio  
2
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX536 (continued)  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MATCHING PERFORMANCE (T = +25°C)  
A
MAX536A  
MAX536B  
±1.0  
±2.0  
±1.0  
±2.5  
±5.0  
±1.0  
Total Unadjusted Error  
Gain Error  
TUE  
INL  
LSB  
LSB  
mV  
±0.1  
±1.2  
±1.2  
±0.2  
MAX536A  
MAX536B  
Offset Error  
Integral Nonlinearity  
LSB  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
REF  
0.0  
5
V
DD  
– 4  
V
kΩ  
RREF  
Code dependent, minimum at code 555 hex  
MULTIPLYING-MODE PERFORMANCE  
Reference 3dB Bandwidth  
Reference Feedthrough  
V
= 2Vp-p  
700  
kHz  
dB  
REF  
V
= 10Vp-p  
REF  
-100  
at 400Hz  
Input code = all 0s  
V
= 10Vp-p  
REF  
-82  
at 4kHz  
Total Harmonic Distortion  
Plus Noise  
THD + N  
V
REF  
= 2.0Vp-p at 50kHz  
0.012  
%
DIGITAL INPUTS (SDI, SCK, CS, LDAC)  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
1.0  
10  
µA  
pF  
Input Leakage Current  
Input Capacitance (Note 2)  
V
= 0V or V  
IN DD  
DIGITAL OUTPUT (SDO)  
Output Low Voltage  
V
OL  
SDO sinking 5mA  
SDO = 0V to V  
0.18  
0.40  
±10  
V
µA  
Output Leakage Current  
DD  
DYNAMIC PERFORMANCE (R = 5k, C = 100pF)  
L
L
V/µs  
µs  
Voltage-Output Slew Rate  
Output Settling Time  
5
3
5
8
1
To ± ⁄ LSB of full scale  
2
Digital Feedthrough  
nV-s  
nV-s  
Digital Crosstalk (Note 3)  
V
= 5V  
REF  
POWER SUPPLIES  
Positive Supply Range  
Negative Supply Range  
V
10.8  
-4.5  
16.5  
-5.5  
18  
V
V
DD  
V
SS  
T
= +25°C  
8
A
Positive Supply Current  
(Note 4)  
I
DD  
mA  
mA  
T
A
= T  
to T  
25  
MIN  
MAX  
T
A
= +25°C  
-6  
-16  
-23  
Negative Supply Current  
(Note 4)  
I
SS  
T
A
= T  
to T  
MIN  
MAX  
_______________________________________________________________________________________  
3
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS—MAX536 (continued)  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Note 5)  
Internal Power-On Reset  
Pulse Width (Note 2)  
µs  
t
20  
POR  
SCK Clock Period  
t
100  
30  
ns  
ns  
ns  
CP  
SCK Pulse Width High  
SCK Pulse Width Low  
t
CH  
t
30  
CL  
CS Fall to SCK Rise  
Setup Time  
t
20  
10  
ns  
ns  
CSS  
SCK Rise to CS Rise  
Hold Time  
t
CSH  
6/MAX537  
SDI Setup Time  
SDI Hold Time  
t
40  
0
26  
ns  
ns  
DS  
t
DH  
SDO high  
78  
50  
81  
53  
105  
80  
1kpull-up on SDO  
to V  
SCK Rise to SDO Valid  
Propagation Delay (Note 6)  
t
ns  
DO1  
DO2  
=
DD,  
C
50pF  
1kpull-up on SDO  
to V  
SDO low  
SDO high  
SDO low  
LOAD  
110  
85  
SCK Fall to SDO Valid  
Propagation Delay (Note 7)  
t
ns  
ns  
ns  
=
DD,  
C
50pF  
OAD  
L
CS Fall to SDO Enable  
(Note 8)  
t
27  
40  
45  
60  
DV  
CS Rise to SDO Disable  
(Note 9)  
t
TR  
t
Continuous SCK, SCK edge ignored  
SCK edge ignored  
20  
20  
ns  
ns  
SCK Rise to CS Fall Delay  
CS0  
CS1  
CS Rise to SCK Rise  
Hold Time  
t
t
30  
40  
ns  
ns  
LDAC Pulse Width Low  
CS Pulse Width High  
LDAC  
t
CSW  
Note 1: TUE is specified with no resistive load.  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4V; with digital inputs at CMOS levels, I  
DD decreases slightly.  
Note 5: All input signals are specified with t  
= t 5ns. Logic input swing is 0V to 5V.  
R
F
Note 6: Serial data clocked out of SDO on SCK’s falling edge. (SDO is an open-drain output for the MAX536. The MAX537s SDO  
pin has an internal active pull-up.)  
Note 7: Serial data clocked out of SDO on SCK’s rising edge.  
Note 8: SDO changes from High-Z state to 90% of final value.  
Note 9: SDO rises 10% toward High-Z state.  
4
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX537  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
12  
Bits  
LSB  
LSB  
MAX537A  
MAX537B  
±0.15  
±0.50  
±1  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
DNL  
Guaranteed monotonic  
±1  
MAX537A  
±3.0  
±6.0  
±6.0  
±9.0  
±7.0  
±11.0  
±9.0  
±15.0  
±1.5  
±3.0  
T
= +25°C  
A
MAX537B  
MAX537AC  
MAX537BC  
MAX537AE  
MAX537BE  
MAX537AM  
MAX537BM  
Offset Error  
mV  
T
A
= T to T  
MIN MAX  
R = ∞  
-0.3  
-0.8  
L
Gain Error  
LSB  
R = 5kΩ  
L
V
Power-Supply  
DD  
T
= +25°C, 4.5V V 5.5V  
PSRR  
PSRR  
A
±0.01  
±0.02  
±0.5  
±0.7  
LSB/V  
LSB/V  
DD  
Rejection Ratio  
V
Power-Supply  
SS  
T
A
= +25°C, -5.5V V -4.5V  
SS  
Rejection Ratio  
MATCHING PERFORMANCE (T = +25°C)  
A
Gain Error  
±0.1  
±0.3  
±1.25  
±3.0  
±6.0  
±1.0  
LSB  
mV  
MAX537A  
MAX537B  
Offset Error  
±0.3  
Integral Nonlinearity  
INL  
±0.35  
LSB  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
REF  
0.0  
5
V
DD  
- 2.2  
V
kΩ  
RREF  
Code dependent, minimum at code 555 hex  
MULTIPLYING-MODE PERFORMANCE  
Reference 3dB Bandwidth  
V
= 2Vp-p  
700  
-100  
-82  
kHz  
dB  
REF  
V
= 10V  
p-p  
REF  
at 400Hz  
Reference Feedthrough  
Input code = all 0s  
V
REF  
= 10Vp-p at 4kHz  
Total Harmonic Distortion  
Plus Noise  
THD + N  
V
REF  
= 850mVp-p at 100kHz  
0.024  
%
DIGITAL INPUTS (SDI, SCK, CS, LDAC)  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
µA  
pF  
Input Leakage Current  
Input Capacitance (Note 2)  
V
IN  
= 0V or V  
1.0  
10  
DD  
_______________________________________________________________________________________  
5
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS—MAX537 (continued)  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DIGITAL OUTPUT (SDO)  
Output High Voltage  
Output Low Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OH  
SDO sourcing 2mA  
SDO sinking 2mA  
V
– 0.5  
V – 0.25  
DD  
V
V
DD  
V
OL  
0.13  
0.40  
DYNAMIC PERFORMANCE (R = 5k, C = 100pF)  
L
L
V/µs  
µs  
Voltage-Output Slew Rate  
Output Settling Time  
5
5
5
5
1
To ± ⁄ LSB of full scale  
2
Digital Feedthrough  
nV-s  
nV-s  
Digital Crosstalk (Note 3)  
POWER SUPPLIES  
6/MAX537  
Positive Supply Range  
Negative Supply Range  
V
4.5  
5.5  
-5.5  
12  
V
V
DD  
V
SS  
-4.5  
T
= +25°C  
5.5  
A
Positive Supply Current  
(Note 4)  
I
DD  
mA  
mA  
T
A
= T  
to T  
16  
MIN  
MAX  
T
A
= +25°C  
-4.7  
-10  
-14  
Negative Supply Current  
(Note 4)  
I
SS  
T
A
= T  
to T  
MIN  
MAX  
TIMING CHARACTERISTICS (Note 5)  
Internal Power-On Reset  
Pulse Width (Note 2)  
µs  
ns  
ns  
t
50  
POR  
SCK Clock Period  
t
CP  
100  
35  
40  
35  
40  
40  
50  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
SCK Pulse Width High  
SCK Pulse Width Low  
t
CH  
t
ns  
CL  
CS Fall to SCK Rise  
Setup Time  
t
ns  
ns  
CSS  
CSH  
SCK Rise to CS Rise  
Hold Time  
t
0
MAX537_C/E  
MAX537_M  
40  
50  
0
24  
SDI Setup Time  
SDI Hold Time  
t
ns  
ns  
ns  
DS  
t
DH  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
116  
123  
200  
230  
210  
250  
SCK Rise to SDO Valid  
Propagation Delay (Note 6)  
t
t
C
C
= 50pF  
DO1  
DO2  
LOAD  
LOAD  
SCK Fall to SDO Valid  
Propagation Delay (Note 7)  
= 50pF  
ns  
6
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX537 (continued)  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
75  
140  
170  
130  
165  
t
C
C
= 50pF  
= 50pF  
ns  
CS Fall to SDO Enable  
DV  
LOAD  
LOAD  
70  
CS Rise to SDO Disable  
(Note 10)  
t
ns  
ns  
ns  
ns  
ns  
TR  
35  
40  
Continuous SCK,  
SCK edge ignored  
t
t
SCK Rise to CS Fall Delay  
CS0  
CS1  
35  
CS Rise to SCK Rise  
Hold Time  
SCK edge ignored  
40  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
50  
t
LDAC Pulse Width High  
CS Pulse Width High  
LDAC  
70  
100  
125  
t
CSW  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4V; with digital inputs at CMOS levels, I  
DD decreases slightly.  
Note 5: All input signals are specified with t  
= t 5ns. Logic input swing is 0V to 5V.  
R
F
Note 6: Serial data clocked out of SDO on SCK’s falling edge. (SDO is an open-drain output for the MAX536. The MAX537s SDO  
pin has an internal active pull-up.)  
Note 7: Serial data clocked out of SDO on SCK’s rising edge.  
Note 10: When disabled, SDO is internally pulled high.  
_______________________________________________________________________________________  
7
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 6  
MAX536  
MAX536  
MAX536  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
INTEGRAL NONLINEARITY  
ERROR vs. REFERENCE VOLTAGE  
1.0  
20  
10  
0.200  
REFAB SWEPT 2Vp-p  
MONITORED  
V
= -5V  
DAC CODE = ALL 1s  
REFAB = 10Vp-p  
SS  
V
OUTA  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.6  
0.2  
0
R = 10k, C = 100pF  
L
L
V
= +15V  
DD  
-10  
R = NO LOAD, C = 0pF  
L
-20  
-30  
L
-0.2  
V
= +12V  
DD  
--0.6  
-40  
-50  
6/MAX537  
-1.0  
1k  
10k  
100k  
1M  
10M  
0
4
8
12  
16  
10  
100  
200  
FREQUENCY (Hz)  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
MAX536  
MAX536  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
MAX536  
FULL-SCALE ERROR vs. LOAD  
SUPPLY CURRENT vs. TEMPERATURE  
10  
6
0.200  
1
0
DAC CODE = ALL 1s  
REFAB = 5Vp-p  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
I
DD  
V
V
SS  
= +15V  
= -5V  
DD  
-1  
-2  
-3  
2
R = 10k, C = 100pF  
L
L
-2  
R = NO LOAD, C = 0pF  
L
L
I
SS  
-6  
-4  
-5  
-10  
100  
10  
100  
200  
0.1  
1
10  
100  
1000  
60  
20  
TEMPERATURE (°C)  
140  
-60  
-20  
FREQUENCY (kHz)  
LOAD (k)  
MAX536  
MAX536  
REFERENCE FEEDTHROUGH AT 400Hz  
REFERENCE FEEDTHROUGH AT 4kHz  
REFAB,  
5V/div  
REFAB,  
5V/div  
0V  
0V  
OUTA,  
100µV/div  
OUTA,  
200µV/div  
500µs/div  
50µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
8
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 6  
MAX536  
MAX536  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5V/div  
OUTA,  
2V/div  
OUTA,  
5mV/div  
5µs/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 5V, C = 100pF, R = 10kΩ  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX536  
MAX536  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
5V/div  
OUTA,  
-10V OFFSET  
5mV/div  
OUTA,  
AC-COUPLED,  
10mV/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 10V, CS = HIGH,  
SS  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
DD  
DD  
SS  
L
L
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 5V  
_______________________________________________________________________________________  
9
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 7  
MAX537  
INTEGRAL NONLINEARITY  
ERROR vs. REFERENCE VOLTAGE  
2.0  
MAX537  
MAX537  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
20  
10  
0.200  
REFAB SWEPT 2Vp-p  
REFAB = 2.5Vp-p  
V
= +5V  
= -5V  
DD  
V
OUTA  
MONITORED  
1.5  
1.0  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
V
SS  
0
0.5  
0
-10  
R = 10k, C = 100pF  
L
L
-20  
-30  
-0.5  
-1.0  
-1.5  
-2.0  
R = NO LOAD, C = 0pF  
L
L
-40  
-50  
6/MAX537  
1k  
10k  
100k  
1M  
10M  
10  
100  
200  
0
1
2
3
4
5
FREQUENCY (Hz)  
FREQUENCY (kHz)  
V
REF  
(V)  
MAX537  
MAX537  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
MAX537  
FULL-SCALE ERROR vs. LOAD  
SUPPLY CURRENT vs. TEMPERATURE  
2
1
5
3
0.200  
REFAB = 1Vp-p  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
I
DD  
V
V
SS  
= +5V  
= -5V  
DD  
0
1
-1  
R = 10k, C = 100pF  
L
L
-1  
-2  
-3  
-4  
I
SS  
-3  
-5  
R = NO LOAD, C = 0pF  
L
L
100  
60  
20  
TEMPERATURE (°C)  
140  
10  
100  
200  
0.1  
1
10  
100  
1000  
-60  
-20  
FREQUENCY (kHz)  
LOAD (k)  
MAX537  
MAX537  
REFERENCE FEEDTHROUGH AT 4kHz  
REFERENCE FEEDTHROUGH AT 400Hz  
REFAB,  
1V/div  
REFAB,  
1V/div  
0V  
0V  
OUTA,  
OUTA,  
AC-COUPLED,  
100µV/div  
AC-COUPLED,  
100µV/div  
50µs/div  
500µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
10 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 7  
MAX537  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
MAX537  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5mV/div  
OUTA,  
1V/div  
1µs/div  
5µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX537  
MAX537  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
OUTA,  
AC-COUPLED,  
20mV/div  
5mV/div  
100ns/div  
1µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, CS = HIGH,  
SS  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
DD  
SS  
L
L
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 1.25V  
______________________________________________________________________________________ 11  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
OUTB  
OUTA  
FUNCTION  
DAC B Output Voltage  
DAC A Output Voltage  
Negative Power Supply  
Analog Ground  
2
3
V
SS  
4
AGND  
REFAB  
DGND  
5
Reference Voltage Input for DAC A and DAC B  
Digital Ground  
6
Load DAC Input (active low). Driving this asynchronous input low transfers the contents of all input  
registers to their respective DAC registers.  
7
8
LDAC  
SDI  
Serial Data Input. Data is shifted into an internal 16-bit shift register on SCK's rising edge.  
Chip-Select Input (active low). A low level on CS enables the input shift register and SDO.  
On CSs rising edge, data is latched into the appropriate register(s).  
6/MAX537  
9
CS  
10  
11  
SCK  
SDO  
Shift Register Clock Input  
Serial Data Output. SDO is the output of the internal shift register. SDO is enabled when CS is low.  
For the MAX536, SDO is an open-drain output. For the MAX537, SDO has an active pull-up to V  
.
DD  
12  
13  
14  
15  
16  
REFCD  
TP  
Reference Voltage Input for DAC C and DAC D  
Test Pin. Connect to V for proper operation.  
DD  
V
DD  
Positive Power Supply  
DAC D Output Voltage  
DAC C Output Voltage  
OUTD  
OUTC  
_______________De t a ile d De s c rip t io n  
The MAX536/MAX537 contain four 12-bit voltage-output  
DACs that are easily addressed using a simple 3-wire  
serial interface. They include a 16-bit data-in/data-out  
shift register, and each DAC has a double-buffered  
input composed of an input register and a DAC register  
(see the Functional Diagram on the front page).  
R
R
R
V
OUT  
2R  
2R  
2R  
D9  
2R  
2R  
D11  
D0  
D10  
The DACs are “inverted” R-2R ladder networks that  
convert 12-bit digital inputs into equivalent analog out-  
put voltages in proportion to the applied reference-volt-  
age inputs. DAC A and DAC B share the REFAB refer-  
ence input, while DAC C and DAC D share the REFCD  
reference input. The two reference inputs allow different  
full-scale output voltage ranges for each pair of DACs.  
Figure 1 shows a simplified circuit diagram of one of  
the four DACs.  
REF  
AGND  
SHOWN FOR ALL 1s ON DAC  
Figure 1. Simplified DAC Circuit Diagram  
Re fe re n c e In p u t s  
The two reference inputs accept positive DC and AC  
s ig na ls . The volta g e a t e a c h re fe re nc e inp ut s e ts  
the full-scale output voltage for its two correspond-  
ing DACs. The REFAB/REFCD voltage range is 0V to  
a digitally programmable voltage source as:  
= N (V / 4096  
V
OUT_  
B
REF)  
where N is the numeric value of the DACs binary input  
B
(V - 4V) for the MAX536 and 0V to (V - 2.2V) for the  
DD  
DD  
code (0 to 4095) and V  
is the reference voltage.  
REF  
MAX537. The output voltages V _ are represented by  
OUT  
12 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
The input impedance at each reference input is code  
dependent, ranging from a low value of typically 6kΩ  
(with an input code of 0101 0101 0101) to a high value  
of 60k(with an input code of 0000 0000 0000). Since  
the input impe d a nc e a t the re fe re nc e p ins is c ode  
dependent, load regulation of the reference source is  
important.  
Ou t p u t Bu ffe r Am p lifie rs  
All MAX536/MAX537 volta g e outp uts a re inte rna lly  
buffered by precision unity-gain followers with a typical  
slew rate of 5V/µs for the MAX536 and 3V/µs for the  
MAX537.  
With a full-scale transition at the MAX536 output (0V to  
10V or 10V to 0V), the typical settling time to ±1/2LSB is  
3µs when loaded with 5kin parallel with 100pF (loads  
less than 5kdegrade performance).  
The REFAB and REFCD reference inputs have a 5kΩ  
guaranteed minimum input impedance. When the two  
reference inputs are driven from the same source, the  
effective minimum impedance becomes 2.5k. A volt-  
age reference with a load regulation of 0.001%/mA,  
s uc h a s the MAX674, would typ ic a lly d e via te b y  
0.164LSB (0.328LSB worst case) when simultaneously  
driving both MAX536 reference inputs at 10V.  
With a full-scale transition at the MAX537 output (0V to  
2.5V or 2.5V to 0V), the typical settling time to ±1/2LSB  
is 5µs when loaded with 5kin parallel with 100pF  
(loads less than 5kdegrade performance).  
Output dynamic responses and settling performances  
of the MAX536/MAX537 output amplifier are shown in  
the Typical Operating Characteristics.  
An op amp, such as the MAX400 or OP07, can be used  
to buffer the reference to increase reference accuracy.  
The op amps closed-loop output impedance should be  
ke p t b e low 0.05to e ns ure a n e rror of le s s tha n  
0.08LSB. Reference accuracy is also improved by driv-  
ing the REFAB and REFCD pins separately, or by using  
a reference with excellent accuracy and superior load  
regulation, such as the MAX676/MAX677/MAX678.  
Se ria l-Inte rfa c e Configura tions  
The MAX536/MAX537s 3-wire or 4-wire serial interface is  
compatible with both Microwire (Figure 2) and SPI/QSPI  
(Figure 3). In Figures 2 and 3, LDAC can be tied either  
high or low for a 3-wire interface, or used as the fourth  
input with a 4-wire interface. The connection between  
SDO and the serial-interface port is not necessary, but  
may be used for data echo. (Data held in the shift register  
The reference input capacitance is also code depen-  
dent and typically ranges from 125pF to 300pF.  
5V  
5V  
R
P
1k  
R
P
1k  
SS  
SDO*  
MISO*  
SCK  
SK  
SDI  
MOSI  
SCK  
SDI  
SO  
SI*  
SPI/QSPI  
PORT  
MAX536  
MAX537  
SCK  
MAX536  
MAX537  
MICROWIRE  
PORT  
SDO*  
CS  
I/O  
I/O  
CS  
I/O  
I/O  
LDAC**  
LDAC**  
CPOL = 0, CPHA = 0  
*THE SDO-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
*THE SDO-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
THE MAX537 HAS AN INTERNAL ACTIVE PULL-UP TO V  
DD,  
THE MAX537 HAS AN INTERNAL ACTIVE PULL-UP TO V  
DD,  
SO R IS NOT NECESSARY.  
P
SO R IS NOT NECESSARY.  
P
Figure 2. Connections for Microwire  
Figure 3. Connections for SPI/QSPI  
_______________________________________________________________________________________ 13  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
CS  
COMMAND  
EXECUTED  
SCK  
1
8
9
16  
SDI  
D2 D1 D0  
..........  
..........  
D15 D14 D13  
MSB  
LSB  
SDO  
...........  
Q15  
..........  
Q0  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
Figure 4. 3-Wire Serial-Interface Timing Diagram (LDAC = GND or V  
)
DD  
6/MAX537  
CS  
SCK  
SDI  
INPUT REGISTER(S)  
UPDATED  
1
8
9
16  
..........D2 D1 D0  
D15 D14 D13..........  
MSB  
LSB  
SDO  
..........  
Q15  
Q0  
..........  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
LDAC  
DACs  
UPDATED  
Figure 5. 4-Wire Serial-Interface Timing Diagram for Asynchronous DAC Updating Using LDAC  
t
CSW  
CS  
t
CP  
t
t
t
CH  
CSH  
CSS  
t
t
CL  
CSO  
t
CSI  
SCK  
t
DS  
t
DH  
SDI  
t
DO2  
t
DV  
t
TR  
t
DO1  
SDO  
LDAC*  
*USE OF LDAC IS OPTIONAL  
t
LDAC  
Figure 6. Detailed Serial-Interface Timing Diagram  
14 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
of the MAX536/MAX537 can be shifted out of SDO and  
returned to the microprocessor for data verification; data  
in the MAX536/MAX537 input/DAC registers cannot be  
read.)  
clocked into the internal shift register via the serial data input  
pin (SDI) on SCKs rising edge. The maximum guaranteed  
clock frequency is 10MHz. Data is latched into the appropri-  
ate MAX536/MAX537 input/DAC registers on CS’s rising  
edge.  
With a 3-wire interface (CS, SCK, SDI) and LDAC tied  
hig h, the DACs a re d oub le -b uffe re d . In this mod e ,  
depending on the command issued through the serial  
inte rfa c e , the inp ut re g is te r(s ) ma y b e loa d e d  
without affecting the DAC register(s), the DAC register(s)  
can be loaded directly, or all four DAC registers may be  
simultaneously updated from the input registers. With a 3-  
wire interface (CS, SCK, SDI) and LDAC tied low (Figure  
4), the DAC registers remain transparent. Any time an  
input register is updated, the change appears at the DAC  
output with the rising edge of CS.  
Interface timing is optimized when serial data is clocked out  
of the microcontroller/microprocessor on one clock edge  
and clocked into the MAX536/MAX537 on the other edge.  
Table 1 lists the serial-interface programming commands.  
For certain commands, the 12 data bits are “dont cares.  
The programming command Load-All-DACs-From-Shift-  
Register allows all input and DAC registers to be simultane-  
ously loaded with the same digital code from the input shift  
register. The NOP (no operation) command allows the regis-  
te r c onte nts to b e una ffe c te d a nd is us e ful whe n the  
MAX536/MAX537 are configured in a daisy-chain (see the  
Daisy-Chaining Devices section). The command to change  
the clock edge on which serial data is shifted out of the  
MAX536/MAX537 SDO pin also loads data from all input reg-  
isters to their respective DAC registers.  
The 4-wire interface (CS, SCK, SDI, LDAC) is similar to  
the 3-wire interface with LDAC tied high, except LDAC is  
a hardware input that simultaneously and asynchronously  
loads all DAC registers from their respective input regis-  
ters when driven low (Figure 5).  
Se ria l-Inte rfa c e De s c ription  
The MAX536/MAX537 require 16 bits of serial data. Data is  
sent MSB first and can be sent in two 8-bit packets or one  
16-bit word (CS must remain low until 16 bits are trans-  
ferred). The serial data is composed of two DAC address  
bits (A1, A0), two control bits (C1, C0), and the 12 data bits  
D11…D0 (Figure 7). The 4-bit address/control code deter-  
mines the following: 1) the register(s) to be updated and/or  
the status of the input and DAC registers (i.e., whether they  
are in transparent or latch mode), and 2) the edge on which  
data is clocked out of SDO.  
Se ria l-Da ta Output  
The serial-data output, SDO, is the internal shift registers  
output. The MAX536/MAX537 can be programmed so that  
data is clocked out of SDO on SCK’s rising (Mode 1) or  
falling (Mode 0) edge . In Mode 0, output data at SDO lags  
input data at SDI by 16.5 clock cycles, maintaining compati-  
bility with Microwire, SPI/QSPI, and other serial interfaces. In  
Mode 1, output data lags input data by 16 clock cycles. On  
power-up, SDO defaults to Mode 1 timing.  
For the MAX536, SDO is an open-drain output that should be  
pulled up to +5V. The data sheet timing specifications for  
SDO use a 1kpull-up resistor. For the MAX537, SDO is a  
complementary output and does not require an external  
pull-up.  
MSB ..................................................................................LSB  
16 Bits of Serial Data  
Address  
Bits  
Control  
Bits  
Data Bits  
Te s t Pin  
MSB.............................................LSB  
The test pin (TP) is used for pre-production analysis of the IC.  
A1 A0 C1 C0 D11................................................D0  
Connect TP to V for proper MAX536/MAX537 operation.  
DD  
Failure to do so affects DAC operation.  
4 Address/  
12 Data Bits  
Control Bits  
Da is y-Cha ining De vic e s  
Any number of MAX536/MAX537s can be daisy-chained by  
connecting the SDO pin of one device (with a pull-up resis-  
tor, if appropriate) to the SDI pin of the following device in the  
chain (Figure 8).  
Figure 7. Serial-Data Format (MSB Sent First)  
Figure 6 shows the serial-interface timing requirements. The  
chip-select pin (CS) must be low to enable the DACs serial  
interface. When CS is high, the interface control circuitry is  
disabled and the serial data output pin (SDO) is driven high  
(MAX537) or is a high-impedance open drain (MAX536). CS  
must go low at least tCSS before the rising serial clock (SCK)  
edge to properly clock in the first bit. When CS is low, data is  
Since the MAX537s SDO pin has an internal active pull-up,  
the SDO sink/source capability determines the time required  
to discharge/charge a capacitive load. Refer to the serial  
data out V  
and V  
specifications in the Electrical  
OH  
OL  
Characteristics.  
______________________________________________________________________________________ 15  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Table 1. Serial-Interface Programming Commands  
16-BIT SERIAL WORD  
LDAC  
FUNCTION  
A1  
0
A0  
0
C1  
0
C0  
1
D11…D0  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
1
1
1
1
1
1
1
1
X
X
1
Load DAC A input register; DAC output unchanged.  
Load DAC B input register; DAC output unchanged.  
Load DAC C input register; DAC output unchanged.  
Load DAC D input register; DAC output unchanged.  
Load input register A; all DAC registers updated.  
Load input register B; all DAC registers updated.  
Load input register C; all DAC registers updated.  
Load input register D; all DAC registers updated.  
Load all DACs from shift register.  
0
1
0
1
1
0
0
1
1
1
0
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
1
1
6/MAX537  
X
X
0
0
0
0
1
0
0
No operation (NOP)  
X
1
0
Update all DACs from their respective input registers.  
Mode 1 (default condition at power-up), DOUT clocked out on  
SCK’s rising edge. All DACs updated from their respective  
input registers.  
1
1
1
0
1
1
0
0
XXXXXXXXXXXX  
XXXXXXXXXXXX  
X
X
Mode 0, DOUT clocked out on SCK’s falling edge. All DACs  
updated from their respective input registers.  
0
0
1
1
0
1
0
1
X
X
X
X
1
1
1
1
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
0
0
0
0
Load DAC A input register; DAC A is immediately updated.  
Load DAC B input register; DAC B is immediately updated.  
Load DAC C input register; DAC C is immediately updated.  
Load DAC D input register; DAC D is immediately updated.  
“X” = Dont Care. LDAC provides true latch control: when LDAC is low, the DAC registers are transparent; when LDAC is high,  
the DAC registers are latched.  
Additionally, when daisy-chaining devices, the maximum  
clock frequency is limited to:  
Whe n d a is y-c ha ining MAX536s , the d e la y from CS  
low to SCK high (t ) must be the greater of:  
CSS  
t
+ t  
DV DS  
1
f
(max) = ——————————————  
SCK  
or  
2 (t  
+ t - 38ns + t  
)
DO  
RC  
DS  
t
+ t + t - t  
RC DS CSW  
TR  
For e xa mp le , with t  
= 23ns (5V ± 10% s up p ly with  
RC  
where t is the time constant of the external pull-up resistor  
(R ) and the load capacitance (C) at SDO. For t < 20ns,  
RC  
R = 1kand C = 30pF), the maximum clock frequency is  
p
p
CSS  
RC  
8.7MHz.  
t
is simply t + t . Calculate t from the following  
DV DS RC  
Figure 9 shows an alternate method of connecting several  
MAX536/MAX537s. In this configuration, the data bus is  
common to all devices; data is not shifted through a  
daisy-chain. More I/O lines are required in this configu-  
ration because a dedicated chip-select input (CS) is  
required for each IC.  
equation:  
V
PULL-UP  
t
= R (C) ln  
RC  
p
(
)
]
[
V
- 2.4V  
PULL-UP  
where V  
is the voltage to which the pull-up resistor is  
PULL-UP  
connected.  
16 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
+5V  
+5V  
+5V  
R *  
P
1k  
R *  
P
1k  
R *  
P
1k  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
DIN  
SDO  
SDO  
SDO  
CS  
TO OTHER  
SERIAL DEVICES  
* THE MAX537 HAS AN ACTIVE INTERNAL PULL-UP, SO R IS NOT NECESSARY.  
P
Figure 8. Daisy-Chaining MAX536/MAX537s with a 3-Wire Serial Interface  
DIN  
SCK  
LDAC  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
LDAC  
LDAC  
LDAC  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
Figure 9. Multiple devices sharing a common DIN line may be simultaneously updated by bringing LDAC low. CS1, CS2, CS3… are  
driven separately, thus controlling which data are written to devices 1, 2, 3…  
______________________________________________________________________________________ 17  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Bits 6 and 7 are not used. Writes to these bits are ignored.  
__________Ap p lic a t io n s In fo rm a t io n  
The PORT D Data Direction Register (DDRD) deter-  
mines whether the port bits are inputs or outputs. Its  
configuration is shown below:  
In t e rfa c in g t o t h e M6 8 HC1 1 *  
PORT D of the 68HC11 supports SPI. The four registers  
used for SPI operation are the Serial Peripheral Control  
Register, the Serial Peripheral Status Register, the Serial  
Peripheral Data I/O Register, and PORT Ds Data Direction  
Register. These registers have a default starting location of  
$1000.  
BIT  
7
6
5
4
3
2
1
0
NAME  
DDD5 DDD4 DDD3 DDD2 DDD1 DDD0  
On reset, the PORT D register (memory location $1008) is  
cleared and bits 5-0 are configured as general-purpose  
inputs. Setting bit 6 (SPE) of the Serial Peripheral Control  
Register (SPCR) configures PORT D for SPI as follows:  
Setting DDD_ = 0 configures the port bit as an input, while  
setting DDD_ = 1 configures the port bit as an output. Writes  
to bits 6 and 7 have no effect.  
In SPI mode with MSTR = 1, when a PORT D bit is expected  
to be an input (SS, MISO, RXD), the corresponding DDRD bit  
(DDD_) is ignored. If the bit is expected to be an output  
(SCK, MOSI, TXD), the corresponding DDRD bit must be  
set for the bit to be an output.  
BIT  
7
NAME  
6
5
4
3
2
1
0
6/MAX537  
SS  
SCK MOSI MISO TXD RXD  
Table 2. Serial Peripheral Control-Register Definitions  
NAME  
DEFINITION  
Serial Peripheral Interrupt Enable. Clearing SPIE disables the SPI hardware-interrupt request; the SPSR is polled to  
determine when an SPI data transfer is complete. Setting SPIE requests a hardware interrupt when the Serial Peripheral  
Status Registers SPIF bit or MODF bit is set.  
SPIE  
Setting SPE (Serial Peripheral System Enable) configures PORT D for SPI. Clearing SPE configures the port as a general-  
purpose I/O port.  
SPE  
DWOM  
MSTR  
When DWOM is set, the six PORT D outputs are open drain. When DWOM is cleared, the outputs are complementary.  
Master/Slave select option  
Determines clock polarity. When set, the serial clock idles high while data is not being transferred; when cleared, the  
clock idles low.  
CPOL  
CPHA  
Determines the clock phase.  
SPI Clock-Rate Select  
SPR1  
SPR0  
0
0
1
1
0
1
0
1
µP clock divided by 2  
µP clock divided by 4  
µP clock divided by 16  
µP clock divided by 32  
SPR1/0  
Table 3. Serial Peripheral Status-Register Definitions  
NAME  
DEFINITION  
SPIF  
SPIF is set when an SPI data transfer is complete. It is cleared by reading the SPSR and then accessing the SPDR.  
The Write Collision flag is set when a write to the SPDR occurs while a data transfer is in progress. It is cleared by read-  
ing the SPSR and then accessing the SPDR.  
WCOL  
MODF  
The Mode Fault flag detects master/slave conflicts in a multimaster environment. It is set when the mastercontroller  
has its SS line (PORT D) pulled low, and cleared by reading the SPSR followed by a write to the SPCR.  
*M68HC11 is a Motorola microcontroller. General information about the device was obtained from M68HC11 technical manuals.  
18 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
Table 4. M68HC11 Programming Code  
______________________________________________________________________________________ 19  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Un ip o la r Ou t p u t  
SS is an input intended for use in a multimaster environ-  
ment. However, SS or unused PORT D bit RXD, TXD, or  
possibly MISO (if DAC readback is not used) should be  
configured as a general-purpose output and used as CS by  
setting the appropriate Data Direction Register bit.  
For a unipolar output, the output voltages and the reference  
inputs are the same polarity. Figure 10 shows the  
MAX536/MAX537 unipolar output circuit, which is also the typ-  
ical operating circuit. Table 5 lists the unipolar output codes.  
The SPCR configuration (memory location $1028) is shown  
below:  
Bip o la r Ou t p u t  
The MAX536/MAX537 outputs can be configured for  
bipolar operation using Figure 11s circuit. One op amp  
and two resistors are required per DAC. With R1 = R2:  
BIT  
7
6
5
4
3
2
1
0
V
OUT  
= V  
[(2N / 4096) - 1]  
REF B  
NAME  
SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0  
where N is the numeric value of the DACs binary  
B
input code. Table 6 shows digital codes and corre -  
sponding output voltages for Figure 11s circuit.  
SETTING AFTER RESET  
0
0
0
0
0
1
U*  
SETTING FOR TYPICAL SPI COMMUNICATION  
0** 1**  
U*  
Table 5. Unipolar Code Table  
6/MAX537  
0
1
0
1
0
0
DAC CONTENTS  
ANALOG OUTPUT  
*U = Unknown  
**Depends on µP clock frequency.  
MSB  
LSB  
4095  
( ——— )  
4096  
1 1 1 1  
1 1 1 1 1 1 1 1  
+V  
REF  
Always configure the 68HC11 as the master controller  
and the MAX536/MAX537 as the slave device.  
2049  
( ——— )  
4096  
1000  
1 0 0 0  
0 1 1 1  
0000  
0001  
+V  
REF  
Whe n MSTR = 1 in the SPCR, a write to the Se ria l  
Peripheral Data I/O Register (SPDR), located at memory  
location $102A, initiates the transmission/reception of  
data. The data transfer is monitored and the appropri-  
a te fla g s a re s e t in the Se ria l Pe rip he ra l Sta tus  
Register (SPSR).  
2048  
+VREF  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
+V  
REF  
( ——— ) = ———  
4096  
2
2047  
+V  
( ——— )  
4096  
REF  
The SPSR configuration is shown below:  
1
BIT  
7
0 0 0 0  
0 0 0 0  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
+V  
( ——— )  
4096  
REF  
6
5
4
3
0
2
0
1
0
0
0
0V  
NAME  
SPIF WCOL  
MODF  
RESET CONDITIONS  
0
Table 6. Bipolar Code Table  
0
0
0
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
An e xa mp le of 68HC11 p rog ra mming c od e for a  
two-byte SPI transfer to the MAX536/MAX537 is given in  
Table 4. SS is used for CS, the high byte of MAX536/  
MAX537 digital data is stored in memory location $0100,  
and the low byte is stored in memory location $0101.  
2047  
1 1 1 1  
1 1 1 1 1 1 1 1  
+V  
( ——— )  
2048  
REF  
1
1000  
1 0 0 0  
0 1 1 1  
0000  
0001  
+V  
( ——— )  
2048  
REF  
In t e rfa c in g t o Ot h e r Co n t ro lle rs  
When using Microwire, refer to the section on Inter-  
facing to the M68HC11 for guidance, since Microwire  
can be considered similar to SPI when CPOL = 0 and  
CPHA = 0. When interfacing to Intel’s 80C51/80C31  
microcontroller family, use bit-pushing to configure a  
desired port as the MAX536/MAX537 interface port. Bit-  
pushing involves arbitrarily assigning I/O port bits as  
interface control lines, and then writing to the port each  
time a signal transition is required.  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
0V  
1
-V  
REF  
( ——— )  
2048  
2047  
( ——— )  
2048  
0 0 0 0  
0 0 0 0  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
1
-V  
REF  
2048  
( ——— ) = -V  
-V  
REF  
REF  
2048  
NOTE: 1LSB = (V ) (  
)
REF  
4096  
20 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
+15V (+5V)  
REFERENCE INPUTS  
MAX536  
MAX537  
MAX536  
MAX537  
13  
TP  
5
12  
REFCD  
14  
V
REFAB  
DD  
R1  
R2  
V
REF  
2
DAC A  
DAC B  
OUTA  
OUTB  
+15V (+5V)  
1
V
OUT  
DAC  
OUTPUT  
16  
15  
DAC C  
DAC D  
OUTC  
OUTD  
–5V  
R1 = R2 = 10k0.1%  
V
AGND  
4
DGND  
6
SS  
NOTES: ( ) ARE FOR MAX537.  
IS THE SELECTED REFERENCE INPUT FOR THE MAX536/MAX537.  
3
V
REF  
-5V  
NOTE: ( ) ARE FOR MAX537.  
Figure 10. Unipolar Output Circuit  
Figure 11. Bipolar Output Circuit  
+15V  
(+5V)  
+15V (+5V)  
14  
AC  
REFERENCE  
INPUT  
15k  
5
13  
TP  
+4V (+750mV)  
REFAB  
V
DD  
5
14  
13  
TP  
10k  
REFAB  
V
DD  
+
-4V  
V
(-750mV)  
IN  
2
DAC A  
OUTA  
-
1
DAC B  
OUTB  
AGND  
4
MAX536/MAX537  
MAX536/MAX537  
+
V
DGND  
6
SS  
V
SS  
AGND  
DGND  
V
BIAS  
3
3
4
6
-
-5V  
-5V  
NOTES: ( ) ARE FOR MAX537.  
DIGITAL INPUTS NOT SHOWN.  
NOTES: ( ) ARE FOR MAX537.  
DIGITAL INPUTS NOT SHOWN.  
Figure 12. AC Reference Input Circuit  
Figure 13. AGND Bias Circuit  
______________________________________________________________________________________ 21  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Offs e t t in g AGND  
AGND can be biased from DGND to the reference voltage  
to provide an arbitrary nonzero output voltage for a zero  
input code (Figure 13). The output voltage V  
is:  
OUTA  
V
= V  
+ N (V  
OUTA  
BIAS B IN)  
3
4
V
SS  
where V  
is the positive offset voltage (with respect  
to DGND) applied to AGND, and N is the numeric  
value of the DACs binary input code. Since AGND is  
common to all four DACs, all outputs will be offset by  
BIAS  
B
MAX536  
MAX537  
1N5817  
V
BIAS  
in the same manner. As the voltage at AGND  
increases, the DACs resolution decreases because its  
full-scale voltage swing is effectively reduced. AGND  
should not be biased more negative than DGND.  
AGND  
P o w e r-S u p p ly Co n s id e ra t io n s  
On power-up, V should come up first, V next, then  
SS  
DD  
6/MAX537  
REFAB or REFCD. If supply sequencing is not possible,  
tie an external Schottky diode between V and AGND  
SS  
Figure 14. When V and V cannot be sequenced, tie a  
SS  
DD  
as shown in Figure 14. On power-up, all input and DAC  
registers are cleared (set to zero code) and SDO is in  
Mode 0 (serial data is shifted out of SDO on the clocks  
rising edge).  
Schottky diode between V and AGND.  
SS  
Us in g a n AC Re fe re n c e  
In applications where the reference has AC signal compo-  
nents, the MAX536/MAX537 have multiplying capability  
within the reference input range specifications. Figure 12  
shows a technique for applying a sine-wave signal to the  
reference input where the AC signal is offset before being  
applied to REFAB/REFCD. The reference voltage must  
never be more negative than DGND.  
For rated MAX536 performance, V  
higher than REFAB/REFCD and should be between  
10.8V and 16.5V. When using the MAX537, V should  
be at least 2.2V higher than REFAB/REFCD and should  
should be 4V  
DD  
DD  
be between 4.75V and 5.5V. Bypass both V and V  
DD  
SS  
with a 4.7µF capacitor in parallel with a 0.1µF capacitor  
to AGND. Use short lead lengths and place the bypass  
capacitors as close to the supply pins as possible.  
The MAX536s tota l ha rmonic d is tortion p lus nois e  
(THD + N) is typically less than 0.012%, given a 5Vp-p sig-  
nal swing and input frequencies up to 35kHz, or given a  
2Vp-p swing and input frequencies up to 50kHz. The typi-  
cal -3dB frequency is 700kHz as shown in the Typical  
Operating Characteristics graphs.  
Gro u n d in g a n d La yo u t Co n s id e ra t io n s  
Digital or AC transient signals between AGND and  
DGND c a n c re a te nois e a t the a na log outp uts . Tie  
AGND and DGND together at the DAC, then tie this  
point to the highest quality ground available.  
For the MAX537, with a n inp ut s ig na l a mp litud e of  
0.85mVp-p, THD + N is typically less than 0.024% with a  
5kload in parallel with 100pF and input frequencies up to  
100kHz, or with a 2kload in parallel with 100pF and input  
frequencies up to 95kHz.  
Good printed circuit board ground layout minimizes  
crosstalk between DAC outputs, reference inputs, and  
digital inputs. Reduce crosstalk by keeping analog  
lines away from digital lines. Wire-wrapped boards are  
not recommended.  
22 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
INL  
(LSB)  
V
DD  
OUTA OUTB OUTC OUTD  
PART  
TEMP. RANGE PIN-PACKAGE  
1
MAX537ACPE  
MAX537BCPE  
MAX537ACWE  
MAX537BCWE  
MAX537BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
Dice*  
± ⁄  
2
VSS  
AGND  
REFAB  
±1  
1
± ⁄  
2
±1  
±1  
1
TP  
MAX537AEPE -40°C to +85°C  
MAX537BEPE -40°C to +85°C  
MAX537AEWE -40°C to +85°C  
MAX537BEWE -40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
± ⁄  
2
±1  
1
± ⁄  
2
±1  
1
REFCD  
MAX537AMDE -55°C to +125°C 16 Ceramic SB**  
MAX537BMDE -55°C to +125°C 16 Ceramic SB**  
± ⁄  
2
±1  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883.  
0. 309"  
(7. 848mm)  
DGND  
SDO  
LDAC  
SDI  
SCK  
CS  
0. 139"  
(3. 5306mm)  
TRANSISTOR COUNT: 5034  
SUBSTRATE CONNECTED TO V  
DD  
______________________________________________________________________________________ 23  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
________________________________________________________P a c k a g e In fo rm a t io n  
6/MAX537  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY