MAX545BEPD [MAXIM]

+5V, Serial-Input, Voltage-Output, 14-Bit DACs; + 5V ,串行输入,电压输出, 14位DAC
MAX545BEPD
型号: MAX545BEPD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+5V, Serial-Input, Voltage-Output, 14-Bit DACs
+ 5V ,串行输入,电压输出, 14位DAC

文件: 总12页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1088; Rev 3; 12/99  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
General Description  
Features  
The MAX544/MAX545 are serial-input, voltage-output,  
14-bit digital-to-analog converters (DACs) that operate  
from a single +5V supply. They provide 14-bit perfor-  
mance (±±.5ꢀLS ꢁIꢀ and ±±.0ꢀLS DIꢀ) over tempera-  
ture without any adjustments. The DAC output is  
unbuffered, resulting in a low supply current of ±.3mA  
and a low offset error of ±.6mV.  
Full 14-Bit Performance Without Adjustments  
+5V Single-Supply Operation  
Low Power: 1.5mW  
1µs Settling Time  
Unbuffered Voltage Output Directly Drives 60k  
Loads  
The DAC output range is ±V to V  
For bipolar opera-  
REF.  
SPI/QSPI/MICROWIRE-Compatible Serial Interface  
tion, matched scaling resistors are provided in the  
MAX545 for use with an external precision op amp  
(such as the MAX4±±), generating a ±V  
Power-On Reset Circuit Clears DAC Output to 0V  
output  
REF  
(unipolar mode)  
swing. The MAX545 also includes Kelvin-sense con-  
nections for the reference and analog ground pins to  
reduce layout sensitivity.  
Schmitt-Trigger Inputs for Direct Optocoupler  
Interface  
Pin-Compatible 16-Bit Upgrades  
A 16-bit serial word is used to load data into the DAC  
latch. The 1±MHz, 3-wire serial interface is compatible  
with LPꢁ™/QLPꢁ™/MꢁCROWꢁRE™, and it also interfaces  
directly with optocouplers for applications requiring isola-  
tion. A power-on reset circuit clears the DAC output to ±V  
(unipolar mode) when power is initially applied.  
(MAX541/MAX542)  
Ordering Information  
INL  
PART  
TEMP. RANGE PIN-PACKAGE  
The MAX544 is available in 8-pin plastic DꢁP and LO  
packages. The MAX545 is available in 14-pin plastic  
DꢁP and LO packages.  
(LSB)  
±1/ꢂ  
±1  
MAX544ACPA  
MAX544SCPA  
MAX544ACLA  
MAX544SCLA  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
8 Plastic DꢁP  
8 Plastic DꢁP  
8 LO  
±1/ꢂ  
±1  
Applications  
Digital Offset and Gain Adjustment  
ꢁnstrumentation  
8 LO  
Ordering Information continued at end of data sheet.  
ꢁndustrial Process Control  
Automated Test Equipment  
Data-Acquisition Lystems  
Functional Diagrams  
V
DD  
Pin Configurations  
RFB  
INV  
TOP VIEW  
MAX545  
R
FB  
R
INV  
REFF  
REFS  
V
14  
RFB  
OUT  
1
2
3
4
5
6
7
DD  
14-BIT DAC  
OUT  
13 INV  
AGNDF  
AGNDS  
MAX545  
AGNDF  
AGNDS  
REFS  
REFF  
12 DGND  
1
2
3
4
8
7
6
5
V
DD  
OUT  
AGND  
REF  
DATA LATCH  
CS  
LDAC  
SCLK  
DIN  
11  
10  
9
LDAC  
DIN  
DGND  
DIN  
CONTROL  
LOGIC  
MAX544  
SERIAL INPUT REGISTER  
N.C.  
CS  
SCLK  
CS  
8
SCLK  
DGND  
DIP/SO  
DIP/SO  
Functional Diagrams continued at end of data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
DD  
CS, LCꢀK, DꢁI, LDAC to DGID ..............................-±.3V to +6V  
REF, REFF, REFL to AGID........................-±.3V to (V + ±.3V)  
AGID, AGIDF, AGIDL to DGID .......................-±.3V to +±.3V  
V
to DGID ...........................................................-±.3V to +6V  
14-Pin Plastic DꢁP (derate 1±.±±mW/°C above +7±°C)...8±±mW  
14-Pin LO (derate 8.33mW/°C above +7±°C) ...............667mW  
14-Pin Ceramic LS (derate 1±.±±mW/°C above +7±°C...8±±mW  
Operating Temperature Ranges  
DD  
OUT, ꢁIV to AGID DGID .......................................-±.3V to V  
RFS to AGID DGID...................................................-6V to +6V  
Maximum Current into Any Pin............................................5±mA  
Continuous Power Dissipation (T = +7±°C)  
A
8-Pin Plastic DꢁP (derate 0.±0mW/°C above +7±°C).....7ꢂ7mW  
8-Pin LO (derate 5.88mW/°C above +7±°C) .................471mW  
MAX544 _C_ A/MAX545_C_D ..............................±°C to +7±°C  
MAX544 _E_ A/MAX545_E_D............................-4±°C to +85°C  
MAX545SMJD .................................................-55°C to +1ꢂ5°C  
Ltorage Temperature Range.............................-65°C to +15±°C  
ꢀead Temperature (soldering, 1±s) .................................+3±±°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V ± 5%, V  
= +ꢂ.5V, AGID = DGID = ±, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD  
REF  
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION (R = )  
Resolution  
I
14  
Sits  
MAX54_A  
MAX54_S  
±±.15  
±±.15  
±±.15  
±±.5  
±1  
ꢁntegral Ionlinearity  
ꢁIꢀ  
V
= 5V  
ꢀLS  
DD  
Differential Ionlinearity  
Zero-Code Offset Error  
Zero-Code Tempco  
Gain Error (Iote 1)  
DIꢀ  
ZLE  
Guaranteed monotonic  
±±.0  
±±.6  
ꢀLS  
mV  
ZL  
±±.±5  
ppm/°C  
ꢀLS  
TC  
±5  
Gain-Error Tempco  
±±.1  
6.ꢂ5  
1.±  
ppm/°C  
kΩ  
DAC Output Resistance  
R
(Iote ꢂ)  
MAX545  
OUT  
R
/R  
FS ꢁIV  
Sipolar Resistor Matching  
Ratio error  
±±.±3  
±1±  
%
ꢀLS  
Sipolar Zero Offset Error  
Sipolar Zero Tempco  
Power-Lupply Rejection  
MAX545  
MAX545  
SZL  
±±.5  
ppm/°C  
ꢀLS  
TC  
PLR  
4.75V V  
5.ꢂ5V  
±1.±  
3.±  
DD  
REFERENCE INPUT  
Reference ꢁnput Range  
V
R
(Iote 3)  
ꢂ.±  
11.5  
0.±  
V
REF  
Unipolar mode  
Reference ꢁnput Resistance  
(Iote 4)  
kΩ  
REF  
MAX545, bipolar mode  
DYNAMIC PERFORMANCE—ANALOG SECTION (R = , unipolar mode)  
Voltage-Output Llew Rate  
Output Lettling Time  
DAC Glitch ꢁmpulse  
LR  
C = 1±pF (Iote 5)  
To ±1/ꢀLS of FL, C = 1±pF  
ꢂ5  
1
V/µs  
µs  
Major-carry transition  
1±  
nVs  
Code = ±±±± hex; CS = V ; LDAC = ±V;  
DD  
Digital Feedthrough  
1±  
nVs  
LCꢀK, DꢁI = ±V to V  
levels  
DD  
2
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ± 5%, V  
= +ꢂ.5V, AGID = DGID = ±, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD  
REF  
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE—REFERENCE SECTION  
Reference -3dS Sandwidth  
Reference Feedthrough  
Lignal-to-Ioise Ratio  
SW  
Code = FFFC hex  
1
1
MHz  
mVp-p  
dS  
Code = ±±±± hex, V  
= 1Vp-p at 1±±kHz  
REF  
LIR  
83  
75  
1ꢂ±  
Code = ±±±± hex  
Code = FFFC hex  
Reference ꢁnput Capacitance  
C
ꢁI  
pF  
STATIC PERFORMANCE—DIGITAL INPUTS  
ꢁnput High Voltage  
ꢁnput ꢀow Voltage  
ꢁnput Current  
V
ꢂ.4  
V
V
ꢁH  
V
±.8  
±1  
1±  
ꢁꢀ  
ꢁI  
V
= ±  
µA  
pF  
V
ꢁI  
ꢁnput Capacitance  
Hysteresis Voltage  
POWER SUPPLY  
Positive Lupply Range  
Positive Lupply Current  
Power Dissipation  
C
(Iote 6)  
ꢁI  
V
±.4±  
H
V
DD  
4.75  
5.ꢂ5  
1.1  
V
±.3  
1.5  
mA  
mW  
DD  
PD  
TIMING CHARACTERISTICS  
(V  
= +5V ± 5%, V  
= +ꢂ.5V, AGID = DGID = ±, CMOL inputs, T = T  
to T  
, unless otherwise noted.)  
MAX  
DD  
REF  
A
MꢁI  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
LCꢀK Frequency  
f
1±  
LCꢀK  
LCꢀK Pulse Width High  
LCꢀK Pulse Width ꢀow  
CS ꢀow to LCꢀK High Letup  
CS High to LCꢀK High Letup  
LCꢀK High to CS ꢀow Hold  
LCꢀK High to CS High Hold  
DꢁI to LCꢀK High Letup  
DꢁI to LCꢀK High Hold  
LDAC Pulse Width  
t
45  
45  
45  
45  
3±  
45  
4±  
±
CH  
t
Cꢀ  
ns  
t
t
t
ns  
CLL±  
CLL1  
ns  
(Iote 6)  
MAX545  
ns  
CLH±  
CLH1  
t
ns  
t
ns  
DL  
t
ns  
DH  
t
5±  
5±  
ns  
LDAC  
t
MAX545 (Iote 6)  
ns  
CS High to LDAC ꢀow Letup  
ꢀDACL  
V
High to CS ꢀow  
DD  
ꢂ±  
µs  
(power-up delay)  
Note 1: Gain Error tested at V  
= ꢂ.±V, ꢂ.5V, and 3.±V.  
REF  
Note 2: R  
tolerance is typically ±±%.  
OUT  
Note 3: Min/max range guaranteed by gain-error test. Operation outside min/max limits will result in degraded performance.  
Note 4: Reference input resistance is code dependent, minimum at 8554 hex.  
Note 5: Llew-rate value is measured from ±% to 63%.  
Note 6: Guaranteed by design. Iot production tested.  
_______________________________________________________________________________________  
3
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Typical Operating Characteristics  
(V  
= 5V, V  
= +ꢂ.5V, T = +ꢂ5°C, unless otherwise noted.)  
REF  
A
DD  
SUPPLY CURRENT  
vs. REFERENCE VOLTAGE  
ZERO-CODE OFFSET ERROR  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
0.29  
0.28  
0.27  
0.26  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
-0.05  
-0.10  
-0.15  
-0.20  
0
1
2
3
4
5
6
-60  
-20  
20  
60  
100  
140  
-40 -20  
0
20  
40  
60  
80 100  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
0.20  
0.15  
0.10  
0.05  
0
0.30  
0.20  
0.10  
0
0.30  
0.20  
0.10  
0
+DNL  
-DNL  
+INL  
-0.05  
-0.10  
-0.15  
-0.20  
-0.10  
-0.20  
-0.30  
-0.10  
-0.20  
-0.30  
-INL  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. CODE  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
REFERENCE CURRENT  
vs. CODE  
0.250  
0.125  
0
0.250  
200  
160  
120  
80  
0.125  
0
-0.125  
-0.125  
-0.250  
40  
0
-0.250  
0
0
5k  
10k  
15k  
20k  
5k  
10k  
15k  
0
4k  
8k  
12k  
16k  
20k  
20k  
DAC CODE  
DAC CODE  
DAC CODE  
4
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= +ꢂ.5V, T = +ꢂ5°C, unless otherwise noted.)  
REF  
A
DD  
FULL-SCALE STEP RESPONSE  
(f = 20MHz)  
FULL-SCALE STEP RESPONSE  
(f  
= 10MHz)  
SCLK  
SCLK  
C = 10pF  
L
L
C = 10pF  
L
L
R =   
R = ∞  
OUT  
500mV/div  
OUT  
500mV/div  
2µv  
400ns/div  
1µs/div  
MAJOR-CARRY OUTPUT GLITCH  
DIGITAL FEEDTHROUGH  
CS  
(5V/div)  
SCLK  
5V/div  
OUT  
OUT  
(AC-COUPLED,  
50mV/div)  
(AC-COUPLED,  
100mV/div)  
MAX544/MAX545-11  
MAX544/MAX545-12  
2µs/div  
2µs/div  
CODE = 0000 hex  
Pin Descriptions  
MAX544  
PIN  
NAME  
FUNCTION  
1
3
4
5
6
7
8
OUT  
AGID  
REF  
DAC Output Voltage  
Analog Ground  
Voltage Reference ꢁnput. Connect to external +ꢂ.5V reference.  
Chip-Lelect ꢁnput  
CS  
LCꢀK  
DꢁI  
Lerial-Clock ꢁnput. Duty cycle must be between 4±% and 6±%.  
Lerial-Data ꢁnput  
Digital Ground  
DGID  
V
DD  
+5V Lupply Voltage  
_______________________________________________________________________________________  
5
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Pin Descriptions (continued)  
MAX545  
PIN  
1
NAME  
RFS  
FUNCTION  
Feedback Resistor. Connect to external op amp’s output in bipolar mode.  
DAC Output Voltage  
OUT  
3
AGIDF  
AGIDL  
REFL  
REFF  
CS  
Analog Ground (force)  
4
Analog Ground (sense)  
5
Voltage Reference ꢁnput (sense). Connect REFL to external +ꢂ.5V reference.  
Voltage Reference ꢁnput (force). Connect REFF to external +ꢂ.5V reference.  
Chip-Lelect ꢁnput  
6
7
8
LCꢀK  
I.C.  
Lerial-Clock ꢁnput. Duty cycle must be between 4±% and 6±%.  
Io Connection. Iot internally connected.  
Lerial-Data ꢁnput  
0
1±  
11  
1ꢂ  
DꢁI  
LDAC  
DGID  
LDAC ꢁnput. A falling edge updates the internal DAC latch.  
Digital Ground  
Junction of internal scaling resistors. Connect to external op amp’s inverting input in  
bipolar mode.  
13  
14  
ꢁIV  
V
DD  
+5V Lupply Voltage  
t
t
CSH1  
LDACS  
CS  
t
CSHO  
t
CSS1  
t
t
t
CL  
CSSO  
CH  
SCLK  
t
DH  
t
DS  
D13  
D12  
S0  
DIN  
LDAC*  
t
LDAC  
*MAX545 ONLY  
Figure 1. Timing Diagram  
6
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
+5V  
+2.5V  
10µF  
0.1µF  
0.1µF  
MC68XXXX  
V
REF (REFF) (REFS)  
DD  
UNIPOLAR  
OUT  
PCS0  
MOSI  
SCLK  
CS  
MAX495  
EXTERNAL OP AMP  
OUT  
DIN  
MAX544/MAX545  
SCLK  
(GND)  
(LDAC)  
DGND  
AGND_  
(
) ARE FOR MAX545 ONLY  
Figure 2a. Typical Operating Circuit—Unipolar Output  
+5V  
+2.5V  
10µF  
0.1µF  
0.1µF  
+5V  
RFB  
MC68XXXX  
V
REFS  
REFF  
DD  
R
INV  
PCS0  
MOSI  
SCLK  
IC1  
CS  
R
INV  
FB  
BIPOLAR  
OUT  
EXTERNAL OP AMP  
MAX400  
DIN  
OUT  
SCLK  
LDAC  
DGND  
MAX545  
-5V  
(GND)  
AGNDF  
AGNDS  
Figure 2b. Typical Operating Circuit—Bipolar Output  
major-carry transitions. ꢁt also lowers the DAC output  
impedance by a factor of eight compared to a standard  
R-ꢂR ladder, allowing unbuffered operation in medium-  
load applications.  
Detailed Description  
The MAX544/MAX545 voltage-output, 14-bit digital-to-  
analog converters (DACs) offer full 14-bit performance  
with less than ±.5ꢀLS integral linearity error and less  
than ±.0ꢀLS differential linearity error, thus ensuring  
monotonic performance. Lerial-data transfer minimizes  
the number of package pins required.  
The MAX545 provides matched bipolar offset resistors,  
which connect to an external op amp for bipolar output  
swings (Figure ꢂb). For optimum performance, the  
MAX545 also provides a set of Kelvin connections to  
the voltage-reference and analog-ground inputs.  
The MAX544/MAX545 are composed of two matched  
DAC sections, with an inverted R-ꢂR DAC forming the  
ꢀLSs and the four MLSs derived from 15 identically  
matched resistors. This architecture allows the lowest  
glitch energy to be transferred to the DAC output on  
_______________________________________________________________________________________  
7
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Digital Interface  
The MAX544/MAX545’s digital interface is a standard  
3-wire connection compatible with LPꢁ/QLPꢁ/  
MꢁCROWꢁRE interfaces. The chip-select input (CS)  
frames the serial data loading at the data-input pin  
(DꢁI). ꢁmmediately following CS’s high-to-low transition,  
the data is shifted synchronously and latched into the  
input register on the rising edge of the serial clock input  
(LCꢀK). After 16 bits (14 data bits, plus ꢂ sub-bits set to  
zero) have been loaded into the serial input register, it  
transfers its contents to the DAC latch on CS’s low-to-  
high transition (Figure 3a). Iote that if CS is not kept  
low during the entire 16 LCꢀK cycles, data will be cor-  
rupted. ꢁn this case, reload the DAC latch with a new  
16-bit word.  
External Reference  
The MAX544/MAX545 operate with external voltage ref-  
erences from ꢂV to 3V. The reference voltage deter-  
mines the DAC’s full-scale output voltage. Kelvin  
connections are provided with the MAX545 for optimum  
performance. The ꢂ.5V MAX873A, with ±15mV initial  
accuracy and a 7ppm/°C (max) temperature coeffi-  
cient, is a good choice.  
Power-On Reset  
The MAX544/MAX545 have a power-on reset circuit to  
set the DAC’s output to ±V in unipolar mode when V  
DD  
is first applied. This ensures that unwanted DAC output  
voltages will not occur immediately following a system  
power-up, such as after a loss of power. ꢁn bipolar  
mode, the DAC output is set to -V  
.
REF  
Alternatively, for the MAX545, LDAC allows the DAC  
latch to update asynchronously by pulling LDAC low  
after CS goes high (Figure 3b). Hold LDAC high during  
the data-loading sequence.  
CS  
DAC  
UPDATED  
SCLK  
SUB-BITS  
DIN  
D13 D12 D11 D10 D9 D8 D7 D6  
MSB  
D5 D4 D3 D2 D1 D0 S1 S0  
LSB  
Figure 3a. MAX544/MAX545 3-Wire Interface Timing Diagram (LDAC = DGND for MAX545)  
CS  
SCLK  
SUB-BITS  
DIN  
D13 D12 D11 D10 D9 D8 D7 D6  
MSB  
D5 D4 D3 D2 D1 D0 S1 S0  
LSB  
LDAC  
DAC  
UPDATED  
Figure 3b. MAX545 4-Wire Interface Timing Diagram  
8
_______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Unbuffered Operation  
Unbuffered operation reduces power consumption as  
Applications Information  
Reference and Analog Ground Inputs  
The MAX544/MAX545 operate with external voltage ref-  
erences from ꢂV to 3V, and maintain 14-bit performance  
if certain guidelines are followed when selecting and  
applying the reference. ꢁdeally, the reference’s  
temperature coefficient should be less than 1.5ppm/°C to  
maintain 14-bit accuracy to within 1ꢀLS over the ±°C to  
+7±°C commercial temperature range. Lince this convert-  
er is designed as an inverted R-ꢂR voltage-mode DAC,  
the input resistance seen by the voltage reference is code  
dependent. The worst-case input-resistance variation is  
from 11.5k(at code 8554 hex) to ꢂ±±k(at code ±±±±  
hex). The maximum change in load current for a +ꢂ.5V  
reference is +ꢂ.5V / 11.5k= ꢂ17µA; therefore, the  
required load regulation is ꢂ8ppm/mA for a maximum  
error of ±.1ꢀLS. This implies a reference output imped-  
ance of less than 71m. ꢁn addition, the signal-path  
impedance from the voltage reference to the reference  
input must be kept low because it contributes directly to  
the load-regulation error.  
well as offset error contributed by the external output  
buffer. The R-ꢂR DAC output is available directly at  
OUT, allowing 14-bit performance from +V  
to AGID  
REF  
without degradation at zero scale. The DAC’s output  
impedance is also low enough to drive medium loads  
(R > 6±k) without degradation of ꢁIꢀ or DIꢀ; only  
the gain error is increased by externally loading the  
DAC output.  
External Output Buffer Amplifier  
The requirements on the external output buffer amplifier  
change whether the DAC is used in unipolar or bipolar  
operational mode. ꢁn unipolar mode, the output amplifi-  
er is used in a voltage-follower connection. ꢁn bipolar  
mode (MAX545 only), the amplifier operates with the  
internal scaling resistors (Figure ꢂb). ꢁn each mode, the  
DAC’s output resistance is constant and is independent  
of input code; however, the output amplifier’s input  
impedance should still be as high as possible to mini-  
mize gain errors. The DAC’s output capacitance is also  
independent of input code, thus simplifying stability  
requirements on the external amplifier.  
The requirement for a low-impedance voltage reference  
is met with capacitor bypassing at the reference inputs  
and ground. A ±.1µF ceramic capacitor with short leads  
between REFF and AGIDF (MAX545), or REF and  
AGID (MAX544), provides high-frequency bypassing.  
A surface-mount ceramic chip capacitor is preferred  
because it has the lowest inductance. An additional  
1±µF between REFF and AGIDF (MAX545), or REF  
and AGID (MAX544), provides low-frequency bypass-  
ing. A low-ELR tantalum, film, or organic semiconductor  
capacitor works well. ꢀeaded capacitors are accept-  
able because impedance is not as critical at lower fre-  
quencies. The circuit can benefit from even larger  
bypassing capacitors, depending on the stability of the  
external reference with capacitive loading. ꢁf separate  
force and sense lines are not used, tie the appropriate  
force and sense pins together close to the package.  
ꢁn bipolar mode, a precision amplifier operating with  
dual power supplies (such as the MAX4±±) provides  
the ±V  
output range. ꢁn single-supply applications,  
REF  
precision amplifiers with input common-mode ranges  
including AGID are available; however, their output  
swings do not normally include the negative rail  
(AGID) without significant degradation of performance.  
A single-supply op amp, such as the MAX405, is suit-  
able if the application does not use codes near zero.  
Lince the ꢀLSs for a 14-bit DAC are extremely small  
(15ꢂ.6µV for V  
= ꢂ.5V), pay close attention to the  
REF  
external amplifier’s input specification. The input offset  
voltage can degrade the zero-scale error and might  
require an output offset trim to maintain full accuracy if  
the offset voltage is greater than 1/ꢂꢀLS. Limilarly, the  
input bias current multiplied by the DAC output resis-  
tance (typically 6.ꢂ5k) contributes to zero-scale error.  
Temperature effects also must be taken into considera-  
tion. Over the ±°C to +7±°C commercial temperature  
range, the offset voltage temperature coefficient (refer-  
enced to +ꢂ5°C) must be less than 1.7µV/°C to add  
less than 1/ꢂꢀLS of zero-scale error. The external  
AGID must also be low impedance, as load-regulation  
errors will be introduced by excessive AGID resis-  
tance. As in all high-resolution, high-accuracy applica-  
tions, separate analog and digital ground planes yield  
the best results. Tie DGID to AGID at the AGID pin to  
form the “star” ground for the DAC system. Always refer  
remote DAC loads to this system ground for the best  
possible performance.  
_______________________________________________________________________________________  
9
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
amplifier’s input resistance forms a resistive divider with  
the DAC output resistance, which results in a gain  
error. To contribute less than 1/ꢂꢀLS of gain error, the  
input resistance typically must be greater than:  
Unipolar Configuration  
Figure ꢂa shows the MAX544/MAX545 configured for  
unipolar operation with an external op amp. The op amp  
is set for unity gain, and Table 1 lists the codes for this  
circuit.  
1
1
6.ꢂ5kΩ ÷  
= ꢂ±5MΩ  
14  
Bipolar Configuration  
Figure ꢂb shows the MAX545 configured for bipolar  
operation with an external op amp. The op amp is set  
The settling time is affected by the buffer input capaci-  
tance, the DAC’s output capacitance, and PC board  
capacitance. The typical DAC output voltage settling  
time is 1µs for a full-scale step. Lettling time can be  
significantly less for smaller step changes. Assuming a  
single time-constant exponential settling response, a  
full-scale step takes 1±.4 time constants to settle to  
within 1/ꢂꢀLS of the final output voltage. The time con-  
stant is equal to the DAC output resistance multiplied  
by the total output capacitance. The DAC output  
capacitance is typically 1±pF. Any additional output  
capacitance increases the settling time.  
for unity gain with an offset of -1/ꢂV  
. Table ꢂ shows  
REF  
the offset binary codes for this circuit.  
Power-Supply Bypassing and  
Ground Management  
For optimum system performance, use PC boards with  
separate analog and digital ground planes. Wire-wrap  
boards are not recommended. Connect the two ground  
planes together at the low-impedance power-supply  
source. Connect DGID and AGID together at the ꢁC.  
The best ground connection can be achieved by con-  
necting the DAC’s DGID and AGID pins together and  
connecting that point to the system analog ground  
plane. ꢁf the DAC’s DGID is connected to the system  
digital ground, digital noise may get through to the  
DAC’s analog portion.  
The external buffer amplifier’s gain-bandwidth product  
is important because it increases the settling time by  
adding another time constant to the output response.  
The effective time constant of two cascaded systems,  
each with a single time-constant response, is approxi-  
mately the root square sum of the two time constants.  
The DAC output’s time constant is 1µs / 1±.4 = 06ns,  
ignoring the effect of additional capacitance. ꢁf the time  
constant of an external amplifier with 1MHz bandwidth  
is 1 / ꢂπ (1MHz) = 150ns, then the effective time con-  
stant of the combined system is:  
Sypass V  
with a ±.1µF ceramic capacitor connected  
DD  
DD  
between V  
and AGID. Mount it with short leads  
close to the device. Ferrite beads can also be used to  
further isolate the analog and digital power supplies.  
Table 1. Unipolar Code Table  
DAC LATCH CONTENTS  
06ns + 150ns  
=186ns  
(
)
(
)
ANALOG OUTPUT, V  
OUT  
MSB  
LSB  
1111 1111 1111 11(±±)  
1±±± ±±±± ±±±± ±±(±±)  
±±±± ±±±± ±±±± ±1(±±)  
V
REF · (16,383 / 16,384)  
This suggests that the settling time to within 1/ꢂꢀLS of  
the final output voltage, including the external buffer  
amplifier, will be approximately 1±.4 · 186ns = 1.03µs.  
1/  
VREF · (810ꢂ / 16,384) =  
V
REF  
VREF · (1 / 16,384)  
±±±± ±±±± ±±±± ±±(±±) ±V  
Digital Inputs and Interface Logic  
The digital interface for the 14-bit DAC is based on a  
3-wire standard that is compatible with LPꢁ, QLPꢁ, and  
MꢁCROWꢁRE interfaces. The three digital inputs (CS,  
DꢁI, and LCꢀK) load the digital input data serially into  
the DAC. LDAC (MAX545) updates the DAC output  
asynchronously.  
Table 2. Bipolar Code Table  
DAC LATCH CONTENTS  
ANALOG OUTPUT, V  
OUT  
MSB  
LSB  
1111 1111 1111 11(±±)  
1±±± ±±±± ±±±± ±1(±±)  
+VREF · (8101 / 810ꢂ)  
+VREF · (1 / 810ꢂ)  
All of the digital inputs include Lchmitt-trigger buffers to  
accept slow-transition interfaces. This means that opto-  
couplers can interface directly to the MAX544/MAX545  
without additional external logic. The digital inputs are  
compatible with TTꢀ/CMOL-logic levels.  
1±±± ±±±± ±±±± ±±(±±) ±V  
±111 1111 1111 11(±±)  
±±±± ±±±± ±±±± ±±(±±)  
-VREF · (1 / 810ꢂ)  
-VREF · (810ꢂ / 810ꢂ) = -V  
REF  
(
) = Lub-bits  
10 ______________________________________________________________________________________  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
Ordering Information (continued)  
Functional Diagrams (continued)  
INL  
PART  
TEMP. RANGE PIN-PACKAGE  
(LSB)  
±1/ꢂ  
±1  
V
DD  
MAX544AEPA  
MAX544SEPA  
MAX544AELA  
MAX544SELA  
MAX545ACPD  
MAX545SCPD  
MAX545ACLD  
MAX545SCLD  
MAX545AEPD  
MAX545SEPD  
MAX545AELD  
MAX545SELD  
-4±°C to +85°C 8 Plastic DꢁP  
-4±°C to +85°C 8 Plastic DꢁP  
-4±°C to +85°C 8 LO  
MAX544  
±1/ꢂ  
±1  
REF  
14-BIT DAC  
OUT  
-4±°C to +85°C 8 LO  
±°C to +7±°C 14 Plastic DꢁP  
±°C to +7±°C 14 Plastic DꢁP  
±°C to +7±°C 14 LO  
±1/ꢂ  
±1  
AGND  
DATA LATCH  
CS  
DIN  
SCLK  
±1/ꢂ  
±1  
CONTROL  
LOGIC  
±°C to +7±°C 14 LO  
SERIAL INPUT REGISTER  
DGND  
-4±°C to +85°C 14 Plastic DꢁP  
-4±°C to +85°C 14 Plastic DꢁP  
-4±°C to +85°C 14 LO  
±1/ꢂ  
±1  
±1/ꢂ  
±1  
-4±°C to +85°C 14 LO  
MAX545SMJD -55°C to +1ꢂ5°C 14 Ceramic LS*  
±1  
*Contact factory for availability.  
Chip Information  
TRAILꢁLTOR COUIT: ꢂꢂ±0  
______________________________________________________________________________________ 11  
+5V, Serial-Input, Voltage-Output, 14-Bit DACs  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1000 Maxim ꢁntegrated Products  
Printed ULA  
is a registered trademark of Maxim ꢁntegrated Products.  

相关型号:

MAX545BESD

+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX545BMJD

+5V, Serial-Input, Voltage-Output, 14-Bit DACs
MAXIM

MAX5460

32-Tap FleaPoT⑩, 2-Wire Digital Potentiometers
MAXIM

MAX5460EXK

32-Tap FleaPoT⑩, 2-Wire Digital Potentiometers
MAXIM

MAX5460EXK+T

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO5, EIAJ, SC-70, 5 PIN
MAXIM

MAX5460EXK-T

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO5, EIAJ, SC-70, 5 PIN
MAXIM

MAX5460_05

32-Tap FleaPoT, 2-Wire Digital Potentiometers
MAXIM

MAX5461

32-Tap FleaPoT⑩, 2-Wire Digital Potentiometers
MAXIM

MAX5461EXT

32-Tap FleaPoT⑩, 2-Wire Digital Potentiometers
MAXIM

MAX5461EXT-T

暂无描述
MAXIM

MAX5461EXT-T

100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO6, EIAJ, SC-70, 6 PIN
ROCHESTER

MAX5462

32-Tap FleaPoT⑩, 2-Wire Digital Potentiometers
MAXIM