MAX5494 [MAXIM]

10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers; 10位,双路,非易失,线性变化数字电位器
MAX5494
型号: MAX5494
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
10位,双路,非易失,线性变化数字电位器

电位器
文件: 总20页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3562; Rev 2; 1/06  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
General Description  
Features  
Wiper Position Stored in Nonvolatile Memory and  
The MAX5494–MAX5499 10-bit (1024-tap), dual, non-  
volatile, linear-taper, programmable voltage-dividers  
and variable resistors perform the function of a  
mechanical potentiometer, but replace the mechanics  
with a 3-wire SPI™-compatible serial interface. The  
MAX5494/MAX5495 are dual, 3-terminal, programma-  
ble voltage-dividers; the MAX5496/MAX5497 are dual,  
2-terminal variable resistors; and the MAX5498/  
MAX5499 include one 2-terminal variable resistor and  
one 3-terminal programmable voltage-divider.  
Recalled Upon Power-Up  
16-Pin, 5mm x 5mm x 0.8mm TQFN Package  
35ppm/°C End-to-End Resistance Temperature  
Coefficient  
5ppm/°C Ratiometric Temperature Coefficient  
10kand 50kEnd-to-End Resistor Values  
3-Wire SPI-Compatible Serial Interface  
The MAX5494–MAX5499 feature an internal, nonvolatile,  
electrically erasable programmable read-only memory  
(EEPROM) that stores the wiper position for initialization  
during power-up. The 3-wire SPI-compatible serial inter-  
face allows communication at data rates up to 7MHz.  
Reliability (T = +85°C)  
A
50,000 Wiper Store Cycles  
50 Years Wiper Data Retention  
1.5µA (max) Standby Current  
The MAX5494–MAX5499 are ideal for applications requir-  
ing digitally controlled potentiometers. End-to-end resis-  
tance values of 10kand 50kare available with a  
35ppm/°C end-to-end temperature coefficient. The ratio-  
metric temperature coefficient is 5ppm/°C for each chan-  
nel, making these devices ideal for applications requiring  
low-temperature-coefficient programmable voltage-  
dividers such as low-drift, programmable-gain amplifiers.  
Single +2.7V to +5.25V Supply Operation  
Dual 2.5V Supply Operation  
Pin Configurations  
TOP VIEW  
12  
11  
10  
9
The MAX5494–MAX5499 operate with either a single  
power supply (+2.7V to +5.25V) or dual power supplies  
( 2.5V). The devices consume 400ꢀA (maꢁ) of supply  
current when writing data to the nonvolatile memory  
and 1.5ꢀA (maꢁ) of standby supply current. The  
devices are available in space-saving (5mm ꢁ 5mm ꢁ  
0.8mm), 16-pin TQFN package and are specified over  
the eꢁtended (-40°C to +85°C) temperature range.  
DIN 13  
V
SS  
8
7
6
5
N.C.  
N.C.  
14  
15  
N.C.  
N.C.  
MAX5494  
MAX5495  
SCLK 16  
V
DD  
1
2
3
4
Applications  
Gain and Offset Adjustment  
5mm × 5mm × 0.8mm TQFN  
LCD Contrast Adjustment  
Pressure Sensors  
12  
11  
10  
9
Low-Drift Programmable-Gain Amplifiers  
Mechanical Potentiometer Replacement  
Volume Control  
DIN 13  
V
SS  
8
7
6
5
N.C.  
N.C.  
14  
15  
N.C.  
N.C.  
MAX5496  
MAX5497  
Ordering Information  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
PKG CODE  
SCLK 16  
V
DD  
MAX5494ETE -40°C to +85°C 16 TQFN-EP*  
MAX5495ETE -40°C to +85°C 16 TQFN-EP*  
*EP = Eꢁposed pad.  
T1655-2  
T1655-2  
1
2
3
4
Ordering Information continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
SPI is a trademark of Motorola, Inc.  
5mm × 5mm × 0.8mm TQFN  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to GND...........................................................-0.3V to +6.0V  
to GND............................................................-3.5V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
SS  
DD  
16-Pin TQFN (derate 20.8mW/°C above +70°C) ....1666.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
to V .............................................................-0.3V to +6.0V  
SS  
H1, H2, L1, L2, W1, W2 to V .........(V - 0.3V) to (V  
+ 0.3V)  
+ 0.3V)  
SS  
SS  
DD  
DD  
CS, SCLK, DIN to GND ..............................-0.3V to (V  
Maꢁimum Continuous Current into H_, L_, and W_  
MAX5494/MAX5496/MAX5498.................................... 5.0mA  
MAX5495/MAX5497/MAX5499.................................... 1.0mA  
Maꢁimum Current Into Other Pins ................................. 50.0mA  
Stresses beyond those listed under “Absolute Maꢁimum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Eꢁposure to  
absolute maꢁimum rating conditions for eꢁtended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +5.25V, V = GND = 0, V = V , V = 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD  
SS  
H_  
DD L_  
A
V
DD  
= +5.0V, T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
–MAX549  
DC PERFORMANCE (MAX5494/MAX5495/MAX5498/MAX5499 Programmable Voltage-Divider)  
Resolution  
N
10  
Bits  
V
V
V
V
= 2.7V  
= 5V  
2
2
1
1
DD  
DD  
DD  
DD  
Integral Nonlinearity (Note 2)  
INL  
LSB  
= 2.7V  
= 5V  
Differential Nonlinearity (Note 2)  
DNL  
LSB  
ppm/°C  
ppm/°C  
LSB  
End-to-End Resistance  
Temperature Coefficient  
TC  
35  
5
R
Ratiometric Temperature  
Coefficient  
MAX5494/MAX5498  
MAX5495/MAX5499  
MAX5494/MAX5498  
MAX5495/MAX5499  
-4  
-4  
0
-2.5  
-0.75  
3.3  
0
0
5
5
Full-Scale Error  
FSE  
ZSE  
Zero-Scale Error  
LSB  
pF  
0
1.45  
60  
Wiper Capacitance  
End-to-End Resistance  
C
W
MAX5494/MAX5498  
MAX5495/MAX5499  
7.5  
10  
12.5  
62.5  
R
k  
HL  
37.5  
50  
MAX5494  
MAX5495  
0.05  
0.15  
Channel-to-Channel Division  
Ratio Matching  
V
= 3V, midcode: 512  
%
DD  
MAX5494/MAX5498, W_ at 15 code, H_ and  
L_ shorted to V , measure resistance from  
SS  
W_ to H_ (Figures 4 and 5)  
6.3  
25  
Resistance from W_ to L_ and H_  
kΩ  
MAX5495/MAX5499, W_ at 15 code, H_ and  
L_ shorted to V , measure resistance from  
SS  
W_ to H_ (Figures 4 and 5)  
2
_______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V = GND = 0, V = V , V = 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD  
SS  
H_  
DD L_  
A
V
DD  
= +5.0V, T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
DC PERFORMANCE (MAX5496–MAX5499 Variable Resistor)  
Resolution  
N
10  
V
V
V
V
V
V
= 2.7V  
= 3V  
-1.6  
-1.4  
DD  
DD  
DD  
DD  
DD  
DD  
Integral Nonlinearity (Note 3)  
INL_R  
-4  
-4  
+4  
+4  
LSB  
= 5V  
-1.3  
= 2.7V  
= 3V  
+0.45  
+0.4  
+0.35  
Differential Nonlinearity (Note 3)  
DNL_R  
-1  
-1  
+1  
+1  
LSB  
= 5V  
Variable-Resistor Temperature  
Coefficient  
TC  
V
V
= 3V to 5.25V; code = 128 to 1024  
35  
ppm/°C  
VR  
DD  
DD  
Wiper Resistance  
Wiper Capacitance  
R
3V (Note 4)  
50  
60  
W
C
pF  
WR  
MAX5496/MAX5498  
MAX5497/MAX5499  
7.5  
10  
12.5  
62.5  
Full-Scale Wiper-to-End  
Resistance  
R
W-L  
kΩ  
37.5  
50  
MAX5494/MAX5498  
MAX5495/MAX5499  
70  
Zero-Scale Resistor Error  
R
Code = 0  
Z
110  
MAX5496/MAX5498,  
Code >128  
0.1  
Two-Channel Resistance  
Matching  
V
= 3V to 5.25V  
%
DD  
MAX5497/MAX5499,  
Code >200  
0.15  
DIGITAL INPUTS (CS, SCLK, DIN) (Note 5)  
V
V
= 3.6V to 5.25V  
= 2.7V to 3.6V  
2.4  
DD  
DD  
Single-supply  
operation  
0.7 ꢁ  
V
Input High Voltage  
Input Low Voltage  
V
V
V
DD  
IH  
With respect to  
GND, V = 2.5V,  
V
Dual-supply  
operation  
2.0  
DD  
= -2.5V  
SS  
Single-supply  
operation  
V
= 2.7V to 5.25V  
0.8  
DD  
V
IL  
With respect to  
GND, V = 2.5V,  
V
Dual-supply  
operation  
0.6  
1
DD  
= -2.5V  
SS  
Input Leakage Current  
Input Capacitance  
I
ꢀA  
pF  
IN  
C
5
IN  
DYNAMIC CHARACTERISTICS  
Wiper at code 495  
(01111 01111), 10pF  
load at wiper  
MAX5494/MAX5498  
MAX5495/MAX5499  
250  
50  
Wiper -3dB Bandwidth  
BW  
kHz  
_______________________________________________________________________________________  
3
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V = GND = 0, V = V , V = 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD  
SS  
H_  
DD L_  
A
V
DD  
= +5.0V, T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX5494/MAX5498; V  
= 3V; wiper at  
DD  
code 495; 10kHz, 1V  
signal is applied  
0.026  
RMS  
at H_; 10pF load at wiper  
Total Harmonic Distortion  
Analog Crosstalk  
THD  
%
MAX5495/MAX5499; V  
code 495; 10kHz, 1V  
= 3V; wiper at  
signal is applied  
DD  
0.03  
-93  
RMS  
at H_; 10pF load at wiper  
CH2 = 11111 11111, CH1 = 01111 01111,  
C
= 10pF, V = V  
= +2.5V,  
DD  
W_  
L1  
H1  
dB  
V
V
= V = -2.5V, measure V  
with  
SS  
W1  
= 5V  
at f = 1kHz  
W2  
P-P  
NONVOLATILE MEMORY RELIABILITY  
Data Retention  
T
A
T
A
T
A
= +85°C  
= +25°C  
= +85°C  
50  
Years  
200,000  
50,000  
Endurance  
Stores  
POWER SUPPLIES  
Single-Supply Voltage  
V
V
V
= GND = 0  
SS  
2.70  
2.50  
-2.5  
5.25  
5.25  
-0.2  
V
V
DD  
DD  
GND = 0  
Dual-Supply Voltage  
V
(V - V ) 5.25V  
SS  
DD  
SS  
During nonvolatile write only;  
digital inputs = V or GND  
Average Programming Current  
I
220  
400  
ꢀA  
PG  
DD  
During nonvolatile write only;  
digital inputs = V or GND  
Peak Programming Current  
Standby Current  
4
mA  
ꢀA  
DD  
I
Digital inputs = V  
or GND, T = +25°C  
0.6  
1.5  
DD  
DD  
A
4
_______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +5.25V, V = GND = 0, V = V , V = 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD  
SS  
H_  
DD L_  
A
V
DD  
= +5.0V, T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG SECTION  
MAX5494/MAX5498  
MAX5495/MAX5499  
5
Wiper Settling Time (Note 6)  
t
S
ꢀs  
22  
SPI-COMPATIBLE SERIAL INTERFACE (Figure 6)  
SCLK Frequency  
f
7
MHz  
ns  
SCLK  
SCLK Clock Period  
t
140  
60  
60  
60  
0
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
DIN to SCLK Setup  
t
ns  
ns  
t
CL  
t
ns  
CSS  
CSH  
t
ns  
ns  
t
40  
0
DS  
DH  
DIN Hold After SCLK  
t
ns  
ns  
ns  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold  
CS Pulse-Width High  
t
t
15  
60  
150  
CS0  
CS1  
t
ns  
CSW  
Write NV Register Busy Time  
t
12  
ms  
BUSY  
Note 1: 100% production tested at T = +25°C and T = +85°C. Guaranteed by design to T = -40°C.  
A
A
A
Note 2: The DNL and INL are measured for the voltage-divider with H_ = V  
and L_ = V . The wiper terminal (W_) is unloaded  
DD  
SS  
and measured with a high-input-impedance voltmeter.  
Note 3: The DNL and INL are measured with L_ = V = 0. For V  
= 5V, the wiper terminal is driven with a current source of I  
=
SS  
DD  
W
80ꢀA for the 50kdevice and I = 400ꢀA for the 10kdevice. For V  
= 3V, the wiper terminal is driven with a current  
W
DD  
source of I = 40ꢀA for the 50kdevice and I = 200ꢀA for the 10kdevice.  
W
W
Note 4: The wiper resistance is measured using the source currents given in Note 3.  
Note 5: The device draws higher supply current when the digital inputs are driven with voltages between (V  
- 0.5V) and (GND +  
DD  
0.5V). See the Supply Current vs. Digital Input Voltage graph in the Typical Operating Characteristics.  
Note 6: Wiper settling test condition uses the voltage-divider with a 10pF load on W_. Transition code from 0 to 495 and measure  
the time from CS going high to the wiper voltage settling to within 0.5% of its final value.  
_______________________________________________________________________________________  
5
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Typical Operating Characteristics  
(V  
= +5.0V, V = 0, T = +25°C, unless otherwise noted.)  
SS A  
DD  
INTEGRAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
MAXIMUM DIFFERENTIAL NONLINEARITY  
vs. SUPPLY VOLTAGE (VARIABLE RESISTOR)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VARIABLE RESISTOR)  
1.5  
1.0  
0.5  
0
1.0  
1.0  
V
= 3V  
V
= 3V  
DD  
DD  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
0
128 256 384 512 640 768 896 1024  
CODE  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
0
128 256 384 512 640 768 896 1024  
CODE  
–MAX549  
V
DD  
MAXIMUM INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE (VARIABLE RESISTOR)  
INTEGRAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
DIFFERENTIAL NONLINEARITY  
vs. CODE (VOLTAGE-DIVIDER)  
1.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
0.5  
0
0.6  
0.4  
0.2  
-0.5  
-1.0  
-1.5  
-2.0  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
0
128 256 384 512 640 768 896 1024  
CODE  
0
128 256 384 512 640 768 896 1024  
CODE  
V
DD  
END-TO-END RESISTANCE  
vs. CODE (MAX5497/MAX5499)  
END-TO-END RESISTANCE vs. CODE  
(MAX5496/MAX5498)  
WIPER RESISTANCE vs. CODE  
(VARIABLE RESISTOR)  
60  
12  
10  
8
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
6
4
2
0
0
128 256 384 512 640 768 896 1024  
CODE  
0
128 256 384 512 640 768 896 1024  
CODE  
0
128 256 384 512 640 768 896 1024  
CODE  
6
_______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
Typical Operating Characteristics (continued)  
(V  
= +5.0V, V = 0, T = +25°C, unless otherwise noted.)  
SS A  
DD  
END-TO-END RESISTANCE (R  
% CHANGE vs. TEMPERATURE  
(VOLTAGE-DIVIDER)  
)
HL  
WIPER-TO-END RESISTANCE (R  
)
WL  
% CHANGE vs. TEMPERATURE  
(VARIABLE RESISTOR)  
WIPER RESISTANCE vs. WIPER VOLTAGE  
(VARIABLE RESISTOR)  
1.0  
0.8  
1.0  
0.8  
22  
CODE IS 11 1111 1111  
V
= 5V  
CODE IS 00 0000 0000  
DD  
21  
20  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
19  
18  
17  
16  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
WIPER VOLTAGE (V)  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
RATIOMETRIC TEMPERATURE  
COEFFICIENT vs. CODE  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE  
1.5  
200  
180  
160  
140  
120  
100  
80  
10,000  
1000  
100  
10  
V
= 5.25V  
VOLTAGE-DIVIDER  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
T
= -40°C TO +85°C  
A
1.2  
0.9  
0.6  
0.3  
0
60  
40  
1
10k  
50kΩ  
20  
0
0.1  
-40  
-15  
10  
35  
60  
85  
0
128 256 384 512 640 768 896 1024  
CODE  
0
1
2
3
4
5
TEMPERATURE (°C)  
DIGITAL INPUT VOLTAGE (V)  
TAP-TO-TAP SWITCHING TRANSIENT  
VARIABLE RESISTOR TEMPERATURE  
COEFFICIENT vs. CODE  
TAP-TO-TAP SWITCHING TRANSIENT  
(MAX5494/MAX5498)  
(MAX5495/MAX5499)  
MAX5494 toc18  
MAX5494 toc17  
700  
600  
500  
400  
300  
200  
100  
0
CS  
2V/div  
CS  
2V/div  
V
= 3V  
DD  
T
= -40°C TO +85°C  
A
V
V
W_  
W_  
20mV/div  
20mV/div  
H_ = V  
L_ = GND  
FROM CODE 01111 11111  
TO CODE 10000 00000  
H_ = V  
DD  
L_ = GND  
FROM CODE 01111 11111  
TO CODE 10000 00000  
DD  
50kΩ  
10kΩ  
C
= 10pF  
C
W_  
= 10pF  
W_  
0
128 256 384 512 640 768 896 1024  
CODE  
4µs/div  
1µs/div  
_______________________________________________________________________________________  
7
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Typical Operating Characteristics (continued)  
(V  
= +5.0V, V = 0, T = +25°C, unless otherwise noted.)  
SS A  
DD  
CROSSTALK  
CROSSTALK vs. FREQUENCY  
MAX5494 toc19  
V
W2  
0
C
= 10pF  
2V/div  
W_  
CODE = 01111 01111  
-20  
-40  
-60  
V
W1  
-80  
20mV/div  
MAX5494/MAX5498  
MAX5495/MAX5499  
V
V
C
= V  
DD  
H2  
L2  
-100  
-120  
= V = V = GND  
L1  
H1  
= 10pF  
W_  
400ns/div  
1000  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
–MAX549  
THD+N vs. FREQUENCY  
(MAX5495/MAX5499)  
THD+N vs. FREQUENCY  
(MAX5494/MAX5498)  
10  
1
10  
1
C
= 10pF  
CODE = 01111 01111  
W_  
C
= 10pF  
CODE = 01111 01111  
W_  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
WIPER RESPONSE vs. FREQUENCY  
(MAX5494/MAX5498)  
WIPER RESPONSE vs. FREQUENCY  
(MAX5495/MAX5499)  
0
-5  
0
-5  
C
= 10pF  
W_  
C
= 10pF  
W_  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
C
= 30pF  
W_  
C
= 30pF  
W_  
CODE = 01111 01111  
0.1  
CODE = 01111 01111  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
1
10  
FREQUENCY (kHz)  
100  
1000  
8
_______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
MAX5494/ MAX5496/ MAX5498/  
MAX5495 MAX5497 MAX5499  
Active-Low Chip-Select Input. Drive CS low to enable the serial interface. Drive  
CS high to disable the serial interface and put the device in standby mode.  
1
1
1
CS  
2
3
4
2
3
2
3
W2  
L2  
Wiper Terminal 2  
Low Terminal 2  
High Terminal 2  
H2  
Positive Power-Supply Input. 2.7V V 5.25V. Bypass with a 0.1ꢀF  
DD  
5
5
5
V
DD  
capacitor from V  
to GND as close to the device as possible  
DD  
6, 7,14,15 6, 7,14,15 6, 7,14,15  
N.C.  
No Connection. Not internally connected.  
Negative Power-Supply Input.  
Single-supply operation: V = GND = 0.  
SS  
Dual-supply operation: -2.5V V -0.2V (V can vary as long as  
SS  
SS  
8
8
8
V
SS  
(V  
DD  
- V ) 5.25V).  
SS  
Bypass with a 0.1ꢀF capacitor from V to GND as close to the device  
SS  
as possible.  
9
10  
11  
12  
9
H1  
L1  
High Terminal 1  
Low Terminal 1  
Wiper Terminal 1  
Ground  
10  
11  
12  
10  
11  
12  
W1  
GND  
Serial-Data Input. The data at DIN synchronously loads into the serial shift  
register on each SCLK rising edge.  
13  
13  
13  
DIN  
16  
16  
16  
4
SCLK  
D.N.C  
Serial-Clock Input . SCLK clocks in the data when CS is low.  
4, 9  
Do Not Connect. Leave unconnected for proper operation.  
Eꢁposed Eꢁposed Pad. Eꢁternally connect EP to V to provide a low thermal resistance  
SS  
EP  
EP  
EP  
Pad  
path from the IC junction to the PC board or leave unconnected.  
_______________________________________________________________________________________  
9
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Functional Diagrams  
H1  
1024  
TAPS  
10  
10-BIT  
LATCH  
V
DD  
W1  
DECODER  
GND  
2 x 10  
BIT  
NVM  
V
SS  
POR  
CS  
SCLK  
DIN  
SPI  
INTERFACE  
10  
10-BIT  
LATCH  
–MAX549  
L1  
H2  
1024  
TAPS  
MAX5494  
MAX5495  
W2  
DECODER  
L2  
NOTE: THE PROGRAMMABLE VOLTAGE-DIVIDER IS NOT INTENDED FOR CURRENT TO FLOW THROUGH THE WIPER.  
NOTE: SEE THE MAX5494/MAX5495/MAX5498/MAX5499 PROGRAMMABLE VOLTAGE-DIVIDERS SECTION.  
Figure 1. MAX5494/MAX5495 Functional Diagram  
10 ______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
Functional Diagrams (continued)  
1024  
TAPS  
10  
10-BIT  
LATCH  
V
DD  
W1  
L1  
DECODER  
GND  
2 x 10  
BIT  
NVM  
V
SS  
POR  
CS  
SCLK  
DIN  
SPI  
INTERFACE  
1024  
TAPS  
10  
10-BIT  
LATCH  
W2  
L2  
DECODER  
MAX5496  
MAX5497  
Figure 2. MAX5496/MAX5497 Functional Diagram  
H1  
1024  
TAPS  
10  
10-BIT  
LATCH  
V
DD  
W1  
DECODER  
GND  
2 x 10  
BIT  
NVM  
V
SS  
POR  
CS  
SCLK  
DIN  
SPI  
INTERFACE  
10  
10-BIT  
LATCH  
L1  
1024  
TAPS  
MAX5498  
MAX5499  
W2  
L2  
DECODER  
NOTE: THE PROGRAMMABLE VOLTAGE-DIVIDER IS NOT INTENDED FOR CURRENT TO FLOW THROUGH THE WIPER.  
NOTE: SEE THE MAX5494/MAX5495/MAX5498/MAX5499 PROGRAMMABLE VOLTAGE-DIVIDERS SECTION.  
Figure 3. MAX5498/MAX5499 Functional Diagram  
______________________________________________________________________________________ 11  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Detailed Description  
|
ZSE  
V
|V  
| + |V  
(
)
+ V + |V  
HL  
FSE  
D
|
ZSE  
L
The MAX5494–MAX5499 dual, nonvolatile, linear-taper,  
programmable voltage-dividers and variable resistors  
feature 1024 tap points (10-bit resolution) (see the  
Functional Diagrams). These devices consist of multi-  
ple strings of equal resistor segments with a wiper con-  
tact that moves among the 1024 effective tap points by  
a 3-wire SPI-compatible serial interface. The  
MAX5494/MAX5496/MAX5498 provide a total 10kΩ  
end-to-end resistance, and the MAX5495/MAX5497/  
MAX5499 feature a 50kend-to-end resistance. The  
MAX5494/MAX5495/MAX5498/MAX5499 allow access  
to the high, low, and wiper terminals for a standard volt-  
age-divider configuration. Ensure that the terminal volt-  
1023  
where D is the decimal equivalent of the 10 data bits  
written (0 to 1023), V is the voltage difference between  
HL  
the H_ and L_ terminals, and:  
V
1024  
HL  
V
= FSE  
FSE  
V
1024  
HL  
V
= ZSE  
ZSE  
The MAX5494/MAX5498 provide a 10kend-to-end  
resistance value, while the MAX5495/MAX5499 feature a  
50kend-to-end resistance value. Note that the pro-  
grammable voltage-divider is not intended to be used  
as a variable resistor. Wiper current creates a nonlinear  
voltage drop in series with the wiper. To ensure tempera-  
ture drift remains within specifications, do not pull current  
through the voltage-divider wiper. Connect the wiper to a  
high-impedance node. Figures 4 and 5 show the behav-  
ior of the programmable voltage-divider resistance from  
W_ to H_ and W_ to L_, respectively. This does not apply  
to the variable-resistor devices.  
ages fall between V and V  
.
DD  
SS  
MAX5494/MAX5495/MAX5498/MAX5499  
Programmable Voltage-Dividers  
The MAX5494/MAX5495/MAX5498/MAX5499 program-  
mable voltage-dividers provide a weighted average of  
the voltage between the H_ and L_ inputs at the W_  
output.  
–MAX549  
The MAX5494/MAX5495/MAX5498/MAX5499 program-  
mable voltage-divider network provides up to 1024  
division ratios between the H_ and L_ voltage. Ideally,  
the V voltage occurs at the wiper terminal when all  
L
data bits are zeros and the V voltage occurs at the  
H
MAX5496–MAX5499 Variable Resistors  
The MAX5496–MAX5499 provide a programmable resis-  
tance from W_ to L_. The MAX5496/MAX5498 provide a  
10kend-to-end resistance value, while the  
MAX5497/MAX5499 feature a 50kend-to-end resis-  
tance value. The programmable resolution of this  
wiper terminal when all data bits are one (see the wiper  
voltage equation). The step-size voltage (1 LSB) is  
equal to the voltage applied across terminals H and L  
divided by 210. Calculate the wiper voltage V as fol-  
W
lows:  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
0
128 256 384 512 640 768 896 1024  
CODE (DECIMAL)  
0
128 256 384 512 640 768 896 1024  
CODE (DECIMAL)  
50kSCALES BY A FACTOR OF FIVE  
50kSCALES BY A FACTOR OF FIVE  
Figure 5. Resistance from W_ to L_ vs. Code (10kVoltage-  
Divider)  
Figure 4. Resistance from W_ to H_ vs. Code (10kVoltage-  
Divider)  
12 ______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
resistance is equal to the nominal end-to-end resis-  
either eight clock cycles to transfer the command bits  
(Figure 7b) or 24 clock cycles with 16 bits disregarded  
by the device (Figure 7a).  
tance divided by 1024 (10-bit resolution). For eꢁample,  
the programmable resolution is 9.8and 48.8for the  
MAX5496/MAX5498 and the MAX5497/MAX5499,  
respectively.  
After the loading of data into the shift register, drive CS  
high to latch the data into the appropriate control regis-  
ter (specified by RA1 and RA0) and disable the serial  
interface. Keep CS low during the entire serial data  
stream to avoid corruption of the data. Table 2 shows  
the register map.  
The 10-bit data in the 10-bit latch register selects the  
wiper position from the 1024 possible positions, result-  
ing in 1024 values for the resistance from W_ to L_.  
Calculate the resistance from W_ to L_ (R ) from the  
WL  
formula below:  
Write Wiper Register  
The “write wiper register” command (C1, C0 = 00) con-  
trols the wiper positions. The 10 data bits (D9–D0) indi-  
cate the position of the wiper. For eꢁample, if DIN =  
000000 0000, the wiper moves to the position closest to  
L_. If DIN = 11 1111 1111, the wiper moves closest to H_.  
D
1023  
R
D =  
( )  
×R  
+R  
WL Z  
WL  
where D is decimal equivalent of the 10 data bits writ-  
ten, R is the nominal end-to-end resistance, and R  
W-L  
Z
is the zero-scale error. Table 1 shows R  
codes.  
at selected  
WL  
Table 1. RWL at Selected Codes  
SPI-Compatible Serial Interface  
The MAX5494–MAX5499 use a 3-wire, SPI-compatible,  
serial data interface (Figure 6). This write-only interface  
contains three inputs: chip-select (CS), data input  
(DIN), and data clock (SCLK). Drive CS low to enable  
the serial interface and clock data synchronously into  
the shift register on each SCLK rising edge.  
END-TO-END RESISTANCE VALUE  
CODE (DECIMAL)  
10kΩ  
()  
50kΩ  
R ()  
WL  
R
WL  
0
1
70  
110  
160  
80  
512  
1023  
5,070  
10,070  
25,110  
50,110  
The WRITE commands (C1, C0 = 00 or 01) require 24  
clock cycles to transfer the command and data (Figure  
7a). The COPY commands (C1, C0 = 10 or 11) use  
CS  
t
CSW  
t
CSS  
t
CS1  
t
t
CP  
t
t
t
CL  
CH  
CSH  
CSO  
SCLK  
DIN  
t
t
DH  
DS  
Figure 6. SPI-Interface Timing Diagram  
______________________________________________________________________________________ 13  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
a) 24-BIT COMMAND/DATA WORD  
CS  
SCLK  
11 12  
RA1 RA0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
23 24  
1
2
3
4
5
6
7
8
9
13 14 15 16  
18 19 20 21 22  
10  
17  
C1 C0  
DIN  
b) 8-BIT COMMAND WORD  
CS  
SCLK  
1
2
3
4
5
6
7
8
DIN  
C1 C0  
RA1 RA0  
–MAX549  
Figure 7. SPI-Compatible Serial-Interface Format  
Table 2. Register Map*  
CLOCK EDGE  
Bit Name  
1
0
2
0
3
4
5
0
6
0
7
8
9
10 11 12 13 14 15 16 17 18  
24  
C1 C0  
RA1 RA0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Write Wiper Register 1  
Write Wiper Register 2  
Write NV Register 1  
Write NV Register 2  
0
0
0
0
0
0
1
1
0
1
0
1
1
0
1
0
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
Copy Wiper Register 1  
to NV Register 1  
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
Copy Wiper Register 2  
to NV Register 2  
Copy Wiper Register 1  
to NV Register 1 and  
Copy Wiper Register 2  
to NV Register 2  
0
0
1
0
0
0
1
1
Simultaneously  
Copy NV Register 1 to  
Wiper Register 1  
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
Copy NV Register 2 to  
Wiper Register 2  
Copy NV Register 1 to  
Wiper Register 1 and  
Copy NV Register 2 to  
Wiper Register 2  
0
0
1
1
0
0
1
1
Simultaneously  
*D9 is the MSB and D0 is the LSB of the data bits.  
14 ______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
The “write wiper register” command writes data to the  
the NV register does not affect the position of the  
wipers. The operation takes up to 12ms (maꢁ) after CS  
goes high to complete and no other operation should  
be performed until completion. Figure 9 shows how to  
write data to the NV register 1.  
volatile random access memory (RAM), leaving the NV  
registers unchanged. When the device powers up, the  
data stored in the NV registers transfers to the wiper  
register, moving the wiper to the stored position. Figure  
8 shows how to write data to wiper register 1.  
Copy Wiper Register to NV Register  
The “copy wiper register to NV register” command (C1,  
C0 = 10) stores the current position of the wiper to the  
NV register for use at power-up. Figure 10 shows how  
to copy data from wiper register 1 to NV register 1.  
Write NV Register  
The “write NV register” command (C1, C0 = 01) stores  
the position of the wiper to the NV registers for use at  
power-up. Alternatively, the “copy wiper register to NV  
register” command writes to the NV register. Writing to  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
C1 C0  
RA1 RA0  
0
0
0
0
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2  
D1 D0  
X
X
X
X
X
X
WIPER  
REGISTER 1  
UPDATED  
ACTION  
Figure 8. Write Wiper Register 1  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
C1 C0  
RA1 RA0  
0
0
0
1
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2  
D1 D0  
X
X
X
X
X
X
t
BUSY  
WRITE NV  
REGISTER 1  
(DEVICE IS BUSY)  
ACTION  
Figure 9. Write NV Register 1  
______________________________________________________________________________________ 15  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Copy NV Register to Wiper Register  
The “copy NV register to wiper register” (C1, C0 = 11)  
restores the wiper position to the current value stored in  
the NV register. Figure 11 shows how to copy data from  
NV register 1 to wiper register 1.  
the factory. The nonvolatile memory is guaranteed for  
50 years for wiper data retention and up to 200,000  
wiper write cycles.  
Power-Up  
Upon power-up, the MAX5494–MAX5499 load the data  
stored in the nonvolatile wiper register into the wiper  
register, updating the wiper position with the data  
stored in the nonvolatile wiper register.  
Standby Mode  
The MAX5494–MAX5499 feature a low-power standby  
mode. When the device is not being programmed, it  
enters into standby mode and supply current drops to  
0.6ꢀA (typ).  
Applications Information  
The MAX5494–MAX5499 are intended for circuits  
requiring digitally controlled adjustable resistance,  
such as LCD contrast control (where voltage biasing  
adjusts the display contrast), or programmable filters  
with adjustable gain and/or cutoff frequency.  
Nonvolatile Memory  
The internal EEPROM consists of a nonvolatile register  
that retains the last value stored prior to power-down.  
The nonvolatile register is programmed to midscale at  
–MAX549  
CS  
CS  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
DIN  
SCLK  
DIN  
C1  
C0  
RA1 RA0  
C1  
C0  
RA1 RA0  
0
0
1
0
0
0
0
1
0
0
1
1
0
0
0
1
t
BUSY  
WRITE NV  
REGISTER 1  
(DEVICE IS BUSY)  
WIPER REGISTER  
1 UPDATED  
ACTION  
ACTION  
Figure 10. Copy Wiper Register 1 to NV Register 1  
Figure 11. Copy NV Register 1 to Wiper Register 1  
16 ______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
Positive LCD Bias Control  
R1  
R2  
1
G =1+  
Figures 12 and 13 show an application where the volt-  
age-divider or variable resistor is used to make an  
adjustable, positive LCD-bias voltage. The op amp pro-  
vides buffering and gain to the resistor-divider network.  
f
=
C
2π × R3 × C  
Programmable Filter  
Figure 14 shows the configuration for a 1st-order pro-  
grammable filter. The gain of the filter is adjusted by  
R2, and the cutoff frequency is adjusted by R3. Use the  
following equations to calculate the gain (G) and the  
Gain and Offset Voltage Adjustment  
Figure 15 shows an application using the MAX5498/  
MAX5499 to adjust the gain and nullify the offset voltage.  
3dB cutoff frequency (f ).  
C
5V  
5V  
H_  
30V  
30V  
1/2 MAX5494/MAX5495  
1/2 MAX5498/MAX5499  
W_  
V
OUT  
V
OUT  
MAX480  
MAX480  
L_  
1/2 MAX5496–MAX5499  
W_  
L_  
Figure 13. Positive LCD Bias Control Using a Variable Resistor  
Figure 12. Positive LCD Bias Control Using a Voltage-Divider  
C
V
REF  
V
IN  
H_  
V
OUT  
1/2 MAX5498/MAX5499  
R3  
1/2 MAX5496–MAX5499  
W_  
V
OUT  
W_  
R1  
L_  
L_  
L_  
1/2 MAX5498/MAX5499  
1/2 MAX5496–MAX5499  
R2  
W_  
W_  
L_  
V
IN  
Figure 14. Programmable Filter  
Figure 15. Gain- and Offset-Voltage Adjustment Circuit  
______________________________________________________________________________________ 17  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Selector Guide  
Ordering Information (continued)  
PIN-  
PACKAGE  
END-TO-END  
RESISTANCE  
PART  
TEMP RANGE  
PKG CODE  
PART  
CONFIGURATION  
(k)  
MAX5496ETE -40°C to +85°C 16 TQFN-EP*  
MAX5497ETE -40°C to +85°C 16 TQFN-EP*  
MAX5498ETE -40°C to +85°C 16 TQFN-EP*  
MAX5499ETE -40°C to +85°C 16 TQFN-EP*  
T1655-2  
T1655-2  
T1655-2  
T1655-2  
Two programmable voltage-  
dividers  
MAX5494ETE  
MAX5495ETE  
10  
50  
Two programmable voltage-  
dividers  
*EP = Eꢁposed pad.  
MAX5496ETE Two variable resistors  
MAX5497ETE Two variable resistors  
10  
50  
One programmable voltage-  
MAX5498ETE  
10  
50  
divider and one variable resistor  
Chip Information  
TRANSISTOR COUNT: 32,262  
One programmable voltage-  
MAX5499ETE  
divider and one variable resistor  
PROCESS: BiCMOS  
–MAX549  
Pin Configurations (continued)  
TOP VIEW  
12  
11  
10  
9
DIN 13  
V
SS  
8
7
6
5
N.C.  
N.C.  
14  
15  
N.C.  
N.C.  
MAX5498  
MAX5499  
SCLK 16  
V
DD  
1
2
3
4
5mm × 5mm × 0.8mm TQFN  
18 ______________________________________________________________________________________  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
–MAX549  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 19  
10-Bit, Dual, Nonvolatile, Linear-Taper  
Digital Potentiometers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
–MAX549  
Maꢁim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maꢁim product. No circuit patent licenses are  
implied. Maꢁim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maꢁim Integrated Products  
is a registered trademark of Maꢁim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY