MAX5511ETC+T [MAXIM]

暂无描述;
MAX5511ETC+T
型号: MAX5511ETC+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总18页 (文件大小:1012K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3120; Rev 0; 1/04  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
General Description  
Features  
The MAX5510/MAX5511 are single, 8-bit, ultra-low-  
power, voltage-output, digital-to-analog converters  
(DACs) offering Rail-to-Rail® buffered voltage outputs.  
The DACs operate from a 1.8V to 5.5V supply and con-  
sume less than 6µA, making them desirable for low-  
power and low-voltage applications. A shutdown mode  
reduces overall current, including the reference input  
current, to just 0.18µA. The MAX5510/MAX5511 use a  
3-wire serial interface that is compatible with SPI™,  
QSPI™, and MICROWIRE™.  
Single +1.8V to +5.5V Supply  
Ultra-Low 6µA Supply Current  
Shutdown Mode Reduces Supply Current to  
0.18µA (max)  
Small 4mm x 4mm x 0.8mm Thin QFN Package  
Flexible Force-Sense-Configured Rail-to-Rail  
Output Buffers  
Internal Reference Sources 8mA of Current  
At power-up, the MAX5510/MAX5511 outputs are dri-  
ven to zero scale, providing additional safety for appli-  
cations that drive valves or for other transducers that  
must be off during power-up. The zero-scale outputs  
enable glitch-free power-up.  
(MAX5511)  
Fast 16MHz 3-Wire SPI-/QSPI-/MICROWIRE-  
Compatible Serial Interface  
TTL- and CMOS-Compatible Digital Inputs  
The MAX5510 accepts an external reference input. The  
MAX5511 contains an internal reference and provides  
an external reference output. Both devices have force-  
sense-configured output buffers.  
with Hysteresis  
Glitch-Free Outputs During Power-Up  
The MAX5510/MAX5511 are available in a 4mm x 4mm  
x 0.8mm, 12-pin, thin QFN package and are guaranteed  
over the extended -40°C to +85°C temperature range.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
12 Thin QFN-EP*  
12 Thin QFN-EP*  
For 12-bit compatible devices, refer to the MAX5530/  
MAX5531 data sheet. For 10-bit compatible devices,  
refer to the MAX5520/MAX5521 data sheet.  
MAX5510ETC  
MAX5511ETC  
*EP = Exposed paddle (internally connected to GND).  
Applications  
Portable Battery-Powered Devices  
Instrumentation  
Pin Configuration  
Automatic Trimming and Calibration in Factory  
or Field  
TOP VIEW  
Programmable Voltage and Current Sources  
FB  
12  
N.C.  
11  
OUT  
10  
Industrial Process Control and Remote  
Industrial Devices  
Remote Data Conversion and Monitoring  
Chemical Sensor Cell Bias for Gas Monitors  
Programmable Liquid Crystal Display (LCD) Bias  
CS  
1
2
3
9
8
7
GND  
SCLK  
DIN  
V
DD  
MAX5510  
MAX5511  
N.C.  
Selector Guide  
PART  
REFERENCE  
External  
TOP MARK  
AACO  
4
5
6
MAX5510ETC  
MAX5511ETC  
REFIN (MAX5510) N.C.  
REFOUT(MAX5511)  
N.C.  
Internal  
AACP  
THIN QFN  
Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature..................................................... +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
OUT to GND ...............................................-0.3V to (V + 0.3V)  
FB to GND ..................................................-0.3V to (V + 0.3V)  
SCLK, DIN, CS to GND ..............................-0.3V to (V + 0.3V)  
DD  
DD  
DD  
REFIN, REFOUT to GND ............................-0.3V to (V + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
Thin QFN (derate 16.9mW/°C above +70°C).............1349mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +1.8V to +5.5V, OUT unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY (MAX5510 EXTERNAL REFERENCE)  
Resolution  
N
8
Bits  
V
V
= 5V, V  
= 4.096V  
REF  
0.25  
0.25  
±1  
±1  
DD  
DD  
Integral Nonlinearity (Note 1)  
INL  
LSB  
= 1.8V, V  
= 1.024V  
REF  
Guaranteed monotonic,  
= 5V, V = 4.096V  
0.2  
0.2  
±1  
±1  
V
DD  
REF  
Differential Nonlinearity (Note 1)  
DNL  
LSB  
Guaranteed monotonic,  
V
V
V
= 1.8V, V  
= 1.024V  
REF  
DD  
DD  
DD  
= 5V, V  
= 4.096V  
±1  
±1  
±20  
±20  
REF  
Offset Error (Note 2)  
V
mV  
µV/°C  
LSB  
OS  
= 1.8V, V  
= 1.024V  
REF  
Offset-Error Temperature Drift  
Gain Error (Note 3)  
±2  
V
V
= 5V, V  
= 4.096V  
REF  
±0.5  
±0.5  
±1  
±1  
DD  
DD  
GE  
= 1.8V, V  
= 1.024V  
REF  
Gain-Error Temperature  
Coefficient  
±4  
ppm/°C  
Power-Supply Rejection Ratio  
PSRR  
1.8V V  
5.5V  
85  
dB  
DD  
STATIC ACCURACY (MAX5511 INTERNAL REFERENCE)  
Resolution  
N
8
Bits  
V
V
= 5V, V  
= 3.9V  
REF  
0.25  
0.25  
±1  
±1  
DD  
DD  
Integral Nonlinearity (Note 1)  
INL  
LSB  
= 1.8V, V  
= 1.2V  
REF  
Guaranteed monotonic,  
= 5V, V = 3.9V  
0.2  
0.2  
±1  
±1  
V
DD  
REF  
Differential Nonlinearity (Note 1)  
DNL  
LSB  
Guaranteed monotonic,  
V
= 1.8V, V  
= 1.2V  
DD  
REF  
REF  
V
V
= 5V, V  
= 3.9V  
1
1
±20  
±20  
DD  
DD  
REF  
Offset Error (Note 2)  
V
mV  
µV/°C  
LSB  
OS  
= 1.8V, V  
= 1.2V  
Offset-Error Temperature Drift  
Gain Error (Note 3)  
±2  
0.5  
0.5  
V
V
= 5V, V  
= 3.9V  
REF  
±1  
±1  
DD  
DD  
GE  
= 1.8V, V  
= 1.2V  
REF  
Gain-Error Temperature  
Coefficient  
±4  
ppm/°C  
2
_______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.8V to +5.5V, OUT unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
5.5V  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Rejection Ratio  
REFERENCE INPUT (MAX5510)  
Reference-Input Voltage Range  
PSRR  
1.8V V  
85  
dB  
DD  
V
R
0
V
V
REFIN  
DD  
Normal operation  
In shutdown  
4.1  
MΩ  
GΩ  
Reference-Input Impedance  
REFIN  
2.5  
REFERENCE OUTPUT (MAX5511)  
No external load, V  
No external load, V  
No external load, V  
No external load, V  
= 1.8V  
= 2.5V  
= 3V  
1.197  
1.913  
2.391  
3.828  
1.214  
1.940  
2.425  
3.885  
1.231  
1.967  
2.459  
3.941  
DD  
DD  
DD  
DD  
Initial Accuracy  
V
V
REFOUT  
= 5V  
Output-Voltage Temperature  
Coefficient  
V
T
= -40°C to +85°C (Note 4)  
12  
2
30  
200  
2
ppm/°C  
TEMPCO  
A
Line Regulation  
V
< V  
- 200mV (Note 5)  
µV/V  
REFOUT  
DD  
0 I  
V
1mA, sourcing, V  
= 1.8V,  
= 5V,  
REFOUT  
DD  
DD  
0.3  
= 1.2V  
REF  
Load Regulation  
µV/µA  
0 I  
V
8mA, sourcing, V  
REFOUT  
0.3  
2
= 3.9V  
REF  
-150µA I  
0, sinking  
0.2  
150  
600  
50  
REFOUT  
0.1Hz to 10Hz, V  
= 3.9V  
REFOUT  
10Hz to 10kHz, V  
= 3.9V  
REFOUT  
Output Noise Voltage  
µV  
P-P  
0.1Hz to 10Hz, V  
10Hz to 10kHz, V  
= 1.2V  
= 1.2V  
REFOUT  
450  
30  
REFOUT  
V
V
= 5V  
DD  
DD  
Short-Circuit Current (Note 6)  
mA  
= 1.8V  
14  
Capacitive Load Stability Range  
Thermal Hysteresis  
(Note 7)  
(Note 8)  
0 to 10  
200  
5.4  
nF  
ppm  
REFOUT unloaded, V  
REFOUT unloaded, V  
= 5V  
DD  
DD  
Reference Power-Up Time (from  
Shutdown)  
ms  
= 1.8V  
4.4  
ppm/  
1khrs  
Long-Term Stability  
200  
DAC OUTPUT (OUT)  
Capacitive Driving Capability  
C
1000  
pF  
L
V
= 5V, V  
set to full scale, OUT  
OUT  
DD  
65  
65  
14  
14  
shorted to GND, source current  
V
V
= 5V, V  
, sink current  
set to 0V, OUT shorted to  
OUT  
DD  
DD  
Short-Circuit Current (Note 6)  
mA  
V
= 1.8V, V  
set to full scale, OUT  
OUT  
DD  
shorted to GND, source current  
V
V
= 1.8V, V  
, sink current  
set to 0V, OUT shorted to  
OUT  
DD  
DD  
_______________________________________________________________________________________  
3
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +1.8V to +5.5V, OUT unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3
MAX  
UNITS  
V
V
V
= 5V  
DD  
DD  
Coming out of shutdown  
(MAX5510)  
= 1.8V  
3.8  
DAC Power-Up Time  
ms  
Coming out of standby  
(MAX5511)  
= 1.8V  
DD  
0.4  
to 5.5V  
Output Power-Up Glitch  
FB_ Input Current  
C = 100pF  
L
10  
10  
mV  
pA  
DIGITAL INPUTS (SCLK, DIN, CS)  
4.5V V  
2.7V < V  
1.8V V  
4.5V V  
2.7V < V  
1.8V V  
(Note 9)  
5.5V  
3.6V  
2.7V  
5.5V  
3.6V  
2.7V  
2.4  
2.0  
DD  
DD  
DD  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
0.7 x V  
DD  
0.8  
0.6  
DD  
DD  
DD  
V
IL  
0.3 x V  
DD  
Input Leakage Current  
Input Capacitance  
I
±0.05  
±0.5  
µA  
pF  
IN  
C
10  
IN  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
Positive and negative (Note 10)  
10  
V/ms  
µs  
0.1 to 0.9 of full scale to within 0.5 LSB  
(Note 10)  
Voltage-Output Settling Time  
660  
V
V
V
V
= 5V  
80  
55  
DD  
DD  
DD  
DD  
0.1Hz to 10Hz  
10Hz to 10kHz  
= 1.8V  
= 5V  
Output Noise Voltage  
µV  
P-P  
620  
476  
= 1.8V  
POWER REQUIREMENTS  
Supply Voltage Range  
V
1.8  
5.5  
4
V
DD  
V
V
V
V
V
V
V
V
V
= 5V  
2.6  
2.6  
3.6  
5.3  
4.8  
5.4  
3.3  
2.8  
2.4  
0.05  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
MAX5510  
MAX5511  
= 3V  
4
= 1.8V  
= 5V  
5
Supply Current (Note 9)  
I
µA  
DD  
6.5  
6.0  
7.0  
4.0  
3.4  
3.0  
0.18  
= 3V  
= 1.8V  
= 5V  
Standby Supply Current  
Shutdown Supply Current  
I
I
(Note 9)  
(Note 9)  
µA  
µA  
= 3V  
DDSD  
DDPD  
= 1.8V  
4
_______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICS  
(V  
DD  
= +4.5V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
= 4.5V TO 5.5V)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (V  
Serial Clock Frequency  
DD  
f
0
15  
0
16.7  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Pulse-Width High  
t
DS  
DH  
CH  
t
t
24  
24  
100  
0
SCLK Pulse-Width Low  
t
CL  
CS Pulse-Width High  
t
CSW  
SCLK Rise to CS Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
SCLK Fall to CS Fall Setup  
CS Rise to SCK Rise Hold Time  
t
CSH  
t
20  
0
CSS  
CSO  
t
t
20  
CS1  
TIMING CHARACTERISTICS  
(V  
DD  
= +1.8V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (V  
Serial Clock Frequency  
= 1.8V TO 5.5V)  
DD  
f
0
24  
0
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Pulse-Width High  
t
DS  
DH  
CH  
t
t
40  
40  
150  
0
SCLK Pulse-Width Low  
t
CL  
CS Pulse-Width High  
t
CSW  
SCLK Rise to CS Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
SCLK Fall to CS Fall Setup  
CS Rise to SCK Rise Hold Time  
t
CSH  
t
30  
0
CSS  
CSO  
t
t
30  
CS1  
Note 1: Linearity is tested within codes 6 to 255.  
Note 2: Offset is tested at code 6.  
Note 3: Gain is tested at code 250. FB is connected to OUT.  
Note 4: Guaranteed by design. Not production tested.  
Note 5: V  
must be a minimum of 1.8V.  
DD  
Note 6: Outputs can be shorted to V  
or GND indefinitely, provided that the package power dissipation is not exceeded.  
DD  
Note 7: Optimal noise performance is at 2nF load capacitance.  
Note 8: Thermal hysteresis is defined as the change in the initial +25°C output voltage after cycling the device from T  
to T  
.
MIN  
MAX  
Note 9: All digital inputs at V  
or GND.  
DD  
Note 10: Load = 10kin parallel with 100pF, V  
= 5V, V  
= 4.096V (MAX5510) or V  
= 3.9V (MAX5511).  
DD  
REF  
REF  
_______________________________________________________________________________________  
5
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics  
(V  
DD  
= 5.0V, V  
= 4.096V (MAX5510) or V  
= 3.9V (MAX5511), T = +25°C, unless otherwise noted.)  
REF  
REF  
A
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5511)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5511)  
SUPPLY CURRENT vs. TEMPERATURE  
(MAX5511)  
10  
1000  
100  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
1
0.1  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. CLOCK FREQUENCY  
SUPPLY CURRENT  
vs. LOGIC INPUT VOLTAGE  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE (MAX5511)  
1000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
CS = LOGIC LOW  
CODE = 0  
DD  
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
V
REF  
= 3.9V  
V
DD  
= 5V  
V
= 2.4V  
REF  
V
REF  
= 1.9V  
V
REF  
= 1.2V  
V
DD  
= 1.8V  
1
0.01 0.1  
1
10 100 1000 10000100000  
FREQUENCY (kHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOGIC INPUT VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DNL vs. INPUT CODE  
INL vs. INPUT CODE  
INL vs. INPUT CODE  
(V = V  
= 1.8V)  
(V = V  
= 1.8V)  
(V = V = 5V)  
DD  
REF  
DD  
REF  
DD  
REF  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.10  
0.05  
0
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.002  
-0.004  
-0.006  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
6
_______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, V  
= 4.096V (MAX5510) or V  
= 3.9V (MAX5511), T = +25°C, unless otherwise noted.)  
REF  
REF A  
OFFSET VOLTAGE  
vs. TEMPERATURE  
GAIN-ERROR CHANGE  
vs. TEMPERATURE  
DNL vs. INPUT CODE  
(V = V  
= 5V)  
DD  
REF  
1.0  
0.8  
0.04  
0.03  
0.02  
0.01  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
V
= 5V  
DD  
V
V
= 5V  
DD  
= 3.9V  
REF  
= 3.9V  
REF  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
-0.01  
-0.02  
-0.03  
-40  
-15  
10  
35  
60  
85  
0
50  
100  
150  
200  
250  
300  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
DIGITAL FEEDTHROUGH RESPONSE  
(DAC OUTPUT SET TO 0)  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
MAX5510 toc13  
0.6050  
0.6048  
0.6046  
0.6044  
0.6042  
0.6040  
1.9440  
1.9435  
1.9430  
1.9425  
1.9420  
1.9415  
1.9410  
1.9405  
1.9400  
ZERO SCALE  
V
DD  
= 1.8V  
V
DD  
= 5.0V  
CS  
5V/div  
DAC CODE = MIDSCALE  
= 1.2V  
DAC CODE = MIDSCALE  
V = 3.9V  
REF  
V
REF  
SCLK  
5V/div  
DIN  
5V/div  
OUT  
50mV/div  
-1000-800 -600-400 -200  
0
200 400 600 800 1000  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
20µs/div  
DAC OUTPUT CURRENT (µA)  
DAC OUTPUT CURRENT (mA)  
OUTPUT LARGE-SIGNAL STEP RESPONSE  
(V = 1.8V, V = 1.219V)  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
DD  
REF  
MAX5510 toc18  
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
DD  
REF  
V
= V  
DD  
REF  
CODE = MIDSCALE  
CODE = MIDSCALE  
V
= 5V  
DD  
V
= 5V  
DD  
V
OUT  
200mV/div  
V
DD  
= 3V  
V
DD  
= 3V  
V
DD  
= 1.8V  
V
= 1.8V  
DD  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
100µs/div  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
_______________________________________________________________________________________  
7
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, V  
= 4.096V (MAX5510) or V  
= 3.9V (MAX5511), T = +25°C, unless otherwise noted.)  
REF  
REF  
A
OUTPUT LARGE-SIGNAL STEP RESPONSE  
(V = 5V, V = 3.9V)  
OUTPUT MINIMUM SERIES RESISTANCE  
vs. LOAD CAPACITANCE  
POWER-UP OUTPUT VOLTAGE GLITCH  
DD  
REF  
MAX5510 toc19  
MAX5510 toc21  
600  
500  
400  
300  
200  
100  
0
FOR NO OVERSHOOT  
V
DD  
2V/div  
V
OUT  
500mV/div  
V
OUT  
10mV/div  
0.0001 0.001 0.01  
0.1  
1
10  
100  
200µs/div  
20ms/div  
CAPACITANCE (µF)  
MAJOR CARRY OUTPUT VOLTAGE GLITCH  
(CODE 7FFh TO 800h)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE OUTPUT CURRENT  
(V = 5V, V  
= 3.9V)  
DD  
REF  
MAX5510 toc22  
3.940  
3.935  
3.930  
3.925  
3.920  
3.915  
3.910  
3.905  
3.900  
1.220  
1.219  
1.218  
1.217  
1.216  
1.215  
1.214  
V
DD  
= 5V  
V
= 1.8V  
DD  
V
OUT  
AC-COUPLED  
5mV/div  
-40  
-15  
10  
35  
60  
85  
-500  
1500  
3500  
5500  
7500  
100µs/div  
TEMPERATURE (°C)  
REFERENCE OUTPUT CURRENT (µA)  
REFERENCE OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
REFERENCE LINE-TRANSIENT RESPONSE  
(V = 1.2V)  
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE OUTPUT CURRENT  
REF  
MAX5510 toc27  
1.21750  
1.21748  
1.21746  
1.21744  
1.21742  
1.21740  
1.21738  
1.21736  
1.21734  
1.21732  
1.21730  
3.92  
3.91  
3.90  
3.89  
3.88  
NO LOAD  
V
= 5V  
DD  
2.8V  
V
DD  
1.8V  
V
REF  
500mV/div  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-500 2000 4500 7000 9500 12,000 14,500  
100µs/div  
REFERENCE OUTPUT CURRENT (µA)  
8
_______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, V  
= 4.096V (MAX5510) or V  
= 3.9V (MAX5511), T = +25°C, unless otherwise noted.)  
REF  
REF A  
REFERENCE LINE-TRANSIENT RESPONSE  
(V = 3.9V)  
REFERENCE LOAD TRANSIENT  
REFERENCE LOAD TRANSIENT  
(V = 1.8V)  
(V = 5V)  
REF  
DD  
DD  
MAX5510 toc28  
MAX5510 toc29  
MAX5510 toc30  
5.5V  
REFOUT  
SOURCE  
CURRENT  
0.5mA/div  
V
DD  
REFOUT  
SOURCE  
CURRENT  
0.5mA/div  
4.5V  
V
REF  
V
REFOUT  
500mV/div  
V
REFOUT  
500mV/div  
3.9V  
500mV/div  
3.9V  
100µs/div  
200µs/div  
200µs/div  
REFERENCE PSRR  
vs. FREQUENCY  
REFERENCE LOAD TRANSIENT  
REFERENCE LOAD TRANSIENT  
(V = 1.8V)  
(V = 5V)  
DD  
DD  
MAX5510 toc31  
MAX5510 toc32  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
= 1.8V  
REFOUT  
SINK  
CURRENT  
50µA/div  
REFOUT  
SINK  
CURRENT  
100µA/div  
V
REFOUT  
V
REFOUT  
500mV/div  
3.9V  
500mV/div  
0.01  
0.1  
1
10  
100  
1000  
200µs/div  
200µs/div  
FREQUENCY (kHz)  
REFERENCE OUTPUT NOISE  
REFERENCE PSRR  
vs. FREQUENCY  
= 1.2V)  
(0.1Hz TO 10Hz) (V = 5V, V  
= 3.9V)  
DD  
REF  
MAX5510 toc36  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
= 5V  
100µV/div  
100µV/div  
0.01  
0.1  
1
10  
100  
1000  
1s/div  
1s/div  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
9
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5510  
MAX5511  
1
1
CS  
SCLK  
DIN  
Active-Low Digital-Input Chip Select  
Serial-Interface Clock  
Serial-Interface Data Input  
Reference Input  
2
2
3
3
4
4
REFIN  
REFOUT  
N.C.  
Reference Output  
5, 6, 7, 11  
5, 6, 7, 11  
No Connection. Leave N.C. inputs unconnected (floating), or connect to GND.  
Power Input. Connect V  
0.1µF capacitor.  
to a 1.8V to 5.5V power supply. Bypass V to GND with a  
DD  
DD  
8
8
V
DD  
9
9
GND  
OUT  
FB  
Ground  
10  
12  
10  
12  
Analog Voltage Output  
Feedback Input  
Exposed  
Paddle  
EP  
EP  
Exposed Paddle. Connect EP to GND.  
MAX5510 Functional Diagram  
V
DD  
REFIN  
POWER-  
DOWN  
CONTROL  
INPUT  
REGISTER  
DAC  
REGISTER  
8-BIT DAC  
CONTROL  
LOGIC  
SCLK  
DIN  
CS  
OUT  
FB  
AND  
SHIFT  
REGISTER  
MAX5510  
GND  
10 ______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
MAX5511 Functional Diagram  
V
DD  
POWER-  
DOWN  
CONTROL  
2-BIT  
PROGRAMMABLE  
REFERENCE  
REF  
BUF  
REFOUT  
INPUT  
REGISTER  
DAC  
REGISTER  
8-BIT DAC  
CONTROL  
LOGIC  
SCLK  
DIN  
CS  
OUT  
FB  
AND  
SHIFT  
REGISTER  
MAX5511  
GND  
Digital Interface  
Detailed Description  
The MAX5510/MAX5511 use a 3-wire serial interface  
compatible with SPI, QSPI, and MICROWIRE protocols  
(Figures 1 and 2).  
The MAX5510/MAX5511 single, 8-bit, ultra-low-power,  
voltage-output DACs offer Rail-to-Rail buffered voltage  
outputs. The DACs operate from a 1.8V to 5.5V supply  
and require only 6µA (max) supply current. These  
devices feature a shutdown mode that reduces overall  
current, including the reference input current, to just  
0.18µA. The MAX5511 includes an internal reference  
that saves additional board space and can source up  
to 8mA, making it functional as a system reference. The  
16MHz, 3-wire serial interface is compatible with SPI,  
The MAX5510/MAX5511 include a single, 16-bit, input  
shift register. Data loads into the shift register through  
the serial interface. CS must remain low until all 16 bits  
are clocked in. Data loads MSB first, D9–D0. The 16  
bits consist of 4 control bits (C3–C0), 8 data bits  
(D7–D0), and 4 sub-bits. (see Table 1). D7–D0 are the  
DAC data bits and S3–S0 are the sub-bits. The sub-bits  
must be set to zero for proper operation. The control  
bits C3–C0 control the MAX5510/MAX5511, as outlined  
in Table 2.  
QSPI, and MICROWIRE protocols. When V  
is  
DD  
applied, all DAC outputs are driven to zero scale with  
virtually no output glitch. The MAX5510/MAX5511 out-  
put buffers are configured in force sense allowing users  
to externally set voltage gains on the output (an output-  
amplifier inverting input is available). These devices  
come in a 4mm x 4mm thin QFN package.  
Each DAC channel includes two registers: an input reg-  
ister and a DAC register. The input register holds input  
data. The DAC register contains the data updated to  
the DAC output.  
The double-buffered register configuration allows any  
of the following:  
• Loading the input registers without updating the DAC  
registers  
• Updating the DAC registers from the input registers  
• Updating all the input and DAC registers simultaneously  
______________________________________________________________________________________ 11  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Table 1. Serial Write Data Format  
CONTROL  
DATA BITS  
MSB  
LSB  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S3  
S2  
S1  
S0  
Sub-bits S3—S0 must be set to zero for proper operation.  
t
CH  
SCLK  
t
CL  
t
DS  
C3  
C2  
C1  
DIN  
S0  
t
CS0  
t
t
DH  
CSH  
t
CSS  
CS  
t
CSW  
t
CS1  
Figure 1. Timing Diagram  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DIN  
CS  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S3  
S2  
S1  
S0  
CONTROL BITS  
DATA BITS  
SUB-BITS  
COMMAND  
EXECUTED  
Figure 2. Register Loading Diagram  
12 ______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Table 2. Serial-Interface Programming Commands  
CONTROL BITS  
INPUT DATA  
SUB-BITS  
FUNCTION  
C3  
C2  
C1  
C0  
D7–D0  
S3–S0  
0
0
0
0
XXXXXXXX  
0000  
No operation; command is ignored.  
Load input register from shift register; DAC register  
unchanged; DAC output unchanged.  
0
0
0
1
8-bit data  
0000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Command reserved; do not use.  
Command reserved; do not use.  
Command reserved; do not use.  
Command reserved; do not use.  
Command reserved; do not use.  
Command reserved; do not use.  
Load DAC register from input register; DAC output  
updated; MAX5510 enters normal operation if in  
shutdown; MAX5511 enters normal operation if in  
standby or shutdown.  
1
1
0
0
0
0
0
1
8-bit data  
8-bit data  
0000  
0000  
Load input register and DAC register from shift register;  
DAC output updated; MAX5510 enters normal operation  
if in shutdown; MAX5511 enters normal operation if in  
standby or shutdown.  
1
1
0
0
1
1
0
1
Command reserved; do not use.  
Command reserved; do not use.  
MAX5510 enters shutdown; MAX5511 enters standby*.  
For the MAX5511, D7 and D6 configure the internal  
reference voltage (Table 3).  
D7, D6,  
XXXXXX  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0000  
0000  
0000  
0000  
MAX5510/MAX5511 enter normal operation; DAC output  
reflects existing contents of DAC register. For the  
MAX5511, D7 and D6 configure the internal reference  
voltage (Table 3).  
D7, D6,  
XXXXXX  
MAX5510/MAX5511 enter shutdown; DAC output set to  
high impedance. For the MAX5511, D7 and D6 configure  
the internal reference voltage (Table 3).  
D7, D6,  
XXXXXX  
Load input register and DAC register from shift register;  
DAC output updated; MAX5510 enters normal operation  
if in shutdown; MAX5511 enters normal operation if in  
standby or shutdown.  
8-bit data  
X = Don’t care.  
*Standby mode can be entered from normal operation only. It is not possible to enter standby mode from shutdown.  
______________________________________________________________________________________ 13  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
directly from shutdown mode. The device must be  
Power Modes  
The MAX5510/MAX5511 feature two power modes to  
conserve power during idle periods. In normal opera-  
tion, the device is fully operational. In shutdown mode,  
the device is completely powered down, including the  
internal voltage reference in the MAX5511. The  
MAX5511 also offers a standby mode where all circuitry  
is powered down except the internal voltage reference.  
Standby mode keeps the reference powered up while  
the remaining circuitry is shut down, allowing it to be  
used as a system reference. Standby mode also helps  
reduce the wake-up delay by not requiring the refer-  
ence to power up when returning to normal operation.  
brought into normal operation before entering standby  
mode. To enter standby from shutdown, issue the com-  
mand to return to normal operation, followed immedi-  
ately by the command to go into standby.  
Table 2 shows several commands that bring the MAX5511  
back to normal operation. When transitioning from standby  
mode to normal operation, only the DAC power-up time is  
required before the DAC outputs are valid.  
Reference Input  
The MAX5510 accepts a reference with a voltage range  
extending from 0 to V . The output voltage (V  
) is  
OUT  
DD  
represented by a digitally programmable voltage  
source as:  
Shutdown Mode  
The MAX5510/MAX5511 feature a software-program-  
mable shutdown mode that reduces the typical supply  
current and the reference input current to 0.18µA  
(max). Writing an input control word with control bits  
C[3:0] = 1110 places the device in shutdown mode  
(Table 2). In shutdown, the MAX5510 reference input  
and DAC output buffers go high impedance. Placing  
the MAX5511 into shutdown turns off the internal refer-  
ence, and the DAC output buffers go high impedance.  
The serial interface remains active for all devices.  
V
= (V  
x N / 256) x gain  
REF  
OUT  
where N is the numeric value of the DAC’s binary input  
code (0 to 255), V is the reference voltage and gain  
REF  
is the externally set voltage gain for the MAX5510/  
MAX5511.  
In shutdown mode, the reference input enters a high-  
impedance state with an input impedance of 2.5G(typ).  
Reference Output  
The MAX5511 internal voltage reference is software  
configurable to one of four voltages. Upon power-up,  
the default reference voltage is 1.214V. Configure the  
reference voltage using the D6 and D7 data bits (Table  
3) when the control bits are as follows: C[3:0] = 1100,  
Table 2 shows several commands that bring the  
MAX5510/MAX5511 back to normal operation. The  
power-up time from shutdown is required before the  
DAC outputs are valid.  
Note: For the MAX5511, standby mode cannot be  
entered directly from shutdown mode. The device must  
be brought into normal operation before entering stand-  
by mode.  
1101, or 1110 (Table 2). V  
must be kept at a mini-  
DD  
mum of 200mV above V  
for proper operation.  
REF  
Standby Mode (MAX5511 Only)  
Table 3. Reference Output Voltage  
Programming  
The MAX5511 features a software-programmable  
standby mode that reduces the typical supply current  
to 6µA. Standby mode powers down all circuitry except  
the internal voltage reference. Place the device in  
standby mode by writing an input control word with  
control bits C[3:0] = 1100 (Table 2). The internal refer-  
ence and serial interface remain active while the DAC  
output buffers go high impedance. If the MAX5511 is  
coming out of standby, the power-up time from standby  
is required before the DAC outputs are valid.  
D7  
D6  
REFERENCE VOLTAGE (V)  
0
0
1.214  
1.940  
2.425  
3.885  
0
1
1
0
1
1
For the MAX5511, standby mode cannot be entered  
14 ______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Voltage Biasing a Current-Output  
Applications Information  
Transducer  
1-Cell and 2-Cell Circuit  
See Figure 3 for an illustration of how to power the  
MAX5510/MAX5511 with either one lithium-ion battery  
or two alkaline batteries. The low current consumption  
of the devices makes the MAX5510/MAX5511 ideal for  
battery-powered applications.  
See the circuit in Figure 5 for an illustration of how to con-  
figure the MAX5510 to bias a current-output transducer.  
In Figure 5, the output voltage of the MAX5510 is a func-  
tion of the voltage drop across the transducer added to  
the voltage drop across the feedback resistor R.  
Self-Biased Two-Electrode  
Potentiostat Application  
See the circuit in Figure 6 for an illustration of how to  
use the MAX5511 to bias a two-electrode potentiostat  
on the input of an ADC.  
Programmable Current Source  
See the circuit in Figure 4 for an illustration of how to  
configure the MAX5510 as a programmable current  
source for driving an LED. The MAX5510 drives a stan-  
dard NPN transistor to program the current source. The  
current source (I  
Figure 4.  
) is defined in the equation in  
LED  
V
DD  
536kΩ  
+1.25V  
1.8V V  
2.2V V  
3.3V  
3.3V  
ALKALINE  
LITHIUM  
REFIN  
DAC  
VOUT  
V
OUT  
(4.88mV / LSB)  
0.1µF  
0.01µF  
MAX6006  
(1µA, 1.25V  
SHUNT  
V
× N  
DAC  
256  
REFIN  
V
=
OUT  
MAX5510  
N
IS THE NUMERIC VALUE  
OF THE DAC INPUT CODE.  
DAC  
REFERENCE)  
GND  
Figure 3. Portable Application Using Two Alkaline Cells or One Lithium Coin Cell  
V+  
LED  
REFIN  
DAC  
VOUT  
V
OUT  
I
LED  
V
= V  
+ (I × R)  
OUT  
BIAS T  
DAC  
REFIN  
MAX5510  
VOUT  
FB  
2N3904  
R
FB  
MAX5510  
I
TRANSDUCER  
T
V
× N  
DAC  
256  
REFIN  
V
=
BIAS  
V
BIAS  
R
V
× N  
DAC  
REFIN  
N
IS THE NUMERIC VALUE  
OF THE DAC INPUT CODE.  
I
=
DAC  
LED  
256 × R  
N
DAC  
IS THE NUMERIC VALUE OF THE DAC INPUT CODE.  
Figure 4. Programmable Current Source Driving an LED  
Figure 5. Transimpedance Configuration for a Voltage-Biased  
Current-Output Transducer  
______________________________________________________________________________________ 15  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Unipolar Output  
Figure 7 shows the MAX5510 in a unipolar output con-  
figuration with unity gain. Table 4 lists the unipolar out-  
put codes.  
REF  
OUT  
FB  
DAC  
TO ADC  
TO ADC  
Bipolar Output  
The MAX5510 output can be configured for bipolar  
operation, as shown in Figure 8. The output voltage is  
given by the following equation:  
I
F
R
F
V
= V  
x [(N - 128) / 128]  
OUT  
REF A  
WE  
MAX5511  
where NA represents the numeric value of the DAC’s  
binary input code. Table 5 shows digital codes (offset  
binary) and the corresponding output voltage for the  
circuit in Figure 4.  
SENSOR  
CE  
Configurable Output Gain  
The MAX5510/MAX5511 have a force-sense output,  
which provides a connection directly to the inverting ter-  
minal of the output op amp, yielding the most flexibility.  
The advantage of the force-sense output is that specific  
gains can be set externally for a given application. The  
gain error for the MAX5510/MAX5511 is specified in a  
unity-gain configuration (op-amp output and inverting ter-  
minals connected), and additional gain error results from  
external resistor tolerances. Another advantage of the  
force-sense DAC is that it allows many useful circuits to  
be created with only a few simple external components.  
REFOUT  
BAND  
GAP  
TO ADC  
C
L
Figure 6. Self-Biased Two-Electrode Potentiostat Application  
REFIN  
DAC  
OUT  
Table 4. Unipolar Code Table (Gain = +1)  
MAX5510  
FB  
DAC CONTENTS  
ANALOG OUTPUT  
V
× N  
A
REFIN  
256  
V
OUT  
=
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
0000  
0000  
0000  
0000  
0000  
0000  
1111  
0001  
0000  
1111  
0001  
0000  
+V  
+V  
(255/256)  
(129/256)  
REF  
REF  
N IS THE DAC INPUT CODE  
A
(0 TO 255 DECIMAL).  
+V  
(128/256) = +V  
/2  
REF  
REF  
Figure 7. Unipolar Output Circuit  
+V  
(127/256)  
REF  
+V  
(1/256)  
REF  
0V  
10kΩ  
10kΩ  
Table 5. Bipolar Code Table (Gain = +1)  
V+  
DAC CONTENTS  
V
OUT  
ANALOG OUTPUT  
DAC  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
0000  
0000  
0000  
0000  
0000  
0000  
OUT  
FB  
REFIN  
1111  
0001  
0000  
1111  
0001  
0000  
+V  
(127/128)  
REF  
V-  
+V  
(1/128)  
REF  
MAX5510  
0V  
-V  
-V  
(1/128)  
REF  
(127/128)  
REF  
Figure 8. Bipolar Output Circuit  
-V  
REF  
(128/128) = -V  
REF  
16 ______________________________________________________________________________________  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
An example of a custom fixed gain using the force-sense  
output of the MAX5510/MAX5511 is shown in Figure 9. In  
this example R1 and R2 set the gain for V  
Power Supply and Bypassing  
Considerations  
Bypass the power supply with a 0.1µF capacitor to GND.  
Minimize lengths to reduce lead inductance. If noise  
becomes an issue, use shielding and/or ferrite beads to  
increase isolation. For the thin QFN package, connect  
the exposed paddle to ground.  
.
OUT  
V
= [(V x N ) / 256] x [1 + (R2 / R1)]  
REFIN A  
OUT  
where N represents the numeric value of the DAC  
A
input code.  
Layout Considerations  
Digital and AC transient signals coupling to GND can  
create noise at the output. Use proper grounding tech-  
niques, such as a multilayer board with a low-inductance  
ground plane. Wire-wrapped boards and sockets are not  
recommended. For optimum system performance, use  
printed circuit (PC) boards. Good PC board ground lay-  
out minimizes crosstalk between DAC outputs, reference  
inputs, and digital inputs. Reduce crosstalk by keeping  
analog lines away from digital lines.  
MAX5510  
REFIN  
DAC  
OUT  
V
OUT  
R2  
R1  
FB  
Figure 9. Separate Force-Sense Outputs Create Unity and  
Greater-than-Unity DAC Gains Using the Same Reference  
1.8V V 5.5V  
DD  
REFIN  
DAC  
VOUT  
V
OUT  
H
CS1  
MAX5510  
MAX5401  
SOT-POT  
100kΩ  
V
× N  
256  
255 - N  
255  
REFIN  
DAC  
POT  
V
OUT  
=
1 +  
(
)
FB  
W
N
DAC  
N
POT  
IS THE NUMERIC VALUE OF THE DAC INPUT CODE.  
IS THE NUMERIC VALUE OF THE POT INPUT CODE.  
SCLK  
DIN  
5PPM/°C  
RATIOMETRIC  
TEMPCO  
CS2  
L
Figure 10. Software-Configurable Output Gain  
Chip Information  
TRANSISTOR COUNT: 10,688  
PROCESS: BiCMOS  
______________________________________________________________________________________ 17  
+1.8V to +5.5V, Ultra-Low-Power, 8-Bit,  
Voltage-Output DACs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
1
21-0139  
B
2
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
2
21-0139  
B
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY