MAX5621AETK-T [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, EXPOSED PAD, MO-220, QFN-68;
MAX5621AETK-T
型号: MAX5621AETK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 10 X 10 MM, 0.80 MM HEIGHT, EXPOSED PAD, MO-220, QFN-68

文件: 总16页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2715; Rev 0; 1/03  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
General Description  
Features  
The MAX5621/MAX5622/MAX5623 are 16-bit digital-to-  
analog converters (DACs) with 16 sample-and-hold  
(SHA) outputs for applications where a high number of  
programmable voltages are required. These devices  
include a clock oscillator and a sequencer that updates  
the DAC with codes from an internal SRAM. No external  
components are required to set offset and gain.  
Integrated 16-Bit DAC and 16-Channel SHA with  
SRAM and Sequencer  
16 Voltage Outputs  
0.005% Output Linearity  
200µV Output Resolution  
Flexible Output Voltage Range  
Remote Ground Sensing  
The MAX5621/MAX5622/MAX5623 feature a -4.5V to  
+9.2V output voltage range. Other features include a  
200µV/step resolution, with output linearity error, typi-  
cally 0.005% of full-scale range (FSR). The 100kHz  
refresh rate updates each SHA every 320µs, resulting  
in negligible output droop. Remote ground sensing  
allows the outputs to be referenced to the local ground  
of a separate device.  
Fast Sequential Loading: 1.3µs per Register  
Burst and Immediate Mode Addressing  
No External Components Required for Setting  
Gain and Offset  
Integrated Output Clamp Diodes  
Three Output Impedance Options  
MAX5621 (50), MAX5622 (500), and  
MAX5623 (1k)  
These devices are controlled through a 20MHz  
SPI™/QSPI™/MICROWIRE™-compatible 3-wire serial  
interface. Immediate update mode allows any channel’s  
output to be updated within 20µs. Burst mode allows  
multiple values to be loaded into memory in a single,  
high-speed data burst. All channels are updated within  
330µs after data has been loaded.  
Ordering Information  
PART  
TEMP RANGE  
-40oC to +85oC  
-40oC to +85oC  
-40oC to +85oC  
-40oC to +85oC  
-40oC to +85oC  
PIN-PACKAGE  
64 TQFP  
MAX5621AECB  
MAX5621AETK  
MAX5622AECB  
MAX5622AETK  
MAX5623AECB  
68 Thin QFN-EP*  
64 TQFP  
Each device features an output clamp and output resis-  
tors for filtering. The MAX5621 features a 50output  
impedance and is capable of driving up to 250pF of out-  
put capacitance. The MAX5622 features a 500output  
impedance and is capable of driving up to 10nF of output  
capacitance. The MAX5623 features a 1koutput imped-  
ance and is capable of driving up to 10nF of output  
capacitance.  
68 Thin QFN-EP*  
64 TQFP  
MAX5623AETK  
-40oC to +85oC  
68 Thin QFN-EP*  
*EP = Exposed pad.  
Pin Configurations  
The MAX5621/MAX5622/MAX5623 are available in 64-pin  
TQFP (10mm x 10mm) and 68-pin thin QFN (10mm x  
10mm) packages.  
TOP VIEW  
1
51  
N.C.  
N.C.  
50  
V
2
N.C.  
DD  
3
4
49  
GS  
CH  
V
48  
V
47 OUT10  
LDAC  
RST  
CS  
SS  
________________________Applications  
5
6
46  
N.C.  
OUT9  
N.C.  
MEMS Mirror Servo Control  
Industrial Process Control  
Automatic Test Equipment  
7
45  
DIN  
8
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
SCLK  
9
OUT8  
AGND  
V
DD  
V
LOGIC  
IMMED  
MAX5621  
MAX5622  
MAX5623  
10  
11  
12  
13  
14  
15  
16  
17  
ECLK  
CLKSEL  
DGND  
N.C.  
OUT7  
N.C.  
OUT6  
N.C.  
CL  
Instrumentation  
V
LSHA  
AGND  
V
SS  
N.C.  
THIN QFN  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor, Corp.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
V
to AGND.......................................................-0.3V to +12.2V  
to AGND .........................................................-6.0V to +0.3V  
Maximum Current into Logic Inputs ................................. 20mA  
DD  
SS  
DD  
Continuous Power Dissipation (T = +70°C)  
A
to V ...........................................................................+15V  
64-Pin TQFP (derate 13.3mW/°C above +70°C) ............1066mW  
68-Pin Thin QFN (derate 28.6mW/°C above +70°C)......2285mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS  
, V  
, V  
to AGND or DGND..............-0.3V to +6V  
LDAC LOGIC LSHA  
REF to AGND............................................................-0.3V to +6V  
GS to AGND................................................................V to V  
CL and CH to AGND...................................................V to V  
Logic Inputs to DGND..............................................-0.3V to +6V  
DGND to AGND........................................................-0.3V to +2V  
Maximum Current into OUT_ ............................................ 10mA  
SS  
SS  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0V, R 10M, C = 50pF,  
DD  
SS  
LOGIC  
= 400kHz, T = T  
LDAC  
LSHA  
REF  
GS L L  
CLKSEL = +5V, f  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
ECLK  
A
MIN  
MAX A  
PARAMETER  
DC CHARACTERISTICS  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
16  
Bits  
V
V
SS  
+
V
DD  
-
Output Range  
V
(Note 1)  
OUT_  
0.75  
2.4  
Offset Voltage  
Code = 4F2C hex  
(Note 2)  
15  
50  
200  
1
mV  
µV/°C  
%
Offset Voltage Tempco  
Gain Error  
Gain Tempco  
5
ppm/°C  
%FSR  
Integral Linearity Error  
INL  
DNL  
V
V
= -3.25V to +7.6V  
0.005  
0.015  
4
OUT_  
OUT_  
= -3.25V to +7.6V; monotonicity  
Differential Linearity Error  
1
LSB  
mA  
guaranteed to 14 bits  
Sinking and sourcing  
MAX5621  
Maximum Output Drive Current  
I
2
35  
OUT  
50  
500  
1000  
250  
10  
65  
DC Output Impedance  
R
MAX5622  
350  
700  
650  
OUT  
MAX5623  
1300  
MAX5621  
pF  
nF  
Maximum Capacitive Load  
MAX5622  
MAX5623  
10  
DC Crosstalk  
Internal oscillator enabled (Note 3)  
Internal oscillator enabled  
-90  
-80  
dB  
dB  
Power-Supply Rejection Ratio  
PSRR  
2
_______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0V, R 10M, C = 50pF,  
GS L L  
DD  
SS  
LOGIC  
= 400kHz, T = T  
LDAC  
LSHA  
REF  
CLKSEL = +5V, f  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
ECLK  
A
MIN  
MAX A  
PARAMETER  
DYNAMIC CHARACTERISTICS  
Sample-and-Hold Settling  
SCLK Feedthrough  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
(Note 4)  
0.08  
%
0.5  
0.5  
0.25  
1
nV-s  
nV-s  
mV  
f
Feedthrough  
SEQ  
Hold-Step  
1
Droop Rate  
V
= 0V (Note 5), T = +25°C  
40  
mV/s  
OUT_  
A
µV  
Output Noise  
250  
RMS  
REFERENCE INPUT  
Input Resistance  
Reference Input Voltage  
GROUND-SENSE INPUT  
Input Voltage Range  
Input Bias Current  
GS Gain  
7
kΩ  
V
I
2.5  
1
V
REF  
V
-0.5  
-60  
+0.5  
0
V
GS  
-0.5V V +0.5V  
µA  
V/V  
GS  
GS  
(Note 6)  
0.998  
1.002  
DIGITAL INTERFACE DC CHARACTERISTICS  
Input High Voltage  
Input Low Voltage  
Input Current  
V
2.0  
80  
V
V
IH  
V
0.8  
1
IL  
µA  
TIMING CHARACTERISTICS (Figure 2)  
Sequencer Clock Frequency  
External Clock Frequency  
SCLK Frequency  
f
Internal oscillator  
(Note 7)  
100  
120  
480  
20  
kHz  
kHz  
MHz  
ns  
SEQ  
f
f
ECLK  
SCLK  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
15  
15  
CH  
t
ns  
CL  
CS Low to SCLK High Setup  
Time  
t
15  
ns  
CSSO  
CS High to SCLK High Setup  
Time  
t
15  
10  
ns  
ns  
CSS1  
SCLK High to CS Low Hold Time  
t
CSH0  
_______________________________________________________________________________________  
3
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +10V, V = -4V, V  
= V  
= V  
= +5V, V  
= +2.5V, AGND = DGND = V  
= 0V, R 10M, C = 50pF,  
DD  
SS  
LOGIC  
= 400kHz, T = T  
LDAC  
LSHA  
REF  
GS  
L
L
CLKSEL = +5V, f  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
ECLK  
A
MIN  
MAX A  
PARAMETER  
SCLK High to CS High Hold Time  
DIN to SCLK High Setup Time  
DIN to SCLK High Hold Time  
RST to CS Low  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX UNITS  
t
ns  
ns  
ns  
CSH1  
t
15  
0
DS  
DH  
t
(Note 8)  
500  
µs  
POWER SUPPLIES  
Positive Supply Voltage  
Negative Supply Voltage  
Supply Difference  
V
(Note 9)  
(Note 9)  
8.55  
10  
-4  
11.60  
-2.75  
14.5  
V
V
V
DD  
V
-5.25  
SS  
V
- V (Note 9)  
SS  
DD  
V
,
LOGIC  
Logic Supply Voltage  
V
,
4.75  
5
5.25  
V
LDAC  
V
LSHA  
Positive Supply Current  
Negative Supply Current  
I
32  
32  
1
42  
40  
1.5  
3
mA  
mA  
DD  
I
SS  
(Note 10)  
= 20MHz (Note 11)  
Logic Supply Current  
I
mA  
LOGIC  
f
2
SCLK  
Note 1: The nominal zero-scale (code = 0) voltage is -4.0535V. The nominal full-scale (code = FFFF hex) voltage is +9.0535V. The  
output voltage is limited by the Output Range specification, restricting the usable range of DAC codes. The nominal zero-  
scale voltage can be achieved when V < -4.9V, and the nominal full-scale voltage can be achieved when V > +11.5V.  
SS  
DD  
Note 2: Gain is calculated from measurements:  
for voltages V  
for voltages V  
for voltages V  
for voltages V  
= 10V and V = -4V at codes C000 hex and 4F2C hex  
DD  
DD  
DD  
DD  
SS  
= 11.6V and V = -2.9V at codes FFFF hex and 252E hex  
SS  
= 9.25V and V = -5.25V at codes D4F6 hex and 0 hex  
SS  
= 8.55V and V = -2.75V at codes C74A hex and 281C hex  
SS  
Note 3: Steady-state change in any output with an 8V change in an adjacent output.  
Note 4: Settling during the first update for an 8V step. The output settles to within the linearity specification on subsequent updates.  
Tested with an external sequencer clock frequency of 480kHz.  
Note 5: External clock mode with the external clock not toggling.  
Note 6: The output voltage is the sum of the DAC output and the voltage at GS. GS gain is measured at 4F2C hex.  
Note 7: The sequencer runs at f  
= f /4. Maximum speed is limited by settling of the DAC and SHAs. Minimum speed is  
ECLK  
SEQ  
limited by acceptable droop and update time after a Burst Mode Update.  
V rise to CS low = 500µs maximum.  
DD  
Note 8:  
Note 9: Guaranteed by gain-error test.  
Note 10: The serial interface is inactive. V = V  
, V = 0V.  
LOGIC IL  
IH  
Note 11: The serial interface is active. V = V  
, V = 0V.  
LOGIC IL  
IH  
4
_______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Typical Operating Characteristics  
(V  
= +10V, V = -4V, V  
= +2.5V, V = 0V, T = +25°C, unless otherwise noted.)  
REF GS  
A
DD  
SS  
INTEGRAL NONLINEARITY  
VS. TEMPERATURE  
INTEGRAL NONLINEARITY vs. CODE  
DIFFERENTIAL NONLINEARITY vs. CODE  
0.007  
0.005  
0.003  
0.001  
1.4  
1.0  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.6  
0.2  
-0.001  
-0.003  
-0.005  
-0.007  
-0.2  
-0.6  
-1.0  
-1.4  
4018 11769 19520 27271 35021 42723 58268  
INPUT CODE  
4018 11769 19520 27271 35021 42723 58268  
INPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
VS. TEMPERATURE  
OFFSET VOLTAGE  
VS. TEMPERATURE  
DROOP RATE vs. TEMPERATURE  
100  
10  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
-10  
-12  
-14  
-16  
-18  
-20  
CODE = 4F2C hex  
EXTERNAL CLOCK MODE  
NO CLOCK APPLIED  
V
DD  
= +8.55V  
SS  
V
= -4V  
CODE = 4F2C hex  
1
0.100  
0.010  
0.001  
0.0001  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NEGATIVE SUPPLY PSRR  
VS. FREQUENCY  
POSITIVE SUPPLY PSRR  
VS. FREQUENCY  
GAIN ERROR VS. TEMPERATURE  
-90  
-90  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-80  
-70  
-80  
-70  
-60  
-50  
-40  
-30  
-60  
-50  
-40  
-30  
-20  
-20  
-10  
CODE = C168 hex  
-10  
0
OFFSET CODE = 4F2C hex  
0
0.001  
0.01  
0.1  
1
10  
100  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Typical Operating Characteristics (continued)  
(V  
= +10V, V = -4V, V  
= +2.5V, V = 0V, T = +25°C, unless otherwise noted.)  
REF GS  
A
DD  
SS  
LOGIC SUPPLY CURRENT  
vs. LOGIC SUPPLY VOLTAGE  
LOGIC SUPPLY CURRENT  
VS. LOGIC INPUT HIGH VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
36  
34  
32  
30  
28  
26  
24  
22  
20  
900  
1200  
I
DD  
SS  
1000  
800  
600  
400  
200  
0
800  
700  
600  
500  
400  
I
INTERFACE INACTIVE  
INTERFACE INACTIVE  
f
= 20MHz  
SCLK  
-40  
-15  
10  
35  
60  
85  
4.75  
5.00  
5.25  
5.50  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
LOGIC SUPPLY VOLTAGE (V)  
LOGIC INPUT HIGH VOLTAGE (V)  
POSITIVE SETTLING TIME  
(8V STEP)  
NEGATIVE SETTLING TIME  
(8V STEP)  
POSITIVE SETTLING TIME  
(100mV STEP)  
MAX5621 toc13  
MAX5621 toc14  
MAX5621 toc15  
3.5V  
0V  
3.5V  
0V  
3.5V  
ECLK  
ECLK  
ECLK  
0V  
V
OUT_  
50mV/div  
AC-COUPLED  
5V/div  
V
V
5V/div OUT_  
OUT_  
1µs/div  
1µs/div  
1µs/div  
NEGATIVE SETTLING TIME  
(100mV STEP)  
OUTPUT NOISE  
MAX5621 toc16  
MAX5621 toc17  
3.5V  
0V  
ECLK  
OUT_  
1mV/div  
50mV/div  
AC-COUPLED  
V
OUT_  
1µs/div  
250µs/div  
6
_______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFP  
THIN QFN  
1, 2, 20, 22, 24, 27, 29, 34,  
36, 38, 42, 44, 50, 52, 54,  
57, 59, 61  
1, 2, 17, 21, 23, 25, 28, 30,  
34, 36, 38, 40, 44, 46, 51,  
53, 55, 57, 60, 62, 64, 68  
N.C.  
GS  
No Connection. Not internally connected.  
3
3
Ground-Sensing Input  
+5V DAC Power Supply  
Reset Input  
4
4
V
LDAC  
5
5
RST  
CS  
6
6
Chip-Select Input  
Serial Data Input  
Serial Clock Input  
+5V Logic Power Supply  
Immediate Update Mode  
External Sequencer Clock Input  
Clock-Select Input  
Digital Ground  
7
7
DIN  
8
8
SCLK  
9
9
V
LOGIC  
IMMED  
ECLK  
10  
10  
11  
11  
12  
12  
CLKSEL  
DGND  
13  
13  
14  
14  
V
+5V Sample-and-Hold Power Supply  
Analog Ground  
Negative Power Supply  
Positive Power Supply  
Output Clamp Low Voltage  
Output 0  
LSHA  
15, 25, 40, 55, 62  
15, 26, 42, 58, 65  
AGND  
16, 32, 46  
16, 33, 48  
V
SS  
17, 39, 48  
18, 41, 50  
V
DD  
18, 33, 49  
19, 35, 52  
CL  
19  
21  
20  
22  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
CH  
Output 1  
23  
24  
Output 2  
26  
27  
Output 3  
28  
29  
Output 4  
30  
31  
Output 5  
35  
37  
Output 6  
37  
39  
Output 7  
41  
43  
Output 8  
43  
45  
Output 9  
45  
47  
Output 10  
31, 47, 64  
51  
32, 49, 67  
54  
Output Clamp High Voltage  
Output 11  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
REF  
53  
56  
Output 12  
56  
59  
Output 13  
58  
61  
Output 14  
60  
63  
Output 15  
63  
66  
Reference Voltage Input  
_______________________________________________________________________________________  
7
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
CH  
OUT0  
ECLK  
CLOCK  
CLKSEL  
SAMPLE-  
AND-HOLD  
ARRAY  
R
SAMPLE  
E
G
I
S
T
E
R
DATA READY  
SEQUENCER  
OUT15  
CL  
R
E
G
I
S
T
E
R
GAIN AND  
OFFSET  
CORRECTION  
GS  
READ ENABLE  
16-BIT  
DAC  
SEQUENTIAL  
ADDRESS  
16 x 16  
SRAM  
REF  
2:1  
M
U
LAST  
ADDRESS  
X
CS  
SCLK  
DIN  
ADDR SELECT  
MAX5621  
MAX5622  
MAX5623  
SERIAL  
INTERFACE  
WRITE ENABLE  
D[15:0]  
IMMED  
RST  
Figure 1. Functional Diagram  
t
CSH1  
CS  
t
CSHO  
t
CSS1  
t
t
t
CL  
CSSO  
CH  
SCLK  
DIN  
t
DH  
t
DS  
B23  
B22  
B0  
Figure 2. Serial Interface Timing Diagram  
8
_______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Detailed Description  
V
+ 0.75V V  
V - 2.4V  
(
)
(
)
SS  
OUT_  
DD  
Digital-to-Analog Converter  
The MAX5621/MAX5622/MAX5623 16-bit digital-to-ana-  
log converters (DACs) are composed of two matched  
sections. The four MSBs are derived through 15 identi-  
cal matched resistors and the lower 12 bits are derived  
through a 12-bit inverted R-2R ladder.  
The device has a fixed theoretical output range deter-  
mined by the reference voltage, gain, and midscale offset.  
The output voltage for a given input code is calculated  
with the following:  
Sample-and-Hold Amplifiers  
The MAX5621/MAX5622/MAX5623 contain 16 buffered  
sample/hold circuits with internal hold capacitors.  
Internal hold capacitors minimize leakage current,  
dielectric absorption, feedthrough, and required board  
space. The MAX5621/MAX5622/MAX5623 provide a  
very low 1mV/s droop rate.  
code  
65535  
VOUT  
=
× VREF × 5.2428 -  
1.6214× V  
+ VGS  
(
)
REF  
where code is the decimal value of the DAC input  
code, V is the reference voltage, and V is the  
REF  
GS  
Output  
The MAX5621/MAX5622/MAX5623 include output buffers  
on each channel. The device contains output resistors in  
series with the buffer output (Figure 3) for ease of output  
filtering and capacitive load driving stability.  
voltage at the ground-sense input. With a 2.5V refer-  
ence, the nominal end points are -4.0535V and  
+9.0535V (Table 1). Note that these are virtualinter-  
nal end-point voltages and cannot be reached with all  
combinations of negative and positive power-supply  
voltages. The nominal, usable DAC end-point codes for  
the selected power supplies can be calculated as:  
Output loads increase the analog supply current (I  
DD  
and I ). Excessively loading the outputs drastically  
SS  
increases power dissipation. Do not exceed the maxi-  
mum power dissipation specified in the Absolute  
Maximum Ratings.  
Lower end-point code = 32768 - ((2.5V - (V +0.75)) /  
SS  
200µV) (result 0)  
Upper end-point code = 32768 + ((V  
The maximum output voltage range depends on the  
analog supply voltages available and the output clamp  
voltages (see the Output Clamp section):  
- 2.4 - 2.5V) /  
DD  
200µV) (result 65535)  
V
REF  
CH  
GAIN  
AND  
OFFSET  
R
O
OUT_  
16-BIT  
DAC  
DAC  
DATA  
A = 1  
V
C
HOLD  
R
L
CL  
ONE OF 16 SHA CHANNELS  
GS  
Figure 3. Analog Block Diagram  
Table 1. Code Table  
DAC INPUT CODE  
NOMINAL OUTPUT  
VOLTAGE (V)  
V
= +2.5V  
REF  
MSB  
LSB  
1111 1111 1111 1111  
9.0535  
6.15  
2.5  
Full-scale output  
1100 0111 0100 1010  
1000 0000 0000 0000  
Maximum output with V  
Midscale output  
= 8.55V  
DD  
0100 1111 0010 1100  
0
V
= 0; all outputs default to this code after power-up  
OUT_  
0010 1000 0001 1100  
0000 0000 0000 0000  
-2.0  
Minimum output with V = -2.75V  
SS  
-4.0535  
Zero-scale output  
_______________________________________________________________________________________  
9
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
The resistive voltage-divider formed by the output resis-  
Table 2. Channel/Output Selection  
tor (R ) and the load impedance (R ), scales the out-  
O
L
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OUTPUT  
put voltage. Determine V  
as follows:  
OUT_  
OUT0 selected  
OUT1 selected  
OUT2 selected  
OUT3 selected  
OUT4 selected  
OUT5 selected  
OUT6 selected  
OUT7 selected  
OUT8 selected  
OUT9 selected  
OUT10 selected  
OUT11 selected  
OUT12 selected  
OUT13 selected  
OUT14 selected  
OUT15 selected  
RL  
RL +RO  
Scaling Factor =  
VOUT_ = VCHOLD × scaling factor  
Ground Sense  
The MAX5621/MAX5622/MAX5623 include a ground-  
sense input (GS), which allows the output voltages to  
be referenced to a remote ground. The voltage at GS is  
added to the output voltage with unity gain. Note that  
the resulting output voltage must be within the valid  
output voltage range set by the power supplies.  
Output Clamp  
The MAX5621/MAX5622/MAX5623 clamp the output  
between two externally applied voltages. Internal  
diodes at each channel restrict the output voltage to:  
V
+ 0.7V V  
V 0.7V  
(
)
(
)
CH  
OUT_  
CL  
The clamping diodes allow the MAX5621/MAX5622/  
MAX5623 to drive devices with restricted input ranges.  
The diodes also allow the outputs to be clamped during  
power-up or fault conditions. To disable output clamping,  
Serial Input Data Format and  
Control Codes  
The 24-bit serial input format, shown in Figure 4, compris-  
es 16 data bits (D15D0), 4 address bits (A3A0), 1  
required zero bit after the address bits, 2 control bits (C1,  
C0), and a fill zero. The address code selects the output  
channel as shown in Table 2. The control code configures  
the device as follows:  
connect CH to V  
and CL to V , setting the clamping  
SS  
DD  
voltages beyond the maximum output voltage range.  
Serial Interface  
The MAX5621/MAX5622/MAX5623 are controlled by an  
SPI/QSPI/MICROWIRE-compatible 3-wire interface.  
Serial data is clocked into the 24-bit shift register in an  
MSB-first format, with the 16-bit DAC data preceding  
the 4-bit SRAM address, required zero bit, 2-bit control,  
and a fill 0 (Figure 4). The input word is framed by CS.  
The first rising edge of SCLK after CS goes low clocks  
in the MSB of the input word.  
1) If C1 = 1, immediate update mode is selected.  
If C1 = 0, burst mode is selected.  
2) If C0 = 0, the internal sequencer clock is selected. If  
C0 = 1, the external sequencer clock is selected.  
This must be repeated with each data word to main-  
tain external input.  
When each serial word is complete, the value is stored  
in the SRAM at the address indicated and the control  
bits are saved. Note that data can be corrupted if CS is  
not held low for an integer multiple of 24 bits.  
The operating modes can also be selected externally  
through CLKSEL and IMMED. In the case where the  
control bit in the serial word and the external signal  
conflict, the signal that is a logic 1 is dominant.  
All of the digital inputs include Schmitt-trigger buffers to  
accept slow-transition interfaces. Their switching thresh-  
old is compatible with TTL and most CMOS logic levels.  
DATA  
ADDRESS  
CONTROL  
C1 C0 0  
D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D0 A3 A2 A1 A0  
0
MSB  
LSB  
Figure 4. Input Word Sequence  
10 ______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Table 3. Update Mode  
2/f  
SEQ  
SHA ARRAY  
UPDATE  
SEQUENCE  
UPDATE MODE  
Immediate update mode  
Burst mode  
UPDATE TIME  
2/f  
1
2
3
7
SKIP 12  
7
8
9
SEQ  
33/f  
SEQ  
CHANNEL 12  
UPDATED  
Modes of Operation  
The MAX5621/MAX5622/MAX5623 feature three modes  
of operation:  
CS  
INTERRUPTED  
CHANNEL REFRESHED  
LOAD ADDRESS 12  
Sequence mode  
Immediate update mode  
Burst mode  
DIN  
24-BIT  
WORD  
Figure 5. Immediate Update Mode Timing Example  
Sequence Mode  
Sequence mode is the default operating mode. The  
internal sequencer continuously scrolls through the  
SRAM, updating each of the 16 SHAs. At each SRAM  
address location, the stored 16-bit DAC code is loaded  
to the DAC. Once settled, the DAC output is acquired  
by the corresponding SHA. Using the internal  
sequencer clock, the process typically takes 320µs to  
update all 16 SHAs (20µs per channel). Using an exter-  
nal sequencer clock the update process takes 128  
clock cycles (eight clock cycles per channel).  
being refreshed. Under conditions of extremely frequent  
immediate updates (i.e., 1000 successive updates),  
unacceptable droop can result.  
Figure 5 shows an example of an immediate update  
operation. In this example, data for channel 12 is  
loaded while channel 7 is being refreshed. The  
sequencer operation is interrupted, and no other chan-  
nels are refreshed as long as CS is held low. Once CS  
returns high, and the remainder of an f  
period (if  
SEQ  
any) has expired, channel 12 is updated to the new  
data. Once channel 12 has been updated, the  
sequencer resumes normal operation at the interrupted  
channel 7.  
Immediate Update Mode  
Immediate update mode is used to change the con-  
tents of a single SRAM location, and update the corre-  
sponding SHA output. In immediate update mode, the  
selected output is updated before the sequencer  
resumes operation. Select immediate update mode by  
driving either IMMED or C1 high.  
Burst Mode  
Burst mode allows multiple SRAM locations to be  
loaded at high speed. During burst mode, the output  
voltages are not updated until the data burst is com-  
plete and control returns to the sequencer. Select burst  
mode by driving both IMMED and C1 low.  
The sequencer is interrupted when CS is taken low. The  
input word is then stored in the proper SRAM address.  
The DAC conversion and SHA sample in progress are  
completed transparent to the serial bus activity. The  
SRAM location of the addressed channel is then modi-  
fied with the new data. The DAC and SHA are updated  
with the new voltage. The sequencer then resumes  
scrolling at the interrupted SRAM address.  
The sequencer is interrupted when CS is taken low. All  
or part of the memory can be loaded while CS is low.  
Each data word is loaded into its specified SRAM  
address. The DAC conversion and SHA sample in  
progress are completely transparent to the serial bus  
activity. When CS is taken high, the sequencer  
resumes scrolling at the interrupted SRAM address.  
New values are updated when their turn comes up in  
the sequence.  
This operation can take up to two cycles of the  
sequencer clock. Up to one cycle is needed to allow the  
sequencer to complete the operation in progress before  
it is freed to update the new channel. An additional  
cycle is required to read the new data from memory,  
update the DAC, and strobe the sample-and-hold. The  
sequencer resumes scrolling from the location at which  
it was interrupted. Normal sequencing is suppressed  
while loading data, thus preventing other channels from  
After burst mode is used, it is recommended that at  
least one full sequencer loop (320µs) is allowed to  
occur before the serial port is accessed again. This  
ensures that all outputs are updated before the  
sequencer is interrupted.  
______________________________________________________________________________________ 11  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
+5V  
+10V  
2/f  
SEQ  
SHA ARRAY  
UPDATE  
SEQUENCE  
6
7
SKIP  
SKIP SKIP  
7
8
5
6
7
0.1µF  
0.1µF  
33/f TO UPDATE  
SEQ  
ALL CHANNELS  
V
V
V
CS  
V
LDAC  
LSHA  
DD  
LOGIC  
LOAD MULTIPLE  
ADDRESSES  
REF  
GS  
+2.5V  
OUT0  
OUT1  
DIN  
CS  
DIN  
MAX5621  
MAX5622  
MAX5623  
SCLK  
Figure 6. Burst Mode Timing Example  
IMMED  
CLKSEL  
ECLK  
Figure 6 shows an example of a burst mode operation.  
As with the immediate update example, CS falls while  
channel 7 is being refreshed. Data for multiple chan-  
nels is loaded, and no channels are refreshed as long  
as CS remains low. Once CS returns high, sequencing  
resumes with channel 7 and continues normal refresh  
RST  
OUT15  
CL  
AGND  
V
DGND  
SS  
operation. Thirty-three f  
cycles are required before  
SEQ  
0.1µF  
all channels have been updated.  
-4V  
External Sequencer Clock  
An external clock can be used to control the  
sequencer, altering the output update rate. The  
sequencer runs at 1/4 the frequency of the supplied  
clock (ECLK). The external clock option is selected by  
driving either C0 or CLKSEL high.  
Figure 7. Typical Operating Circuit  
Applications Information  
When CLKSEL is asserted, the internal clock oscillator  
is disabled. This feature allows synchronizing the  
sequencer to other system operations, or shutting down  
of the sequencer altogether during high-accuracy sys-  
tem measurements. The low 1mV/s droop of these  
devices ensures that no appreciable degradation of the  
output voltages occurs, even during extended periods  
of time when the sequencer is disabled.  
Power Supplies and Bypassing  
Grounding and power-supply decoupling strongly influ-  
ence device performance. Digital signals may couple  
through the reference input, power supplies, and  
ground connection. Proper grounding and layout can  
reduce digital feedthrough and crosstalk. At the device  
level, a 0.1µF capacitor is required for the V , V  
,
SS  
DD  
and V pins. They should be placed as close to the  
L_  
pins as possible. More substantial decoupling at the  
board level is recommended and is dependent on the  
number of devices on the board (Figure 7).  
Power-On Reset  
A power-on reset (POR) circuit sets all channels to 0V  
(code 4F2C hex) in sequence, requiring 320µs. This pre-  
vents damage to downstream ICs due to arbitrary refer-  
ence levels being presented following system power-up.  
This same function is available by driving RST low.  
During the reset operation, the sequencer is run by the  
internal clock, regardless of the state of CLKSEL. The  
reset process cannot be interrupted, and serial inputs  
are ignored until the entire reset process is complete.  
The MAX5621/MAX5622/MAX5623 have three separate  
+5V logic power supplies, V  
, V  
, and V  
.
LSHA  
LDAC LOGIC  
V
V
V
powers the 16-bit digital-to-analog converter,  
powers the control logic of the SHA array, and  
powers the serial interface, sequencer, internal  
LDAC  
LSHA  
LOGIC  
clock and SRAM. Additional filtering of V  
and  
LDAC  
V
LSHA  
improves the overall performance of the device.  
12 ______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Pin Configurations (continued)  
Chip Information  
TRANSISTOR COUNT: 16,229  
PROCESS: BiCMOS  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
N.C.  
N.C.  
GS  
1
48  
47 CH  
46  
V
DD  
2
3
4
5
6
7
8
9
V
SS  
V
45 OUT10  
44 N.C.  
LDAC  
RST  
CS  
43 OUT9  
42 N.C.  
DIN  
SCLK  
41 OUT8  
40 AGND  
MAX5621  
MAX5622  
MAX5623  
V
LOGIC  
IMMED 10  
ECLK 11  
39 V  
DD  
38 N.C.  
37 OUT7  
36 N.C.  
35 OUT6  
34 N.C.  
33 CL  
CLKSEL 12  
DGND 13  
V
14  
AGND 15  
16  
LSHA  
V
SS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TQFP  
______________________________________________________________________________________ 13  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
14 ______________________________________________________________________________________  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
68L QFN THIN, 10x10x0.8 MM  
21-0142  
A
______________________________________________________________________________________ 15  
16-Bit DACs with 16-Channel  
Sample-and-Hold Outputs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
68L QFN THIN, 10x10x0.8 MM  
21-0142  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY