MAX5651ETJ [MAXIM]

16-Bit, Parallel-Input Voltage-Output DACs with Internal Reference; 16位并行输入,电压输出DAC,内置基准
MAX5651ETJ
型号: MAX5651ETJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit, Parallel-Input Voltage-Output DACs with Internal Reference
16位并行输入,电压输出DAC,内置基准

文件: 总14页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3936; Rev 0; 2/06  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
General Description  
Features  
16-Bit Resolution  
The MAX5650/MAX5651/MAX5652 parallel-input, volt-  
age-output, 16-bit, digital-to-analog converters (DACs)  
provide monotonic 16-bit output voltage over the full  
extended operating temperature range. The MAX5650/  
MAX5651 include an internal precision low drift  
(10ppm/°C) bandgap voltage reference, while the  
MAX5652 requires an external reference. The MAX5650  
operates from a +5V single supply and has a +4.096V  
internal reference. The MAX5651 operates from either a  
+3V or +5V single supply and has a +2.048V internal  
reference. The MAX5652 operates from either a +3V or  
+5V single supply and accepts an input reference voltage  
Parallel 16-Bit or 2-Byte Double Buffered Interface  
Guaranteed Monotonic  
Maximum INL: ±± LꢀB  
Fast 2µs ꢀettling Time  
Clear Input (CLR) ꢀets Output to Zero-ꢀcale or  
Midscale  
Integrated Precision Resistors for Bipolar  
Operation  
Integrated Precision Bandgap Reference:  
+±.096V (MAX5650)  
between +2V and AV . TheMAX5650/MAX5651/  
DD  
MAX5652 parallel inputs are double buffered and con-  
figurable as a single 16-bit wide input or a 2-byte input.  
The MAX5650/MAX5651/MAX5652 unbuffered DAC  
+2.0±8V (MAX5651)  
voltage output ranges from 0 to V  
.
REF  
The MAX5650/MAX5651/MAX5652 feature an active-low  
hardware clear input (CLR) that clears the registers and  
the output to zero-scale (0000 hex) or midscale (8000  
hex), depending on the state of the MID/ZERO input.  
These devices include matched scaling resistors for use  
with a precision external op amp (such as the MAX400)  
to generate a bipolar output-voltage swing.  
Ordering Information  
PACKAGE  
CODE  
PART  
PIN-PACKAGE  
MAX5650ETJ  
MAX5651ETJ**  
MAX5652ETJ**  
32 TQFN-EP* (5mm x 5mm)  
32 TQFN-EP* (5mm x 5mm)  
32 TQFN-EP* (5mm x 5mm)  
T3255-4  
T3255-4  
T3255-4  
The MAX5650/MAX5651/MAX5652 are available in a 32-  
pin, 5mm x 5mm TQFN package and are guaranteed  
over the extended temperature range (-40°C to +85°C).  
Note: All devices specified over the -40°C to +85°C  
temperature range.  
*EP = Exposed paddle. Connect to AGND or leave unconnected.  
**Future product—contact factory for availability.  
For 14-bit, pin-compatible versions of the MAX5650/  
MAX5651/MAX5652, refer to the MAX5653/MAX5654/  
MAX5655 datasheet.  
Functional Diagram  
For 12-bit, pin-compatible versions of the MAX5650/  
MAX5651/MAX5652, refer to the MAX5656/MAX5657/  
MAX5658 datasheet.  
DV  
DD  
AV  
DD  
REF  
INA  
D15  
BANDGAP  
REFERENCE  
(MAX5650/  
MAX5651  
ONLY)  
Applications  
8-BIT MSB  
INPUT  
REGISTER  
R
R
Automatic Test Equipment  
Process Control  
Digital Calibration  
Actuator Control  
Servo Loops  
MTAP  
Waveform Generators  
Motor Control  
D8  
D7  
16-BIT DAC  
REGISTER  
INB  
8-BIT LSB  
INPUT  
REGISTER  
16-BIT DAC  
OUT  
Selector Guide  
D0  
GND  
ꢀUPPLY  
PART  
REFERENCE  
(V)  
INL  
(LꢀB, max)  
CSMSB  
VOLTAGE (V)  
WR  
MAX5650ETJ +4.75 to +5.25 Internal, +4.096  
4
MAX5650  
MAX5651  
MAX5652  
CSLSB  
LDAC  
CLR  
MAX5651ETJ  
MAX5652ETJ  
+2.7 to +5.25  
+2.7 to +5.25  
Internal, +2.048  
External  
POWER-ON  
RESET  
DGND  
MID/ZERO  
AGND  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
ABꢀOLUTE MAXIMUM RATINGꢀ  
AV  
AV  
DV  
to DV ……………………………………………........... 6V  
INB to AGND..……………………………………………-6V to +6V  
INB to MTAP………………………………………………-6V to +6V  
Maximum Current into Any Pin ......................................... 50mA  
DD  
DD  
DD  
DD  
to AGND, GND…………………………...…… -0.3V to +6V  
to DGND…..…………………………………… -0.3V to +6V  
DGND to GND……………………………………… -0.3V to +0.3V  
DGND, GND to AGND…………………………….. -0.3V to +0.3V  
D0–D15, CSLSB, CSMSB, WR, LDAC, CLR, MID/ZERO,  
Continuous Power Dissipation (T = +70°C)  
A
32-Pin TQFN (derate 20.8mW/°C above +70°C)….2758.6mW  
Operating Temperature Range …………………..-40°C to +85°C  
Storage Temperature Range…………………….-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
to DGND…………………………………-0.3V to (DV + 0.3V)  
DD  
REF to AGND……………………………….-0.3V to (AV + 0.3V)  
DD  
OUT, MTAP, INA to AGND, GND...........................-0.3V to AV  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERIꢀTICꢀ—MAX5650  
(AV  
= DV  
= +4.75V to +5.25V, AGND = DGND = GND = 0V, V  
= internal, R = , C = 10pF, C  
= 1µF,  
DD  
DD  
REF  
L
L
REF  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MIN  
PARAMETER  
ꢀYMBOL  
CONDITIONꢀ  
MIN  
TYP  
MAX  
UNITꢀ  
ꢀTATIC PERFORMANCE—ANALOG ꢀECTION  
Resolution  
N
16  
Bits  
Differential Nonlinearity  
DNL  
Guaranteed monotonic  
0.5  
1
LSB  
Integral Nonlinearity  
INL  
4
LSB  
µV  
Zero-Code Offset Error  
ZSE  
80  
Zero-Code Temperature  
Coefficient  
ppmFS/  
°C  
ZSTC  
(Note 2)  
(Note 3)  
(Note 2)  
(Note 4)  
0.05  
0.1  
Gain Error  
10  
LSB  
Gain-Error Temperature  
Coefficient  
ppm/°C  
DAC Output Resistance  
Bipolar Resistor Ratio  
R
6.2  
1
kΩ  
/Ω  
%
OUT  
R
/ R  
INA  
INB  
Bipolar Resistor Ratio Error  
0.05  
Bipolar Resistor Ratio  
Temperature Coefficient  
(Note 2)  
0.5  
ppm/°C  
Bipolar Resistor Value  
VOLTAGE REFERENCE (R  
Voltage Reference  
R
and R  
(Note 4)  
12.4  
kΩ  
INB  
INA  
= 10k, C  
= 1µF)  
REF  
REF(MIN)  
V
T
A
= +25°C  
4.081  
4.106  
10  
4.111  
0.6  
V
REF  
Reference Voltage Temperature  
Coefficient  
TCV  
(Note 2)  
0 I  
ppm/°C  
REF  
V
/
OUT  
Reference Load Regulation  
Short-Circuit Current  
V  
/ 10kΩ  
0.1  
6
µV/µA  
mA  
OUT  
REF  
I
OUT  
Reference Load  
I
400  
0.5  
µA  
ms  
REF  
Reference Power-Up Time  
Power-Supply Rejection Ratio  
Settle to 0.5 LSB  
AV = DV = 4.75V to 5.25V (FS code)  
4
PSRR  
mV/V  
DD  
DD  
2
_______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
ELECTRICAL CHARACTERIꢀTICꢀ—MAX5650 (continued)  
(AV  
= DV  
= +4.75V to +5.25V, AGND = DGND = GND = 0V, V  
= internal, R = , C = 10pF, C  
= 1µF,  
DD  
DD  
REF  
L
L
REF  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MIN  
PARAMETER  
ꢀYMBOL  
CONDITIONꢀ  
MIN  
TYP  
MAX  
UNITꢀ  
DYNAMIC PERFORMANCE—ANALOG ꢀECTION  
Output Settling Time  
DAC Glitch Impulse  
7F60H to 80A0H or 80A0H to 7F60H to 0.5 LSB  
Major carry transition  
2
µs  
10  
nV·s  
Code = 0000 hex; CSLSB = CSMSB =  
Digital Feedthrough  
3
nV·s  
DV , D0–D15 transition from 0 to DV  
DD  
DD  
DYNAMIC PERFORMANCE—VOLTAGE REFERENCE ꢀECTION  
Frequency = 0.1Hz to 10Hz  
Frequency = 10Hz to 1kHz  
15  
12  
µV  
P-P  
Noise Voltage (Note 6)  
µV  
RMS  
For zero-scale to full-scale or full-scale to  
zero-scale transition  
V
Glitch Impulse  
10  
nV·s  
REF  
ꢀTATIC PERFORMANCE—DIGITAL INPUTꢀ  
Input High Voltage  
Input Low Voltage  
Input Current  
V
(Note 8)  
(Note 8)  
2.4  
V
V
IH  
V
0.8  
1
IL  
I
µA  
pF  
IN  
Input Capacitance  
POWER ꢀUPPLY  
Analog Supply Range  
C
5
IN  
AV  
DV  
4.75  
5.25  
V
V
DD  
AV  
-
AV  
DD  
+ 0.3  
DD  
Digital Supply Range  
(Note 9)  
DD  
0.3  
I
+
DVDD  
AVDD  
I
Positive Supply Current  
All digital inputs at DV or 0V, AV = DV  
DD  
2
mA  
DD  
DD  
TIMING CHARACTERIꢀTICꢀ (Figure ±)  
CSMSB and CSLSB Pulse Width  
WR Pulse Width  
t
40  
40  
ns  
ns  
CS  
t
WR  
CSMSB or CSLSB to WR  
Setup Time  
t
0
0
ns  
ns  
CWS  
CSMSB or CSLSB to WR  
Hold Time  
t
CWH  
Data Valid to WR Setup Time  
Data Valid to WR Hold Time  
LDAC Pulse Width  
t
40  
0
ns  
ns  
ns  
ns  
DWS  
t
DWH  
t
40  
40  
LDAC  
CLR Pulse Width  
t
CLR  
Note 1: 100% production tested at T = +25°C and T = +85°C. Guaranteed by design at T = -40°C.  
A
A
A
Note 2: Temperature coefficient is determined by the box method in which the maximum change over the temperature range is  
divided by T.  
Note 3: Gain error is measured at the full-scale code and is calculated with respect to the reference voltage (REF).  
Note ±: Resistor tolerance is typically 20%.  
Note 5: Guaranteed by design, not production tested.  
Note 6: Noise is measured at the reference output.  
Note 7: Min/max range guaranteed by gain-error test. Operation outside min/max limits results in degraded performance.  
Note 8: The devices draw higher supply current when the digital inputs are driven between (DV - 0.5V) and (DGND + 0.5V).  
DD  
See Digital Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics.  
Note 9: For optimal performance AV = DV  
.
DD  
DD  
_______________________________________________________________________________________  
3
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, AGND = DGND = GND = 0V, R = , C = 10pF, C  
= 1µF for the MAX5650/MAX5651, T = +25°C, unless  
DD  
DD  
L
L
REF A  
otherwise noted.)  
ZERO-CODE OFFSET ERROR  
vs. TEMPERATURE (MAX5650)  
GAIN ERROR  
vs. TEMPERATURE (MAX5650)  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
25  
20  
15  
10  
5
1.0  
0.5  
0
2
1
+INL  
0
-1  
-2  
-3  
-0.5  
-1.0  
-INL  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. TEMPERATURE (MAX5650)  
TOTAL SUPPLY CURRENT  
vs. TEMPERATURE (MAX5650)  
REFERENCE-VOLTAGE NOISE (MAX5650)  
4.100  
4.099  
4.098  
4.097  
4.096  
4.095  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
f = 0.1Hz TO 10Hz  
10µV/div  
CODE = FFFF  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
1s/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. DIGITAL INPUT CODE  
FULL-SCALE  
STEP RESPONSE (MAX5650)  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL INPUT VOLTAGE (MAX5650)  
MAX5650 toc09  
4.09699  
4.09698  
4.09697  
4.09696  
4.09695  
4.09694  
4.09693  
100  
10  
D1  
5V/div  
0
1
0.1  
0.01  
V
OUT  
0.001  
0.0001  
0.00001  
2V/div  
0
ALL DIGITAL INPUTS  
CONNECTED TOGETHER  
AV = DV = 5.25V  
DD  
DD  
CODE FFFF TO OOOO STEP  
400ns/div  
0
20000  
40000  
60000  
50000 70000  
10000  
30000  
CODE  
0
1
2
3
4
5
6
DIGITAL INPUT VOLTAGE (V)  
±
_______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, AGND = DGND = GND = 0V, R = , C = 10pF, C = 1µF for the MAX5650/MAX5651, T = +25°C, unless  
REF A  
DD  
DD  
L
L
otherwise noted.)  
FULL-SCALE  
STEP RESPONSE (MAX5650)  
MAJOR-CARRY GLITCH  
MAJOR-CARRY GLITCH  
MAX5650 toc10  
MAX5650 toc11  
MAX5650 toc12  
D1  
5V/div  
D15  
5V/div  
D15  
5V/div  
0V  
0V  
0V  
V
V
OUT  
20mV/div  
OUT  
V
OUT  
20mV/div  
2V/div  
0V  
0V  
0V  
CODE 0000 TO FFFF STEP  
400ns/div  
CODE 7FFF TO 8000 STEP  
CODE 8000 TO 7FFF STEP  
1µs/div  
1µs/div  
SMALL-SIGNAL  
SETTLING TIME  
SMALL-SIGNAL  
SETTLING TIME  
DIGITAL FEEDTHROUGH (MAX5650)  
MAX5650 toc14  
MAX5650 toc15  
D1  
5V/div  
V
OUT  
V
10mV/div  
OUT  
10mV/div  
0V  
0V  
V
OUT  
20mV/div  
FS TRANSITION  
CODE 0000 TO 00A2 STEP  
400ns/div  
CODE 00A2 TO 0000 STEP  
400ns/div  
1µs/div  
REFERENCE FEEDTHROUGH (MAX5652)  
REFERENCE BANDWIDTH (MAX5652)  
0
-20  
5
0
V
= 3.5V + 0.5V  
P-P  
REF  
CODE = 0000h  
-5  
-10  
-40  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-60  
-80  
CODE = FFFFh  
-100  
-120  
V
= 3.5V + 0.5V  
REF  
P-P  
0.01  
0.1  
1
10  
100 1000 10,000  
10  
100  
1000  
10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Pin Description  
PIN  
1
NAME  
D0  
FUNCTION  
Data Input Bit 0 (LSB)  
Data Input Bit 1  
2
D1  
3
D2  
Data Input Bit 2  
4
D3  
Data Input Bit 3  
5
D4  
Data Input Bit 4  
6
D5  
Data Input Bit 5  
7
D6  
Data Input Bit 6  
8
D7  
Data Input Bit 7  
9
D8  
Data Input Bit 8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
D9  
Data Input Bit 9  
D10  
D11  
D12  
D13  
D14  
D15  
DGND  
Data Input Bit 10  
Data Input Bit 11  
Data Input Bit 12  
Data Input Bit 13  
Data Input Bit 14  
Data Input Bit 15 (MSB)  
Digital Ground  
DV  
Digital Supply. Bypass DV  
to DGND with a 0.1µF capacitor as close to the device as possible.  
DD  
DD  
Lower 8-Bit Active-Low Chip Select. When CSLSB is driven low the data inputs D0–D7 are loaded to  
the input and DAC registers depending on the state of WR and LDAC (see Table 1).  
19  
20  
CSLSB  
CSMSB  
Upper 8-Bit Active-Low Chip Select. When CSMSB is driven low the data inputs D8–D15 are loaded  
to the input and DAC registers depending on the state of WR and LDAC (see Table 1).  
Active-Low Write Input. While chip select (CSLSB and/or CSMSB) is low, the data on D0–D7 and/or  
D8–D15 is presented to the input register when WR is low. A rising edge on WR then latches the data  
to the input register (see Table 1). Hold WR low to make the input register transparent.  
21  
22  
23  
WR  
LDAC  
CLR  
Asynchronous Active-Low Load DAC Input. When LDAC is low, the data in the input register is  
presented to the DAC register. A rising edge on LDAC then latches the data to the DAC register (see  
Table 1). Hold WR and LDAC low to perform a write-through operation.  
Asynchronous Active-Low Clear DAC Input. Pull CLR low to clear the input and DAC registers and  
set the DAC output to midscale (8000 hex), if MID/ZERO is high, or zero scale (0000 hex), if  
MID/ZERO is low.  
Midscale/Zero-Scale Clear Output Value Select. Pull MID/ZERO low for zero-scale clear output (0000  
hex) or high for midscale clear output (8000 hex).  
24  
25  
26  
MID/ZERO  
MTAP  
Internal Scaling Resistor Midpoint Tap. Connect to the inverting input of an external op amp.  
Internal Resistor Input B. Free end of internal resistor (R ). Connect to the output of an external  
INB  
output buffer for bipolar operation.  
INB  
27  
28  
29  
AV  
Analog Supply. Bypass AV  
Analog Ground  
to AGND with a 0.1µF capacitor as close to the device as possible.  
DD  
DD  
AGND  
INA  
Internal Resistor Input A. Free end of internal resistor (R ). Connect to REF for bipolar operation.  
INA  
6
_______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Internal Reference Voltage Output (MAX5650/MAX5651). Connect a 1µF < C  
< 47µF between  
REF  
REF and AGND as close to the device as possible. The internal reference voltage of the MAX5650 is  
+4.096V and +2.048V for the MAX5651.  
30  
REF  
External Reference Voltage Input (MAX5652). Connect to an external voltage reference source  
between +2V and AV  
.
DD  
31  
32  
OUT  
GND  
EP  
DAC Output  
DAC Ground  
Exposed paddle. Connect to AGND or leave unconnected.  
Typical Application Circuits  
DV  
DD  
AV  
DD  
REF  
INA  
D15  
BANDGAP  
REFERENCE  
(MAX5650/  
MAX5651  
ONLY)  
8-BIT MSB  
INPUT  
REGISTER  
R
R
8-BIT BUS  
MTAP  
D8  
D7  
16-BIT DAC  
REGISTER  
INB  
8-BIT LSB  
INPUT  
REGISTER  
OUT  
0 TO V  
µC  
16-BIT DAC  
REF  
D0  
CSMSB  
WR  
GND  
CONTROL  
LINES  
MAX5650  
MAX5651  
MAX5652  
CSLSB  
LDAC  
CLR  
POWER-ON  
RESET  
DGND  
AGND  
MID/ZERO  
Figure 1. Typical Application Circuit for µC Byte-Wide Interface  
_______________________________________________________________________________________  
7
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Typical Application Circuits (continued)  
ACTUATOR  
DRIVE  
CIRCUIT  
DV  
DD  
AV  
DD  
REF  
INA  
R
D15  
BANDGAP  
8-BIT MSB  
INPUT  
REGISTER  
REFERENCE  
(MAX5650/  
MAX5651  
ONLY)  
16-BIT BUS  
R
INB  
D8  
D7  
+12V  
16-BIT DAC  
REGISTER  
MTAP  
8-BIT LSB  
INPUT  
REGISTER  
0 TO V  
REF  
OUT  
ASIC  
16-BIT DAC  
0 TO V  
D0  
REF  
CSMSB  
GND  
CONTROL  
LINES  
WR  
MAX5650  
MAX5651  
MAX5652  
CSLSB  
LDAC  
CLR  
POWER-ON  
RESET  
DGND  
AGND  
MID/ZERO  
Figure 2. Typical Application Circuit for Unipolar Configuration  
8
_______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Typical Application Circuits (continued)  
DV  
DD  
AV  
DD  
REF  
INA  
R
D15  
BANDGAP  
8-BIT MSB  
INPUT  
REGISTER  
REFERENCE  
(MAX5650/  
MAX5651 ONLY)  
8-BIT BUS  
R
INB  
D8  
D7  
+5V  
16-BIT DAC  
REGISTER  
MTAP  
8-BIT LSB  
INPUT  
REGISTER  
+/- V  
REF  
OUT  
FPGA  
16-BIT DAC  
-5V  
0 TO V  
D0  
REF  
CSMSB  
GND  
CONTROL  
LINES  
WR  
MAX5650  
MAX5651  
MAX5652  
CSLSB  
LDAC  
CLR  
POWER-ON  
RESET  
DGND  
AGND  
MID/ZERO  
Figure 3. Typical Application Circuit for Bipolar Configuration  
_______________________________________________________________________________________  
9
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
t
CS  
CSLSB  
t
CS  
CSMSB  
t
t
CWH  
CWS  
t
t
t
CWS  
WR  
CWH  
t
WR  
LDAC  
WR  
t
LDAC  
t
t
DWS  
DWS  
t
t
DWH  
DWH  
D0–D15  
VALID  
DATA  
VALID  
DATA  
Figure 4. Timing Diagram  
Detailed Description  
The MAX5650/MAX5651/MAX5652 parallel-input, volt-  
age-output DACs offer full 16-bit performance with less  
than 4 LSB integral nonlinearity and less than 1 LSB  
differential nonlinearity, ensuring monotonic perfor-  
mance over the full operating temperature range. The  
DAC is composed of an inverted R2R ladder with the  
unbuffered output available directly at OUT, allowing  
16-bit performance from the reference voltage to the  
DAC ground (GND). The parallel inputs are double-  
buffered and configurable as a single 16-bit wide input  
or a 2-byte input. The MAX5650/MAX5651 include inter-  
nal precision low-drift (10ppm/°C) bandgap voltage ref-  
erences of +4.096V and +2.048V, respectively. The  
MAX5652 accepts an external reference voltage  
between +2V and AVDD. The MAX5650 operates with a  
supply voltage range of +4.75V to +5.25V, while the  
MAX5651/MAX5652 operate with a supply voltage  
range of +2.7V to +5.25V.  
The MAX5652 accepts an external reference with a  
voltage range extending from +2V to AVDD. The output  
voltage of the DAC is determined as follows:  
V
= V  
x N / 65536  
OUT  
REF  
where N is the numeric value of the DAC’s binary input  
code (0 to 65535) and VREF is the reference voltage.  
At a full-scale transition, the instantaneous charge  
demand from the external reference is about 550pC.  
For a reference with a 1µF load capacitor, the charge  
demand causes an instantaneous reference voltage  
drop of 550µV. A 10µF load capacitor causes a voltage  
drop of 55µV. This glitch recovers in a time inversely  
proportional to the bandwidth of the voltage reference,  
which should be sufficiently fast to recover before the  
next DAC transition to avoid accumulation of the glitch  
energy and a shift in the average reference voltage. For  
a +4.096V reference with 1µF bypass capacitor, it  
takes three time constants to recover to 0.5 LSB accu-  
racy. Therefore, a 96kHz bandwidth reference recovers  
in 5µs while a 960kHz bandwidth reference recovers in  
0.5µs.  
Voltage Reference  
The MAX5650/MAX5651 provide a 10ppm/°C (typ)  
internal precision bandgap voltage reference with a  
load regulation specification of less than 0.6µV/µA  
(maximum) over the entire operating temperature  
range. The reference voltage for the MAX5650 is  
+4.096V, while the reference voltage for the MAX5651  
is +2.048V. Connect a capacitor ranging between 1µF  
and 47µF from REF to ground as close to the device as  
possible. Use a low-ESR ceramic capacitor such as the  
GRM series from Murata.  
For further voltage-reference selection assistance, visit  
www.maxim-ic.com/appnotes.cfm/appnote_number/754.  
10 ______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Digital Interface  
The MAX5650/MAX5651/MAX5652 accept a single 16-  
bit wide input or an 8 plus 8-bit wide input. Data latches  
or transfers directly to the DAC depending on the state  
of the control inputs CLR, CSLSB, CSMSB, LDAC,  
MID/ZERO, and WR. All digital inputs are compatible  
with both TTL and CMOS logic.  
while CSLSB is low, latches the lower byte (D0–D7) into  
the input register. The rising edge of WR, while CSMSB is  
low, latches the upper byte (D8–D15) into the input regis-  
ter. The sequence of loading the MSB and LSB does not  
matter. See Figure 1 for byte-wide interface circuit.  
The DAC register is transparent when LDAC is low. The  
rising edge of LDAC latches data into the DAC register.  
The DAC’s analog output reflects the data held in the  
DAC register. Both the input register and DAC register  
are transparent when CSLSB, CSMSB, WR, and LDAC  
are driven low. In this case, any change at D0–D15 appears  
at the output instantly. See Table 1 for the truth table.  
The double buffered input consists of an input register  
and a DAC register (see the Functional Diagram). Data  
is loaded into the input register using CSLSB, CSMSB,  
and WR. The input register is transparent when WR and  
CSLSB and/or CSMSB are low. The rising edge of WR,  
Table 1. Truth Table  
CLR CSLSB CSMSB  
WR  
LDAC  
FUNCTION  
1
1
1
0
0
1
1
1
0
0
1
1
1
Loads least significant byte into the input register. DAC output remains unchanged.  
Latches least significant byte into the input register. DAC output remains unchanged.  
Loads most significant byte into the input register. DAC output remains unchanged.  
0
Latches most significant byte into the input register. DAC output remains  
unchanged.  
1
1
1
1
X
X
0
X
X
1
0
Transfers data from the input register into the DAC register and updates the DAC  
output.  
1
1
Latches data from the input register into the DAC register. DAC output remains  
unchanged.  
Most significant input and DAC registers are transparent. DAC output updates  
immediately with the most significant input data and least significant input register  
data.  
1
1
1
1
X
0
0
X
0
0
1
0
0
1
0
No operation.  
Both most significant and least significant input registers and DAC register are  
transparent. DAC output updates immediately with the most significant and least  
significant input data.  
1
1
0
0
0
1
0
0
1
0
Loads all 16 bits into the input register. DAC output remains unchanged.  
Least significant input and DAC registers are transparent. DAC output updates  
immediately with the least significant input data and most significant register data.  
Transfers data held in the input register to the DAC register and updates the DAC  
output.  
1
1
0
1
1
X
1
1
X
X
X
X
0
1
X
No operation.  
Sets the input and DAC registers and DAC output to midscale (if MID/ZERO = 1) or  
zero-scale (if MID/ZERO = 0).  
0 = Low state.  
1 = High state.  
X = Don’t care.  
= Rising edge.  
______________________________________________________________________________________ 11  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
The MAX5650/MAX5651/MAX5652 provide an asyn-  
chronous clear input (CLR). Asserting CLR resets the  
where D is the decimal value of the DACs binary input  
input and DAC registers and DAC output to midscale if  
code. Table 3 shows digital codes and corresponding  
the MID/ZERO input is high and to zero scale when  
MID/ZERO is low.  
output voltages for bipolar operation.  
Table 2. Unipolar Code Table  
Power-On Reset (POR)  
The MAX5650/MAX5651/MAX5652 provide an internal  
POR circuit. On power-up, the input and DAC registers  
and DAC output are set to 0000 hex if MID/ZERO is low  
or 8000 hex if MID/ZERO is high. Wait 10µs after  
power-up before pulling CSMSB or CSLSB low.  
DAC LATCH CONTENTꢀ  
MꢀB LꢀB  
ANALOG OUTPUT, V  
OUT  
1111 1111 1111 1111  
V
V
x (65,535 / 65,536)  
x (32,768 / 65,536)  
REF  
REF  
1000 0000 0000 0000  
= 0.5V  
REF  
Internal Scaling Resistors  
The MAX5650/MAX5651/MAX5652 include two internal  
scaling resistors of 12.4k(typ) each that are matched  
to 0.05% or better. Use these resistors with a precision  
external op amp to generate a bipolar output swing  
(see the Bipolar Operation section). The free ends of  
these resistors are accessible at INA and INB while the  
midpoint is accessible at MTAP. Connect INB to the  
output of the op amp and INA to REF for bipolar opera-  
tion. Negative voltages are only allowed at INB (see the  
Absolute Maximum Ratings section).  
0000 0000 0000 0001  
0000 0000 0000 0000  
V
x (1 / 65,536)  
REF  
0V  
Table 3. Bipolar Code Table  
DAC LATCH CONTENTꢀ  
ANALOG OUTPUT, V  
OUT  
MꢀB  
LꢀB  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
+V  
+V  
0V  
x (32,767 / 32,768)  
x (1 / 32,768)  
REF  
REF  
Applications Information  
-V  
(1 / 32,768)  
REF  
Unipolar Buffered/Unbuffered Operation  
Unbuffered operation reduces power consumption as  
well as the offset error contributed by the external out-  
put buffer (see Figure 1). The R2R DAC output is avail-  
able directly at OUT, allowing 16-bit performance from  
-V  
= -V  
x (32,768 / 32,768)  
REF  
0000 0000 0000 0000  
REF  
Power-Supply and Layout Considerations  
Careful PC board layout is important for optimal system  
performance. Wire-wrapped boards, sockets, and  
breadboards are not recommended. Keep analog and  
digital signals separate to reduce noise injection and  
digital feedthrough. Connect AGND and DGND to the  
highest quality ground available. Star-connect all  
ground return paths back to AGND or use a multilayer  
board with a low-inductance ground plane. Connect  
analog and digital ground planes together at a low-  
impedance power-supply source. For the MAX5652,  
keep the trace between the reference source to the ref-  
erence input short and low impedance. Bypass each  
supply with a 0.1µF capacitor as close as possible to  
the IC for optimal 16-bit performance.  
+V  
to GND without degradation at zero scale.  
REF  
The typical application circuit (Figure 2) shows the  
MAX5650/MAX5651/MAX5652 configured for a  
buffered unipolar voltage-output operation. Use the  
integrated precision matched resisters for op-amp  
input impedance matching. Table 2 shows digital  
codes and corresponding output voltages for unipolar  
buffered or unbuffered operation.  
Bipolar Operation  
For bipolar voltage-output operation, use an external op  
amp (such as the MAX400) in conjunction with the  
internal scaling resistors (see Figure 3). Connect the  
free end of the internal resistor (INB) to the output of the  
external op amp and the free end of the other resistor  
(INA) to REF. Connect the midpoint of the resistors to  
the inverting input of the op amp. Connect the output of  
the DAC to the noninverting input of the external op  
amp. The resulting transfer function is as follows:  
Chip Information  
PROCESS: BiCMOS  
V
= V  
[(2D/65,536) 1]  
OUT  
REF  
12 ______________________________________________________________________________________  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Pin Configuration  
TOP VIEW  
24 23 22 21 20 19 18 17  
16  
15  
MTAP 25  
INB 26  
D15  
D14  
14 D13  
27  
28  
29  
30  
31  
32  
AV  
DD  
D12  
D11  
13  
12  
AGND  
INA  
MAX5650  
MAX5651  
MAX5652  
11 D10  
REF  
10  
9
D9  
D8  
OUT  
GND  
+
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
______________________________________________________________________________________ 13  
16-Bit, Parallel-Input, Voltage-Output DACs  
with Internal Reference  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
exceptions  
PKG.  
CODES  
±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
D
E
NO  
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
YES  
YES  
T2855-6  
T2855-7  
**  
**  
N
ND  
NE  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
2.80  
2.60 2.70  
2.60 2.70 2.80  
5
7
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
3.20  
3.00 3.10 3.20  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.20  
NOTES:  
3.00 3.10  
3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 20056 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products. Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY