MAX5815BAUD T [MAXIM]

Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and I2C Interface; 超小尺寸,四通道, 8位/ 10位/ 12位缓冲输出DAC ,内置基准和I²C接口
MAX5815BAUD T
型号: MAX5815BAUD T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and I2C Interface
超小尺寸,四通道, 8位/ 10位/ 12位缓冲输出DAC ,内置基准和I²C接口

文件: 总30页 (文件大小:4336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6167; Rev 0; 2/12  
General Description  
Benefits and Features  
The MAX5813/MAX5814/MAX5815 4-channel, low-power,  
8-/10-/12-bit, voltage-output digital-to-analog converters  
(DACs) include output buffers and an internal reference  
that is selectable to be 2.048V, 2.500V, or 4.096V. The  
MAX5813/MAX5814/MAX5815 accept a wide supply  
voltage range of 2.7V to 5.5V with extremely low power  
(3mW) consumption to accommodate most low-voltage  
applications. A precision external reference input allows  
rail-to-rail operation and presents a 100kI (typ) load to  
an external reference.  
The MAX5813/MAX5814/MAX5815 have an I2C-compatible,  
2-wire interface that operates at clock rates up to  
400kHz. The DAC output is buffered and has a low sup-  
ply current of less than 250FA per channel and a low  
offset error of Q0.5mV (typ). On power-up, the MAX5813/  
MAX5814/MAX5815 reset the DAC outputs to zero, pro-  
viding additional safety for applications that drive valves  
or other transducers which need to be off on power-up.  
The internal reference is initially powered down to allow  
use of an external reference. The MAX5813/MAX5814/  
MAX5815 allow simultaneous output updates using soft-  
ware LOAD commands or the hardware load DAC logic  
input (LDAC).  
S Four High-Accuracy DAC Channels  
12-Bit Accuracy Without Adjustment  
1 ꢁLB ꢂIꢁ Buꢃꢃered ꢄoltage ꢅutꢆut  
Guaranteed Monotonic ꢅver All ꢅꢆerating  
Conditions  
ꢂndeꢆendent Mode Lettings ꢃor Each DAC  
S Three Precision Lelectable ꢂnternal Reꢃerences  
2.048ꢄ, 2.500ꢄ, or 4.096ꢄ  
S ꢂnternal ꢅutꢆut Buꢃꢃer  
Rail-to-Rail ꢅꢆeration with External Reꢃerence  
4.5µs Lettling Time  
ꢅutꢆuts Directly Drive 2kI ꢁoads  
S Lmall 5mm x 4.4mm 14-Pin TLLꢅP or Ultra-Lmall  
1.6mm x 2.2mm 12-Bumꢆ WꢁP Package  
S Wide 2.7ꢄ to 5.5ꢄ Luꢆꢆly Range  
S Leꢆarate 1.8ꢄ to 5.5ꢄ ꢄ  
Power-Luꢆꢆly ꢂnꢆut  
DDꢂꢅ  
S Fast 400kHz ꢂ2C-Comꢆatible, 2-Wire Lerial  
ꢂnterꢃace  
S Power-ꢅn-Reset to Zero-Lcale DAC ꢅutꢆut  
S LDAC and CLR For Asynchronous Control  
S Three Loꢃtware-Lelectable Power-Down ꢅutꢆut  
ꢂmꢆedances  
A clear logic input (CLR) allows the contents of the CODE  
and the DAC registers to be cleared asynchronously and  
sets the DAC outputs to zero. The MAX5813/MAX5814/  
MAX5815 are available in a 14-pin TSSOP and an ultra-  
small, 12-bump WLP package and are specified over the  
-40NC to +125NC temperature range.  
1kI, 100kI, or High ꢂmꢆedance  
Functional Diagram  
V
DDIO  
V
REF  
DD  
Applications  
MAX5813  
MAX5814  
MAX5815  
INTERNAL REFERENCE/  
EXTERNAL BUFFER  
Programmable Voltage and Current Sources  
Gain and Offset Adjustment  
SCL  
SDA  
1 OF 4 DAC CHANNELS  
Automatic Tuning and Optical Control  
Power Amplifier Control and Biasing  
Process Control and Servo Loops  
Portable Instrumentation  
CODE  
REGISTER  
DAC  
LATCH  
8-/10-/12-BIT  
DAC  
ADDR0  
(ADDR1)  
OUTA  
OUTB  
OUTC  
OUTD  
BUFFER  
2
C SERIAL  
INTERFACE  
I
CLR  
CLEAR/  
RESET  
CLEAR/  
RESET  
CODE  
LOAD  
100kI  
1kI  
(LDAC)  
POWER-DOWN  
DAC CONTROL LOGIC  
Data Acquisition  
POR  
GND  
Ordering Information appears at end of data sheet.  
( ) TSSOP PACKAGE ONLY  
For related parts and recommended products to use with this part, refer to: www.maxim-ic.com/MAX5813.related  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
ABLꢅꢁUTE MAXꢂMUM RATꢂIGL  
V
V
to GND ................................................ -0.3V to +6V  
Maximum Continuous Current into Any Pin .................... Q50mA  
Operating Temperature Range........................ -40NC to +125NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (TSSOP only)(soldering, 10s)...........+300NC  
Soldering Temperature (reflow) .................................... +260NC  
DD, DDIO  
OUT_, REF to GND....0.3V to the lower of (V  
+ 0.3V) and +6V  
DD  
SCL, SDA, LDAC, CLR to GND .............................. -0.3V to +6V  
ADDR_ to GND............................................-0.3V to the lower of  
(V  
+ 0.3V) and +6V  
DDIO  
Continuous Power Dissipation (T = +70NC)  
A
TSSOP (derate at 10mW/NC above 70NC)...................797mW  
WLP (derate at 16.1mW/NC above 70NC)..................1288mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAꢁ CHARACTERꢂLTꢂCL (Iote 1)  
TSSOP  
WLP  
Junction-to-Ambient Thermal Resistance (θ  
Junction-to-Ambient Thermal Resistance (θ ) .......100NC/W  
)
JA  
JA  
(Note 2)........................................................................62NC/W  
Iote 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Iote 2: Visit www.maxim-ic.com/aꢆꢆ-notes/index.mvꢆ/id/1891 for information about the thermal performance of WLP packaging.  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
DD  
DDIO  
GND  
L
L
A
values are at T = +25NC.) (Note 3)  
A
PARAMETER  
LYMBꢅꢁ  
CꢅIDꢂTꢂꢅIL  
MꢂI  
TYP  
MAX  
UIꢂTL  
Bits  
DC PERFꢅRMAICE (Iote 4)  
MAX5813  
MAX5814  
MAX5815  
MAX5813  
MAX5814  
MAX5815  
MAX5813  
MAX5814  
MAX5815  
8
10  
Resolution and Monotonicity  
Integral Nonlinearity (Note 5)  
Differential Nonlinearity (Note 5)  
N
12  
-0.25  
-0.5  
-1  
Q0.05  
Q0.25  
Q0. 5  
Q0.05  
Q0.1  
Q0.2  
Q0.5  
Q10  
+0.25  
+0.5  
+1  
INL  
LSB  
-0.25  
-0.5  
-1  
+0.25  
+0.5  
+1  
DNL  
OE  
LSB  
Offset Error (Note 6)  
Offset Error Drift  
-5  
+5  
mV  
FV/NC  
%FS  
Gain Error (Note 6)  
GE  
-1.0  
Q0.1  
+1.0  
ppm of  
FS/NC  
Gain Temperature Coefficient  
With respect to V  
With respect to V  
Q3.0  
REF  
Zero-Scale Error  
Full-Scale Error  
0
10  
mV  
-0.5  
+0.5  
%FS  
REF  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
2
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL (continued)  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
DD  
DDIO  
GND  
L
L
A
values are at T = +25NC.) (Note 3)  
A
PARAMETER  
LYMBꢅꢁ  
CꢅIDꢂTꢂꢅIL  
MꢂI  
TYP  
MAX  
UIꢂTL  
DAC ꢅUTPUT CHARACTERꢂLTꢂCL  
No load  
0
0
V
DD  
V
-
DD  
Output Voltage Range (Note 7)  
2kI load to GND  
V
0.2  
2kI load to V  
0.2  
V
DD  
DD  
V
= 3V Q10%,  
| P 5mA  
DD  
300  
300  
0.3  
|I  
OUT  
Load Regulation  
V
= V /2  
FV/mA  
OUT  
OUT  
FS  
V
= 5V Q10%,  
| P 10mA  
DD  
|I  
OUT  
V
= 3V Q10%,  
| P 5mA  
DD  
|I  
OUT  
DC Output Impedance  
V
= V /2  
I
FS  
V
= 5V Q10%,  
| P 10mA  
DD  
0.3  
|I  
OUT  
Maximum Capacitive Load  
Handling  
C
500  
pF  
L
Resistive Load Handling  
R
2
kI  
L
Sourcing (output  
shorted to GND)  
30  
Short-Circuit Output Current  
V
V
= 5.5V  
mA  
DD  
Sinking (output  
50  
shorted to V  
)
DD  
DC Power-Supply Rejection  
DYIAMꢂC PERFꢅRMAICE  
Voltage-Output Slew Rate  
= 3V Q10% or 5V Q10%  
100  
FV/V  
V/Fs  
Fs  
DD  
SR  
Positive and negative  
1.0  
2.2  
2.6  
4.5  
2
¼ scale to ¾ scale, to P 1 LSB, MAX5813  
¼ scale to ¾ scale, to P 1 LSB, MAX5814  
¼ scale to ¾ scale, to P 1 LSB, MAX5815  
Major code transition  
Voltage-Output Settling Time  
DAC Glitch Impulse  
nV*s  
nV*s  
External reference  
3.5  
3.3  
Channel-to-Channel  
Feedthrough (Note 8)  
Internal reference  
Code = 0, all digital inputs from 0V to  
Digital Feedthrough  
Power-Up Time  
0.2  
nV*s  
V
DDIO  
Startup calibration time (Note 9)  
From power-down  
200  
50  
Fs  
Fs  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
3
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL (continued)  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
DD  
DDIO  
GND  
L
L
A
values are at T = +25NC.) (Note 3)  
A
PARAMETER  
LYMBꢅꢁ  
CꢅIDꢂTꢂꢅIL  
MꢂI  
TYP  
90  
MAX  
UIꢂTL  
f = 1kHz  
External reference  
f = 10kHz  
82  
f = 1kHz  
112  
102  
125  
110  
160  
145  
12  
2.048V internal  
reference  
f = 10kHz  
Output Voltage-Noise Density  
(DAC Output at Midscale)  
nV/Hz  
f = 1kHz  
2.5V internal  
reference  
f = 10kHz  
f = 1kHz  
4.096V internal  
reference  
f = 10kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 1kHz  
External reference  
76  
385  
14  
2.048V internal  
reference  
91  
450  
15  
Integrated Output Noise  
(DAC Output at Midscale)  
FV  
P-P  
2.5V internal  
reference  
99  
470  
16  
4.096V internal  
reference  
124  
490  
114  
99  
External reference  
f = 10kHz  
f = 1kHz  
175  
153  
200  
174  
295  
255  
13  
2.048V internal  
reference  
f = 10kHz  
Output Voltage-Noise Density  
(DAC Output at Full Scale)  
nV/Hz  
f = 1kHz  
2.5V internal  
reference  
f = 10kHz  
f = 1kHz  
4.096V internal  
reference  
f = 10kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
f = 0.1Hz to 10Hz  
f = 0.1Hz to 10kHz  
f = 0.1Hz to 300kHz  
External reference  
94  
540  
19  
2.048V internal  
reference  
143  
685  
21  
Integrated Output Noise  
(DAC Output at Full Scale)  
FV  
P-P  
2.5V internal  
reference  
159  
705  
26  
4.096V internal  
reference  
213  
750  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
4
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL (continued)  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
DD  
DDIO  
GND  
L
L
A
values are at T = +25NC.) (Note 3)  
A
PARAMETER  
REFEREICE ꢂIPUT  
LYMBꢅꢁ  
CꢅIDꢂTꢂꢅIL  
MꢂI  
1.24  
75  
TYP  
MAX  
UIꢂTL  
Reference Input Range  
Reference Input Current  
Reference Input Impedance  
REFEREICE ꢅUPUT  
V
V
V
REF  
DD  
I
V
= V  
= 5.5V  
55  
74  
FA  
kI  
REF  
REF  
DD  
R
100  
REF  
REF  
V
V
V
= 2.048V, T = +25NC  
2.043  
2.494  
4.086  
2.048  
2.5  
2.053  
2.506  
4.106  
Q10  
REF  
REF  
REF  
A
Reference Output Voltage  
V
= 2.5V, T = +25NC  
V
A
= 4.096V, T = +25NC  
4.096  
Q3  
A
MAX5815A  
Reference Temperature  
Coefficient (Note 10)  
ppm/NC  
MAX5813/MAX5814/MAX5815B  
External load  
Q10  
25  
Q25  
Reference Drive Capacity  
Reference Capacitive Load  
Reference Load Regulation  
Reference Line Regulation  
PꢅWER REQUꢂREMEITL  
kI  
pF  
200  
2
I
= 0 to 500FA  
mV/mA  
mV/V  
SOURCE  
0.05  
V
= 4.096V  
4.5  
2.7  
1.8  
5.5  
5.5  
REF  
Supply Voltage  
V
V
V
DD  
All other options  
I/O Supply Voltage  
V
5.5  
DDIO  
V
V
V
V
V
= 2.048V  
= 2.5V  
= 4.096V  
= 3V  
0.85  
0.9  
1.25  
1.25  
1.40  
1.1  
REF  
REF  
REF  
REF  
REF  
Internal reference  
External reference  
Supply Current (Note 11)  
I
1.1  
mA  
DD  
0.65  
0.9  
= 5V  
1.25  
Interface Supply Current  
(Note 11)  
I
1
FA  
FA  
DDIO  
All DACs off, internal reference ON  
All DACs off, internal reference OFF,  
140  
0.5  
1
Power-Down Mode Supply  
Current  
T
= -40NC to +85NC  
I
A
PD  
All DACs off, internal reference OFF,  
= +125NC  
1.2  
2.5  
T
A
DꢂGꢂTAꢁ ꢂIPUT CHARACTERꢂLTꢂCL (LCꢁ, LDA, ADDR0, ADDR1, LDAC, CLR)  
0.7 x  
2.2V < V  
< 5.5V  
< 2.2V  
V
V
DDIO  
DDIO  
V
DDIO  
Input High Voltage (Note 11)  
V
IH  
0.8 x  
1.8V < V  
V
DDIO  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
5
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL (continued)  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
DD  
DDIO  
GND  
L
L
A
values are at T = +25NC.) (Note 3)  
A
PARAMETER  
LYMBꢅꢁ  
CꢅIDꢂTꢂꢅIL  
MꢂI  
TYP  
MAX  
UIꢂTL  
0.3 x  
2.2V < V  
1.8V < V  
< 5.5V  
DDIO  
V
DDIO  
Input Low Voltage (Note 11)  
V
V
IL  
0.2 x  
< 2.2V  
DDIO  
V
DDIO  
Hysteresis Voltage  
V
0.15  
V
H
Input Leakage Current  
Input Capacitance (Note 10)  
ADDR_ Pullup/Pulldown Strength  
DꢂGꢂTAꢁ ꢅUTPUT (LDA)  
Output Low Voltage  
I
V
= 0V or V  
(Note 11)  
Q0.1  
Q1  
10  
90  
FA  
pF  
kI  
IN  
IN  
DDIO  
C
IN  
R
, R  
(Note 12)  
30  
50  
PU PD  
V
I
= 3mA  
0.2  
V
OL  
SINK  
2C TꢂMꢂIG CHARACTERꢂLTꢂCL (LCꢁ, LDA, LDAC, CLR)  
SCL Clock Frequency  
f
400  
kHz  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
t
1.3  
0.6  
Fs  
BUF  
Hold Time Repeated for a  
START Condition  
t
t
Fs  
HD;STA  
SCL Pulse Width Low  
SCL Pulse Width High  
t
1.3  
0.6  
Fs  
Fs  
LOW  
t
HIGH  
Setup Time for Repeated START  
Condition  
0.6  
Fs  
SU;STA  
Data Hold Time  
Data Setup Time  
t
0
900  
ns  
ns  
HD;DAT  
t
100  
SU;DAT  
SDA and SCL Receiving  
Rise Time  
20 +  
C /10  
B
t
300  
300  
250  
ns  
ns  
ns  
r
SDA and SCL Receiving  
Fall Time  
20 +  
t
t
f
f
C /10  
B
20 +  
SDA Transmitting Fall Time  
C /10  
B
Setup Time for STOP Condition  
Bus Capacitance Allowed  
t
0.6  
10  
Fs  
pF  
ns  
SU;STO  
C
V
= 2.7V to 5.5V  
400  
B
DD  
Pulse Width of Suppressed Spike  
t
50  
sp  
CLR Removal Time Prior to a  
Recognized START  
t
100  
ns  
CLRSTA  
t
20  
20  
ns  
ns  
ns  
CLR Pulse Width Low  
CLPW  
t
LDAC Pulse Width Low  
LDPW  
t
Applies to execution edge  
400  
SCLK Rise to LDAC Fall to Hold  
LDH  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
6
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
EꢁECTRꢂCAꢁ CHARACTERꢂLTꢂCL (continued)  
(V  
= 2.7V to 5.5V, V  
= 1.8V to 5.5V, V  
= 0V, C = 200pF, R = 2kI, T = -40NC to +125NC, unless otherwise noted. Typical  
GND L L A  
DD  
DDIO  
values are at T = +25NC.) (Note 3)  
A
Iote 3: Limits are 100% production tested at T = +25NC and/or T = +125NC. Limits over the operating temperature range and  
A
A
relevant supply voltage range are guaranteed by design and characterization. Typical values are at T = +25NC and are  
A
not guaranteed.  
Iote 4: DC Performance is tested without load.  
Iote 5: Linearity is tested with unloaded outputs to within 20mV of GND and V  
.
DD  
Iote 6: Gain and offset tested at code 4065 and 30, respectively with V  
= V  
.
REF  
DD  
Iote 7: Subject to zero and full-scale error limits and V  
settings.  
REF  
Iote 8: Measured with all other DAC outputs at midscale with one channel transitioning 0 to full scale.  
Iote 9: On power-up, the device initiates an internal 200µs (typ) calibration sequence. All commands issued during this time will  
be ignored.  
Iote 10: Guaranteed by design.  
Iote 11: All channels active at V , unloaded. Static logic inputs with V = V  
Iote 12: An unconnected condition on the ADDR_ pins is sensed via a resistive pullup and pulldown operation; for proper  
and V = V  
.
FS  
IL  
GND  
IH  
DDIO  
operation, ADDR_ pins should be tied to V  
, GND, or left unconnected with minimal capacitance.  
DDIO  
SDA  
t
t
t
SU;DAT  
LOW  
BUF  
t
f
t
r
t
t
t
r
HD;STA  
SP  
t
f
SCL  
t
HIGH  
t
t
t
SU;STO  
HD;STA  
SU;STA  
t
CLPW  
t
HD;DAT  
S
S
r
P
S
CLR  
t
LDPW  
t
LDH  
t
CLRSTA  
LDAC  
Figure 1. I2C Serial Interface Timing Diagram  
Typical Operating Characteristics  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
INL vs. CODE  
INL vs. CODE  
DNL vs. CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
= V = 3V  
V
= V = 5V  
V
= V = 3V  
DD REF  
DD  
REF  
DD  
REF  
NO LOAD  
NO LOAD  
NO LOAD  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
7
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Typical Operating Characteristics (continued)  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
DNL vs. CODE  
INL AND DNL vs. SUPPLY VOLTAGE  
INL AND DNL vs. TEMPERATURE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
= V = 3V  
REF  
V
= V = 3V  
DD REF  
DD  
V
= V = 5V  
REF  
DD  
NO LOAD  
0.6  
0.6  
0.6  
MAX INL  
MAX INL  
0.4  
0.4  
0.4  
MAX DNL  
MIN DNL  
MAX DNL  
MIN DNL  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
MIN INL  
MIN INL  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
OFFSET AND ZERO-SCALE ERROR  
vs. SUPPLY VOLTAGE  
OFFSET AND ZERO-SCALE ERROR  
vs. TEMPERATURE  
FULL-SCALE ERROR AND GAIN ERROR  
vs. SUPPLY VOLTAGE  
1.0  
0.8  
1.0  
0.8  
0.020  
0.016  
0.012  
0.008  
0.004  
0
V
= 2.5V (EXTERNAL)  
REF  
NO LOAD  
V
= 2.5V (EXTERNAL)  
REF  
NO LOAD  
ZERO-SCALE ERROR  
0.6  
0.6  
ZERO-SCALE ERROR  
GAIN ERROR  
0.4  
0.4  
OFFSET ERROR (V = 5V)  
DD  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.004  
-0.008  
-0.012  
-0.016  
-0.020  
FULL-SCALE ERROR  
OFFSET ERROR (V = 3V)  
DD  
OFFSET ERROR  
V
= 2.5V (EXTERNAL)  
REF  
NO LOAD  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
FULL-SCALE ERROR AND GAIN ERROR  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.10  
0.05  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
(INTERNAL) = 4.096V  
V
= 2.5V (EXTERNAL)  
OUT_ = FULL SCALE  
NO LOAD  
(EXTERNAL) = V = 5V  
DD  
REF  
NO LOAD  
REF  
NO LOAD  
OUT_ = FULL SCALE  
V
REF  
T
= +25°C  
A
V
V
(INTERNAL) = 4.096V,  
= 5V  
REF  
DD  
GAIN ERROR (V = 5V)  
DD  
V
(INTERNAL) = 2.5V,  
REF  
V
= 2.5V (EXTERNAL)  
REF  
V
= 5V  
DD  
V
(INTERNAL) = 2.5V  
REF  
V
V
(INTERNAL) = 2.048V,  
REF  
= 5V  
DD  
FULL-SCALE ERROR  
GAIN ERROR (V = 3V)  
DD  
-0.05  
-0.10  
V
V
(INTERNAL) = 2.048V,  
REF  
= 5V  
V
(EXTERNAL) = V = 3V  
DD  
DD  
REF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
DD  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
8
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Typical Operating Characteristics (continued)  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
POWER-DOWN MODE SUPPLY CURRENT  
vs. TEMPERATURE  
I
vs. CODE  
VDD  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
NO LOAD  
POWER-DOWN MODE  
ALL DACs  
V
= V = 5V  
DD REF  
V
= 5V,  
DD  
V
= 5V,  
DD  
1.2  
V
= 4.096V  
REF  
V
= 2.5V  
REF  
T
= +125°C  
= +25°C  
A
0.8  
0.4  
0
T
A
V
DD  
= 5V,  
T
A
= +85°C  
V
= 2.048V  
REF  
V
= V = 3V  
REF  
DD  
T
A
= -40°C  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
SETTLING TO ±± LSꢀ  
I
(EXTERNAL) vs. CODE  
REF  
(V = V  
DD  
= 5V, R = 2kI, C = 200pF)  
REF  
L L  
60  
V
= V  
REF  
DD  
NO LOAD  
V
OUT  
50  
40  
30  
20  
10  
0
0.5V/div  
1/4 SCALE TO 3/4 SCALE  
V
= 5V  
REF  
ZOOMED V  
1 LSB/div  
OUT  
V
= 3V  
REF  
3.75µs  
TRIGGER PULSE  
5V/div  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE (LSB)  
4µs/div  
MAJOR CODE TRANSITION  
GLITCH ENERGY  
SETTLING TO ±± LSꢀ  
(V = V  
DD  
= 5V, R = 2kI, C = 200pF)  
(V = V  
= 5V, R = 2kI, C = 200pF)  
REF  
L L  
DD  
REF  
L
L
1 LSB CHANGE  
(MIDCODE TRANSITION  
0x800 TO 0x7FF)  
3/4 SCALE TO 1/4 SCALE  
GLITCH IMPULSE = 2nV*s  
4.3µs  
ZOOMED V  
OUT  
ZOOMED V  
1 LSB/div  
1.25mV/div  
OUT  
V
OUT  
0.5V/div  
TRIGGER PULSE  
5V/div  
TRIGGER PULSE  
5V/div  
4µs/div  
2µs/div  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
9
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Typical Operating Characteristics (continued)  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
MAJOR CODE TRANSITION  
GLITCH ENERGY  
V
vs. TIME TRANSIENT  
OUT  
EXITING POWER-DOWN  
(V = V  
= 5V, R = 2kI, C = 200pF)  
DD  
REF  
L
L
MAX5813 toc20  
1 LSB CHANGE  
(MIDCODE TRANSITION  
0x7FF TO 0x800)  
GLITCH IMPULSE = 2nV*s  
V
SCL  
0V  
0V  
5V/div  
36TH EDGE  
ZOOMED V  
OUT  
1.25mV/div  
DAC OUTPUT  
500mV/div  
TRIGGER PULSE  
5V/div  
V
= 5V, V = 2.5V  
REF  
DD  
EXTERNAL  
10µs/div  
2µs/div  
CHANNEL-TO-CHANNEL FEEDTHROUGH  
(V = V = 5V, T = +25NC,  
DD  
REF  
A
R = 2kI, C = 200pF)  
POWER-ON RESET TO 0V  
L
L
MAX5813 toc22  
MAX5813 toc21  
V
DD  
TRANSITIONING  
DAC  
1V/div  
V
= V = 5V  
REF  
DD  
2V/div  
R = 2kI  
L
10kI LOAD TO V  
DD  
0V  
0V  
STATIC DAC  
1.25mV/div  
NO LOAD  
V
OUT  
TRANSITIONING DAC: 0 TO FULL SCALE  
STATIC DAC: MIDSCALE  
ANALOG CROSSTALK = 3.5nV*s  
2V/div  
TRIGGER PULSE  
10V/div  
s/div  
20µs/div  
CHANNEL-TO-CHANNEL FEEDTHROUGH  
(V = 5V, V  
T = +25NC, R = 2kI, C = 200pF)  
A
= 4.096V (INTERNAL),  
CHANNEL-TO-CHANNEL FEEDTHROUGH  
(V = V = 5V, T = +25NC, NO LOAD)  
DD  
REF  
L
L
DD  
REF  
A
MAX5813 toc24  
MAX5813 toc23  
TRANSITIONING  
DAC  
1V/div  
R = 2kI  
TRANSITIONING  
DAC  
1V/div  
L
NO LOAD  
NO LOAD  
STATIC DAC  
1.25mV/div  
NO LOAD  
STATIC DAC  
1.25mV/div  
TRANSITIONING DAC: 0 TO FULL SCALE  
STATIC DAC: MIDSCALE  
ANALOG CROSSTALK = 3.3nV*s  
TRANSITIONING DAC: 0 TO FULL SCALE  
STATIC DAC: MIDSCALE  
ANALOG CROSSTALK = 1.8nV*s  
TRIGGER PULSE  
10V/div  
TRIGGER PULSE  
10V/div  
s/div  
s/div  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 10  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Typical Operating Characteristics (continued)  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
CHANNEL-TO-CHANNEL FEEDTHROUGH  
DIGITAL FEEDTHROUGH  
= 5V, R = 2kI, C = 200pF)  
(V = 5V, V  
DD  
= 4.096V (INTERNAL),  
REF  
(V = V  
DD  
REF  
L
L
MAX5813 toc26  
T = +25NC, NO LOAD)  
A
MAX5813 toc25  
V
V
= 5V  
DD  
= 5V (EXTERNAL)  
REF  
DACS AT MIDSCALE  
TRANSITIONING DAC  
1V/div  
NO LOAD  
NO LOAD  
STATIC DAC  
1.25mV/div  
V
OUT  
1.65mV/div  
TRANSITIONING DAC: 0 TO FULL SCALE  
STATIC DAC: MIDSCALE  
ANALOG CROSSTALK = 1.1nV*S  
TRIGGER PULSE  
10V/div  
DIGITAL FEEDTHROUGH = 0.1nV·s·  
40ns/div  
4µs/div  
OUTPUT LOAD REGULATION  
OUTPUT CURRENT LIMITING  
10  
8
500  
V
= V  
REF  
V
= V  
DD REF  
DD  
400  
300  
200  
100  
0
6
V
= 5V  
DD  
4
V
= 5V  
DD  
2
0
V
= 3V  
DD  
-2  
-4  
-6  
-8  
-10  
-100  
-200  
-300  
-400  
-500  
V
= 3V  
DD  
-30 -20 -10  
0
10 20 30 40 50 60  
(mA)  
-30 -20 -10  
0
10 20 30 40 50 60 70  
(mA)  
I
I
OUT  
OUT  
NOISE-VOLTAGE DENSITY  
VS. FREQUENCY (DAC AT MIDSCALE)  
HEADROOM AT RAILS  
vs. OUTPUT CURRENT  
350  
300  
250  
200  
150  
100  
50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
V
= 5V, V = 4.096V  
REF  
DD  
(INTERNAL)  
V
= 5V, SOURCING  
DD  
V
= 5V, V = 2.5V  
REF  
DD  
(INTERNAL)  
V
= 5V, V = 2.048V  
DD  
REF  
(INTERNAL)  
V
= 3V, SOURCING  
DD  
V
= 3V AND 5V  
SINKING  
DD  
V
= 5V, V = 4.5V  
REF  
V
= V  
REF  
DD  
DD  
(EXTERNAL)  
DAC = FULL SCALE  
0
100  
1k  
10k  
100k  
0
1
2
3
4
I
5
6
7
8
9
10  
FREQUENCY (Hz)  
(mA)  
OUT  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 11  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Typical Operating Characteristics (continued)  
(MAX5815, 12-bit performance, T = +25°C, unless otherwise noted.)  
A
0.1Hz TO 10Hz OUTPUT NOISE, EXTERNAL  
0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL  
REFERENCE (V = 5V, V = 2.048V)  
REFERENCE (V = 5V, V  
= 4.5V)  
DD  
REF  
DD  
REF  
MAX5813 toc31  
MAX5813 toc32  
MIDSCALE UNLOADED  
= 12µV  
MIDSCALE UNLOADED  
= 13µV  
V
V
P-P  
P-P  
2µV/div  
2µV/div  
4s/div  
4s/div  
0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL  
REFERENCE (V = 5V, V = 2.5V)  
0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL  
REFERENCE (V = 5V, V = 4.096V)  
DD  
REF  
DD  
REF  
MAX5813 toc33  
MAX5813 toc34  
MIDSCALE UNLOADED  
= 16µV  
MIDSCALE UNLOADED  
= 15µV  
V
V
P-P  
P-P  
2µV/div  
2µV/div  
4s/div  
4s/div  
V
REF  
DRIFT vs. TEMPERATURE  
REFERENCE LOAD REGULATION  
SUPPLY CURRENT vs. INPUT LOGIC VOLTAGE  
30  
25  
20  
15  
10  
5
0
2000  
V
= 2.7V  
DD  
V
= 5V  
DD  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 2.5V (INTERNAL)  
BOX METHOD  
REF  
INTERNAL REFERENCE  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
= 5V  
DDIO  
V
= 2.048V, 2.5V, AND 4.096V  
REF  
V
2
= 3V  
DDIO  
V
= 1.8V  
3
DDIO  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TEMPERATURE DRIFT (ppm/°C)  
0
50 100 150 200 250 300 350 400 450 500  
REFERENCE OUTPUT CURRENT (µA)  
0
1
4
5
INPUT LOGIC VOLTAGE (V)  
Maxim Integrated Products 12  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Pin/Bump Configurations  
TOP VIEW  
TOP VIEW  
MAX5813/MAX5814/MAX5815  
+
REF  
OUTA  
OUTB  
GND  
1
2
3
4
5
6
7
14 LDAC  
13  
1
2
3
4
+
OUTA  
OUTB  
OUTC  
OUTD  
V
DDIO  
A
B
C
12 CLR  
11 SDA  
10 SCL  
MAX5813  
MAX5814  
MAX5815  
REF  
CLR  
GND  
SDA  
V
V
DD  
DDIO  
OUTC  
OUTD  
SCL  
ADDR0  
9
8
ADDR0  
ADDR1  
V
DD  
TSSOP  
WLP  
Pin/Bump Description  
PIN  
BUMP  
WLP  
B1  
NAME  
FUNCTION  
TSSOP  
1
2
REF  
Reference Voltage Input/Output  
Buffered Channel A DAC Output  
Buffered Channel B DAC Output  
Ground  
A1  
OUTA  
OUTB  
GND  
3
A2  
4
B2  
5
A3  
OUTC  
OUTD  
Buffered Channel C DAC Output  
Buffered Channel D DAC Output  
6
A4  
7
B4  
V
Supply Voltage Input. Bypass V  
with a 0.1FF capacitor to GND.  
DD  
DD  
8
ADDR1  
ADDR0  
SCL  
I2C Interface Address Selection Bit 1  
I2C Interface Address Selection Bit 0  
I2C Interface Clock Input  
9
C4  
C3  
C2  
C1  
B3  
10  
11  
12  
13  
14  
SDA  
I2C Bidirectional Serial Data  
Active-Low Clear Input  
CLR  
V
Digital Interface Power-Supply Input  
Load DAC. Active-low hardware load DAC input.  
DDIO  
LDAC  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 13  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
loaded into the DAC registers. The CODE register can be  
updated using both CODE and CODE_LOAD user com-  
Detailed Description  
mands. The contents of the DAC register hold the current  
DAC output settings. The DAC register can be updated  
directly from the serial interface using the CODE_LOAD  
commands or can upload the current contents of the  
CODE register using LOAD commands or the LDAC  
hardware pin.  
The MAX5813/MAX5814/MAX5815 are 4-channel, low-  
power, 8-/10-/12-bit buffered voltage-output DACs. The  
2.7V to 5.5V wide supply voltage range and low-power  
consumption accommodates most low-power and low-  
voltage applications. The devices present a 100kI load  
to the external reference. The internal output buffers  
allow rail-to-rail operation. An internal voltage reference  
is available with software selectable options of 2.048V,  
2.5V, or 4.096V. The devices feature a fast 400kHz I2C-  
compatible interface. The MAX5813/MAX5814/MAX5815  
include a serial-in/parallel-out shift register, internal  
CODE and DAC registers, a power-on-reset (POR) cir-  
cuit to initialize the DAC outputs to code zero, and con-  
trol logic. CLR is available to asynchronously clear the  
device independent of the serial interface.  
The contents of both CODE and DAC registers are main-  
tained during power-down states, so that when the DACs  
are powered on, they return to their previously stored  
output settings. Any CODE or LOAD commands issued  
during power-down states continue to update the register  
contents. SW_CLEAR and SW_RESET commands reset  
the contents of all CODE and DAC registers to their zero-  
scale defaults.  
Internal Reference  
The MAX5813/MAX5814/MAX5815 include an internal  
precision voltage reference that is software selectable  
to be 2.048V, 2.500V, or 4.096V. When an internal refer-  
ence is selected, that voltage is available on the REF pin  
for other external circuitry (see Figure 9) and can drive  
a 25kI load.  
DAC Outputs (OUT_)  
The MAX5813/MAX5814/MAX5815 include internal buf-  
fers on all DAC outputs. The internal output buffers  
provide improved load regulation for the DAC outputs.  
The output buffers slew at 1V/Fs (typ) and drive up to  
2kI in parallel with 500pF. The analog supply voltage  
(V ) determines the maximum output voltage range  
DD  
External Reference  
The external reference input has a typical input  
impedance of 100kI and accepts an input voltage  
of the devices as V  
powers the output buffer. Under  
DD  
no-load conditions, the output buffers drive from GND to  
, subject to offset and gain errors. With a 2kω load to  
V
DD  
from +1.24V to V . Connect an external voltage  
DD  
GND, the output buffers drive from GND to within 200mV  
of V . With a 2kω load to V , the output buffers drive  
supply between REF and GND to apply an exter-  
nal reference. The MAX5813/MAX5814/MAX5815  
power up and reset to external reference mode. Visit  
www.maxim-ic.com/products/references for a list of  
available external voltage-reference devices.  
DD  
DD  
DD  
to within 200mV of GND and V  
.
The DAC ideal output voltage is defined by:  
D
V
= V ×  
REF  
OUT  
N
2
Load DAC (LDAC) Input  
The MAX5813/MAX5814/MAX5815 feature an active-  
low LDAC logic input that allows the outputs to update  
where D = code loaded into the DAC register, V  
reference voltage, N = resolution.  
=
REF  
asynchronously. Connect LDAC to V  
or keep LDAC  
DDIO  
Internal Register Structure  
The user interface is separated from the DAC logic to  
minimize digital feedthrough. Within the serial interface  
is an input shift register, the contents of which can be  
routed to control registers, individual, or multiple DACs  
as determined by the user command.  
high during normal operation when the device is con-  
trolled only through the serial interface. Drive LDAC low  
to simultaneously update the DAC outputs with data  
from the CODE registers. Holding LDAC low causes the  
DAC registers to become transparent and CODE data is  
passed through to the DAC registers immediately updat-  
ing the DAC outputs. A software CONFIG command can  
be used to configure the LDAC operation of each DAC  
independently.  
Within each DAC channel there is a CODE register  
followed by a DAC latch register (see the Detailed  
Functional Diagram). The contents of the CODE register  
hold pending DAC output settings which can later be  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 14  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Figure 2  
Clear Input (CLR)  
The MAX5813/MAX5814/MAX5815 feature an asynchro-  
nous active-low CLR logic input that simultaneously sets  
all four DAC outputs to zero. Driving CLR low clears the  
contents of both the CODE and DAC registers and also  
aborts the on-going I2C command. To allow a new I2C  
S
Sr  
P
SCL  
SDA  
command, drive CLR high, satisfying the t  
timing  
CLRSTA  
requirement.  
Interface Power Supply (V  
)
DDIO  
The MAX5813/MAX5814/MAX5815 feature a separate  
supply pin (V ) for the digital interface (1.8V to 5.5V).  
VALID START, REPEATED START, AND STOP PULSES  
DDIO  
Connect V  
to the I/O supply of the host processor.  
DDIO  
I2C Serial Interface  
The MAX5813/MAX5814/MAX5815 feature an I2C-/  
SMBusK-compatible, 2-wire serial interface consisting of  
a serial data line (SDA) and a serial clock line (SCL). SDA  
and SCL enable communication between the MAX5813/  
MAX5814/MAX5815 and the master at clock rates up  
to 400kHz. Figure 1 shows the 2-wire interface timing  
diagram. The master generates SCL and initiates data  
transfer on the bus. The master device writes data to the  
MAX5813/MAX5814/MAX5815 by transmitting the proper  
slave address followed by the command byte and then  
the data word. Each transmit sequence is framed by a  
START (S) or Repeated START (Sr) condition and a STOP  
(P) condition. Each word transmitted to the MAX5813/  
MAX5814/MAX5815 is 8 bits long and is followed by an  
acknowledge clock pulse. A master reading data from  
the MAX5813/MAX5814/MAX5815 must transmit the  
proper slave address followed by a series of nine SCL  
pulses for each byte of data requested. The MAX5813/  
MAX5814/MAX5815 transmit data on SDA in sync with  
the master-generated SCL pulses. The master acknowl-  
edges receipt of each byte of data. Each read sequence  
is framed by a START or Repeated START condition, a  
not acknowledge, and a STOP condition. SDA operates  
as both an input and an open-drain output. A pullup  
resistor, typically 4.7kI is required on SDA. SCL oper-  
ates only as an input. A pullup resistor, typically 4.7kI, is  
required on SCL if there are multiple masters on the bus,  
or if the single master has an open-drain SCL output.  
P
S
S
P
P
S
P
INVALID START/STOP PULSE PAIRINGS -ALL WILL BE RECOGNIZED AS STARTS  
Figure 2. I2C START, Repeated START, and STOP Conditions  
signals. The MAX5813/MAX5814/MAX5815 can accom-  
modate bus voltages higher than V  
up to a limit of  
are not recommend-  
DDIO  
5.5V; bus voltages lower than V  
DDIO  
ed and may result in significantly increased interface cur-  
rents. The MAX5813/MAX5814/MAX5815 digital inputs  
are double buffered. Depending on the command issued  
through the serial interface, the CODE register(s) can  
be loaded without affecting the DAC register(s) using  
the write command. To update the DAC registers, either  
drive the LDAC input low to asynchronously update all  
DAC outputs, or use the software LOAD command.  
I2C START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A mas-  
ter initiates communication by issuing a START condition.  
A START condition is a high-to-low transition on SDA with  
SCL high. A STOP condition is a low-to-high transition  
on SDA while SCL is high (Figure 2). A START condition  
from the master signals the beginning of a transmission  
Series resistors in line with SDA and SCL are optional.  
Series resistors protect the digital inputs of the MAX5813/  
MAX5814/MAX5815 from high voltage spikes on the bus  
lines and minimize crosstalk and undershoot of the bus  
SMBus is a trademark of Intel Corp.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 15  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
to the MAX5813/MAX5814/MAX5815. The master termi-  
nates transmission and frees the bus, by issuing a STOP  
CLOCK PULSE  
START  
FOR  
condition. The bus remains active if a Repeated START  
condition is generated instead of a STOP condition.  
CONDITION  
ACKNOWLEDGMENT  
I2C Early STOP and  
Repeated START Conditions  
SCL  
1
2
9
NOT ACKNOWLEDGE  
The MAX5813/MAX5814/MAX5815 recognize a STOP  
condition at any point during data transmission except  
if the STOP condition occurs in the same high pulse as  
a START condition. Transmissions ending in an early  
STOP condition will not impact the internal device set-  
tings. If the STOP occurs during a readback byte, the  
transmission is terminated and a later read mode request  
will begin transfer of the requested register data from  
the beginning (this applies to combined format I2C read  
mode transfers only, interface verification mode transfers  
will be corrupted). See Figure 2.  
SDA  
ACKNOWLEDGE  
Figure 3. I2C Acknowledge  
2
Table 1. I C Slave Address LSBs for  
TSSOP Package  
TSSOP PACKAGE (A[6:4] = 001)  
I2C Slave Address  
The slave address is defined as the seven most sig-  
nificant bits (MSBs) followed by the R/W bit. See  
Figure 4. For the TSSOP packages, the three most signifi-  
cant bits are 001 with the 4 LSBs determined by ADDR1  
and ADDR0 as shown in Table 1. For the WLP package,  
the five most significant bits are 00011 with the 2 LSBs  
determined by ADDR0 as shown in Table 2. Setting  
the R/W bit to 1 configures the MAX5813/MAX5814/  
MAX5815 for read mode. Setting the R/W bit to 0 config-  
ures the MAX5813/MAX5814/MAX5815 for write mode.  
The slave address is the first byte of information sent  
to the MAX5813/MAX5814/MAX5815 after the START  
condition.  
ADDR1  
ADDR0  
A3  
0
A2  
0
A1  
0
A0  
0
V
V
V
V
DDIO  
DDIO  
DDIO  
DDIO  
N.C.  
0
0
1
0
GND  
0
0
1
1
N.C.  
N.C.  
N.C.  
GND  
GND  
GND  
V
DDIO  
N.C.  
1
0
0
0
1
0
1
0
GND  
1
0
1
1
V
DDIO  
N.C.  
1
1
0
0
1
1
1
0
GND  
1
1
1
1
The MAX5813/MAX5814/MAX5815 have the ability to  
detect an unconnected state on the ADDR input for  
additional address flexibility; if leaving the ADDR input  
unconnected, be certain to minimize all loading on the  
pin (i.e. provide a landing for the pin, but do not allow  
any board traces).  
2
Table 2. I C Slave Address LSBs for WLP  
Package  
WLP PACKAGE (A[6:2] = 00011)  
ADDR0  
A1  
0
A0  
0
V
DDIO  
I2C Broadcast Address  
A broadcast address is provided for the purpose of  
updating or configuring all MAX5813/MAX5814/MAX5815  
devices on a given I2C bus. All MAX5813/MAX5814/  
MAX5815 devices acknowledge and respond to the  
broadcast device address 00010000. The devices will  
respond to the broadcast address, regardless of the  
state of the address pins. The broadcast mode is intend-  
ed for use in write mode only (as indicated by R/W = 0 in  
the address given).  
N.C.  
1
0
GND  
1
1
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 16  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
I2C Acknowledge  
In write mode, the acknowledge bit (ACK) is a clocked 9th  
bit that the MAX5813/MAX5814/MAX5815 use to hand-  
shake receipt of each byte of data as shown in Figure 3.  
The MAX5813/MAX5814/MAX5815 pull down SDA during  
the entire master-generated 9th clock pulse if the previous  
byte is successfully received. Monitoring ACK allows for  
detection of unsuccessful data transfers. An unsuccessful  
data transfer occurs if a receiving device is busy or if a  
system fault has occurred. In the event of an unsuccess-  
ful data transfer, the bus master will retry communication.  
bytes. The data bytes are stored in a temporary register  
and then transferred to the appropriate register during  
the ACK periods between bytes. This avoids any glitch-  
ing or digital feedthrough to the DACs while the interface  
is active.  
I2C Write Operations  
A master device communicates with the MAX5813/  
MAX5814/MAX5815 by transmitting the proper slave  
address followed by command and data words. Each  
transmit sequence is framed by a START or Repeated  
START condition and a STOP condition as described  
above. Each word is 8 bits long and is always followed  
by an acknowledge clock (ACK) pulse as shown in the  
Figure 4 and Figure 5. The first byte contains the address  
of the MAX5813/MAX5814/MAX5815 with R/W = 0 to  
indicate a write. The second byte contains the register  
(or command) to be written and the third and fourth bytes  
contain the data to be written. By repeating the register  
address plus data pairs (Byte #2 through Byte #4 in  
Figure 4 and Figure 5), the user can perform multiple  
register writes using a single I2C command sequence.  
There is no limit as to how many registers the user can  
write with a single command. The MAX5813/MAX5814/  
MAX5815 support this capability for all user-accessible  
write mode commands.  
In read mode, the master pulls down SDA during the  
9th clock cycle to acknowledge receipt of data from the  
MAX5813/MAX5814/MAX5815. An acknowledge is sent  
by the master after each read byte to allow data transfer  
to continue. A not-acknowledge is sent when the master  
reads the final byte of data from the MAX5813/MAX5814/  
MAX5815, followed by a STOP condition.  
I2C Command Byte and Data Bytes  
A command byte follows the slave address. A command  
byte is typically followed by two data bytes unless it is  
the last byte in the transmission. If data bytes follow the  
command byte, the command byte indicates the address  
of the register that is to receive the following two data  
WRITE COMMAND  
BYTE #2: COMMAND BYTE  
(B[23:16])  
WRITE DATA  
BYTE #3: DATA HIGH BYTE  
(B[15:8])  
WRITE DATA  
BYTE #4: DATA LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
2
BYTE #1: I C SLAVE ADDRESS*  
START  
STOP  
SDA  
SCL  
0
0
1
A3 A2 A1 A0 W  
A
23 22 21 20 19 18 17 16 A 15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 A  
COMMAND EXECUTED  
ACK. GENERATED BY MAX5813/MAX5814/MAX5815  
A
2
*I C SLAVE ADDRESS FOR THE TSSOP PACKAGE IS USED  
Figure 4. I2C Single Register Write Sequence  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 17  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
WRITE COMMAND1  
BYTE #2: COMMAND1 BYTE  
(B[23:16])  
WRITE DATA1  
BYTE #3: DATA1 HIGH BYTE  
(B[15:8])  
WRITE DATA1  
BYTE #4: DATA1 LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
BYTE #1: I C SLAVE ADDRESS*  
2
START  
23 22 21 20 19 18 17 16  
0
0
1
A3 A2 A1 A0 W  
A
A
15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 A  
SDA  
SCL  
COMMAND1  
EXECUTED  
ADDITIONAL COMMAND AND  
DATA PAIRS (3 BYTE BLOCKS)  
BYTE #7: DATAn LOW BYTE  
(B[7:0])  
BYTE #5: COMMANDn BYTE  
(B[23:16])  
BYTE #6: DATAn HIGH BYTE  
(B[15:8])  
STOP  
23 22 21 20 19 18 17 16  
A
15 14 13 12 11 10  
9
8
A
7
6
5
4
3 2 1 0 A  
COMMANDn  
EXECUTED  
ACK. GENERATED BY MAX5813/MAX5814/MAX5815  
A
2
*I C SLAVE ADDRESS FOR THE TSSOP PACKAGE IS USED  
Figure 5. Multiple Register Write Sequence (Standard I2C Protocol)  
WRITE ADDRESS  
BYTE #1: I C SLAVE  
WRITE COMMAND 1  
BYTE #2: COMMAND 1  
BYTE  
READ ADDRESS  
BYTE #3: I C SLAVE  
READ DATA  
BYTE #4: DATA 1 HIGH  
BYTE (B[15:8])  
READ DATA  
BYTE #5: DATA 1 LOW  
BYTE (B[7:0])  
2
2
REPEATED  
START  
ADDRESS*  
ADDRESS*  
START  
STOP  
0
0
1
A3 A2 A1 A0  
W
A
0
0
N
N
N
N
N
N
A
0
0
~A  
1 A3 A2 A1 A0 R A D D D D D D D D A D D D D D D D D  
SDA  
SCL  
2
ACK. GENERATED BY I C MASTER  
A
A
ACK. GENERATED BY MAX5813/MAX5814/MAX5815  
2
*I C SLAVE ADDRESS FOR THE TSSOP PACKAGE IS USED  
Figure 6. Standard I2C Register Read Sequence  
Combined Format I2C Readback Operations  
Each readback sequence is framed by a START or  
Repeated START condition and a STOP condition. Each  
word is 8 bits long and is followed by an acknowledge  
clock pulse as shown in Figure 6. The first byte contains  
the address of the MAX5813/MAX5814/MAX5815 with  
R/W = 0 to indicate a write. The second byte contains  
the register that is to be read back. There is a Repeated  
START condition, followed by the device address with  
R/W = 1 to indicate a read and an acknowledge clock.  
The master has control of the SCL line but the MAX5813/  
MAX5814/MAX5815 take over the SDA line. The final two  
bytes in the frame contain the register data readback  
followed by a STOP condition. If additional bytes beyond  
those required to readback the requested data are pro-  
vided, the MAX5813/MAX5814/MAX5815 will continue to  
readback ones.  
Readback of individual CODE registers is supported for  
the CODE command (B[23:20] = 0000). For this com-  
mand, which supports a DAC address, the requested  
channel CODE register content will be returned; if all  
DACs are selected, CODEA content will be returned.  
Readback of individual DAC registers is supported for  
all LOAD commands (B[23:20] = 0001, 0010, or 0011).  
For these commands, which support a DAC address, the  
requested DAC register content will be returned. If all  
DACs are selected, DACA content will be returned.  
Modified readback of the POWER register is supported  
for the POWER command (B[23:20] = 0100). The power  
status of each DAC is reported in locations B[3:0], with a  
1 indicating the DAC is powered down and a 0 indicating  
the DAC is operational (see Table 3).  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 18  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Readback of all other registers is not directly supported.  
All requests to read unsupported registers reads back  
the device’s reference status and the device ID and revi-  
sion information in the format as shown in Table 3.  
MAX5814/MAX5815. The master still has control of the  
SCL line but the MAX5813/MAX5814/MAX5815 take over  
the SDA line. The final three bytes in the frame contain  
the command and register data written in the first transfer  
presented for readback, followed by a STOP condition. If  
additional bytes beyond those required to read back the  
requested data are provided, the MAX5813/MAX5814/  
MAX5815 will continue to read back ones.  
Interface Verification I2C  
Readback Operations  
While the MAX5813/MAX5814/MAX5815 support stan-  
dard I2C readback of selected registers, it is also  
capable of functioning in an interface verification mode.  
This mode is accessed any time a readback operation  
follows an executed write mode command. In this mode,  
the last executed three-byte command is read back in its  
entirety. This behavior allows verification of the interface.  
It is not necessary for the write and read mode transfers  
to occur immediately in sequence. I2C transfers involv-  
ing other devices do not impact the MAX5813/MAX5814/  
MAX5815 readback mode. Toggling between readback  
modes is based on the length of the preceding write  
mode transfer. Combined format I2C readback operation  
is resumed if a write command greater than two bytes  
but less than four bytes is supplied. For commands writ-  
ten using multiple register write sequences, only the last  
command executed is read back. For each command  
written, the readback sequence can only be completed  
one time; partial and/or multiple attempts to readback  
executed in succession will not yield usable data.  
Sample command sequences are shown in Figure 7.  
The first command transfer is given in write mode with  
R/W = 0 and must be run to completion to qualify for  
interface verification readback. There is now a STOP/  
START pair or Repeated START condition required, fol-  
lowed by the readback transfer with R/W = 1 to indicate  
a read and an acknowledge clock from the MAX5813/  
2
Table 3. Standard I C User Readback Data  
COMMAND BYTE (REQUEST)  
READBACK DATA HIGH BYTE  
READBACK DATA LOW BYTE  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1
0
0
0
0
1
DAC selection  
DAC selection  
DAC selection  
DAC selection  
CODEn[11:4]  
DACn[11:4]  
DACn[11:4]  
DACn[11:4]  
CODEn[3:0]  
DACn[3:0]  
DACn[3:0]  
DACn[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
0
0
1
1
X
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
PWD PWC PWB PWA  
CODEA[11:4]  
DACA[11:4]  
DACA[11:4]  
DACA[11:4]  
CODEA[3:0]  
DACA[3:0]  
DACA[3:0]  
DACA[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Any other command (TSSOP)  
Any other command (WLP)  
1111 1000  
1001 1000  
000  
000  
REV_ID[2:0] REF MODE  
(010)  
RF[1:0]  
Table 4. Format DAC Data Bit Positions  
PART  
B15 B14 B13 B12 B11 B10  
B9  
D1  
D3  
D5  
B8  
D0  
D2  
D4  
B7  
x
B6  
x
B5  
B4  
x
B3  
x
B2  
x
B1  
x
B0  
x
MAX5813  
MAX5814  
MAX5815  
D7  
D9  
D6  
D8  
D5  
D7  
D9  
D4  
D6  
D8  
D3  
D5  
D7  
D2  
D4  
D6  
x
x
D1  
D3  
D0  
D2  
x
x
x
x
x
D11 D10  
D1  
D0  
x
x
x
x
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 19  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
WRITE COMMAND  
BYTE #2: COMMAND BYTE  
(B[23:16])  
WRITE DATA  
BYTE #3: DATA HIGH BYTE  
(B[15:8])  
WRITE DATA  
BYTE #4: DATA LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
BYTE #1: I C SLAVE ADDRESS*  
2
START  
STOP  
7
6
5
4
3
2
1
0 A  
0
0
1
A3 A2 A1 A0  
W
A
23 22 21 20 19 18 17 16  
A
15 14 13 12 11 10  
9
8
A
SDA  
SCL  
POINTER UPDATED  
(QUALIFIES FOR COMBINED READ BACK)  
COMMAND EXECUTED  
(QUALIFIES FOR INTERFACE READ BACK)  
READ COMMAND  
BYTE #2: COMMAND BYTE  
(B[23:16])  
READ DATA  
BYTE #3: DATA HIGH BYTE  
(B[15:8])  
READ DATA  
BYTE #4: DATA LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
2
BYTE #1: I C SLAVE ADDRESS*  
START  
STOP  
0
0
1
A3 A2 A1 A0  
R
A
23 22 21 20 19 18 17 16  
A
15 14 13 12 11 10  
9
8
A
7
6
5
4
3
2
1
0 ~A  
WRITE COMMAND  
BYTE #2: COMMAND BYTE  
(B[23:16])  
WRITE DATA  
BYTE #3: DATA HIGH BYTE  
(B[15:8])  
WRITE DATA  
BYTE #4: DATA LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
2
REPEATED  
START  
BYTE #1: I C SLAVE ADDRESS*  
START  
0
0
1
A3 A2 A1 A0  
W
A
23 22 21 20 19 18 17 16  
A
15 14 13 12 11 10  
9
8
A
7
6
5
4
3
2
1
0
A
SDA  
SCL  
POINTER UPDATED  
(QUALIFIES FOR COMBINED READ BACK)  
COMMAND EXECUTED  
(QUALIFIES FOR INTERFACE READ BACK)  
READ COMMAND  
BYTE #2: COMMAND BYTE  
(B[23:16])  
READ DATA  
BYTE #3: DATA HIGH BYTE  
(B[15:8])  
READ DATA  
BYTE #4: DATA LOW BYTE  
(B[7:0])  
WRITE ADDRESS  
2
BYTE #1: I C SLAVE ADDRESS*  
STOP  
0
0
1
A3 A2 A1 A0  
R
A
23 22 21 20 19 18 17 16  
A
15 14 13 12 11 10  
9
8
A
7
6
5
4
3
2
1
0 ~A  
2
ACK. GENERATED BY I C MASTER  
ACK. GENERATED BY MAX5813/MAX5814/MAX5815  
A
A
2
*I C SLAVE ADDRESS FOR THE TSSOP PACKAGE IS USED  
Figure 7. Interface Verification I2C Register Read Sequences  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 20  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
LOADn Command  
µC  
The LOADn command (B[23:20] = 0001) updates the  
SDA  
SCL  
DAC register content for the selected DAC(s) by upload-  
ing the current contents of the CODE register. The  
LOADn command can be used with DAC SELECTION =  
ALL DACs to issue a software load for all DACs, which  
is equivalent to the LOAD_ALL (B[23:16] = 10000001)  
command. See Table 5 and Table 6.  
MAX5813  
MAX5814  
MAX5815  
SCL  
SDA  
ADDR0  
CODEn_LOAD_ALL Command  
The CODEn_LOAD_ALL command (B[23:20] = 0010)  
updates the CODE register contents for the selected  
DAC(s) as well as the DAC register content of all DACs.  
Channels for which the CODE register content has not  
been modified since the last load to DAC register or LDAC  
operation will not be updated to reduce digital crosstalk.  
Issuing this command with DAC_ADDRESS = ALL is  
equivalent to the CODE_ALL_LOAD_ALL command. The  
CODEn_LOAD_ALL command by definition will modify at  
least one CODE register. To avoid this, use the LOADn  
command with DAC SELECTION = ALL DACs or use the  
LOAD_ALL command. See Table 5 and Table 6.  
(ADDR1)  
MAX5813  
MAX5814  
MAX5815  
+5V  
SCL  
SDA  
ADDR0  
(ADDR1)  
( ) TSSOP PACKAGE ONLY  
CODEn_LOADn Command  
The CODEn_LOADncommand (B[23:20] = 0011)updates  
the CODE register contents for the selected DAC(s) as  
well as the DAC register content of the selected DAC(s).  
Channels for which the CODE register content has not  
been modified since the last load to DAC register or  
LDAC operation will not be updated to reduce digital  
crosstalk. Issuing this command with DAC SELECTION  
= ALL DACs is equivalent to the CODE_ALL_LOAD_ALL  
command. See Table 5 and Table 6.  
Figure 8. Typical I2C Application Circuit  
I2C Compatibility  
The MAX5813/MAX5814/MAX5815 are fully compatible  
with existing I2C systems. SCL and SDA are high-imped-  
ance inputs; SDA has an open drain which pulls the data  
line low to transmit data or ACK pulses. Figure 8 shows a  
typical I2C application.  
I2C User-Command Register Map  
This section lists the user accessible commands and  
registers for the MAX5813/MAX5814/MAX5815.  
CODE_ALL Command  
The CODE_ALL command (B[23:16] = 10000000)  
updates the CODE register contents for all DACs. See  
Table 5.  
Table 5 provides detailed information about the Command  
Registers.  
LOAD_ALL Command  
The LOAD_ALL command (B[23:16] = 10000001) updates  
the DAC register content for all DACs by uploading the  
current contents of the CODE registers. See Table 5.  
CODEn Command  
The CODEn command (B[23:20] = 0000) updates the  
CODE register contents for the selected DAC(s). Changes  
to the CODE register content based on this command will  
not affect DAC outputs directly unless the LDAC is in a  
low state or the DAC latch has been configured to be  
transparent. Issuing the CODEn command with DAC  
SELECTION = ALL DACs is equivalent to CODE_ALL  
(B[23:16] = 10000000). See Table 5 and Table 6.  
CODE_ALL_LOAD_ALL Command  
The CODE_ALL_LOAD_ALL command (B[23:16] =  
1000001x) updates the CODE register contents for all  
DACs as well as the DAC register content of all DACs.  
See Table 5.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 21  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 22  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
D A C A  
D A C B  
D A C C  
D A C D  
L D _ E N  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 23  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Table 6. DAC Selection  
B19  
0
B18  
0
B17  
0
B16  
0
DAC SELECTED  
DAC A  
0
0
0
1
DAC B  
0
0
1
0
DAC C  
0
0
1
1
DAC D  
X
1
X
X
ALL DACs  
ALL DACs  
1
X
X
X
ers up. The serial interface remains active in power-down  
mode.  
POWER Command  
The MAX5813/MAX5814/MAX5815 feature a software-  
controlled power-mode (POWER) command (B[23:20] =  
0100). The POWER command updates the power-mode  
settings of the selected DACs while the power settings of  
the rest of the DACs remain unchanged. The new power  
setting is determined by bits B[17:16] while the affected  
DAC(s) are selected by bits B[11:8]. If all DACs are pow-  
ered down, the device enters a STANDBY mode.  
In STANDBY mode, the internal reference can be pow-  
ered down or it can be set to remain powered-on for  
external use. Also, in STANDBY mode, devices using the  
external reference do not load the REF pin. See Table 7.  
SW_RESET and SW_CLEAR Command  
The SW_RESET (B[23:16] = 01010001) and SW_CLEAR  
(B[23:16] = 01010000) commands provide a means of  
issuing a software reset or software clear operation. Use  
SW_CLEAR to issue a software clear operation to return  
all CODE and DAC registers to the zero-scale value. Use  
SW_RESET to reset all CODE, DAC, and configuration  
registers to their default values.  
In power-down, the DAC output is disconnected from the  
buffer and is grounded with either one of the two select-  
able internal resistors or set to high impedance. See Table  
8 for the selectable internal resistor values in power-down  
mode. In power-down mode, the DAC register retains its  
value so that the output is restored when the device pow-  
Table 7. POWER (100) Command Format  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
1
0
0
0
0
PD1 PD0  
X
X
X
X
D
C
B
A
X
X
X
X
X
X
X
X
Power  
Mode:  
00 =  
DAC Select:  
Normal  
01 = 1kI  
10 =  
1 = DAC Selected  
0 = DAC Not  
Selected  
POWER Command  
Don’t Care  
Don’t Care  
100kI  
11 = Hi-Z  
0
0
X
X
X
X
1
1
1
1
X
X
X
X
X
X
X
X
Default Values (all DACs) ➝  
Table 8. Selectable DAC Output Impedance in Power-Down Mode  
PD1 (B17)  
PD0 (B16)  
OPERATING MODE  
0
0
1
1
0
1
0
1
Normal operation  
Power-down with internal 1kI pulldown resistor to GND.  
Power-down with internal 100kI pulldown resistor to GND.  
Power-down with high-impedance output.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 24  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
or 11 to select either the 2.5V, 2.048V, or 4.096V internal  
reference, respectively.  
CONFIG Command  
The CONFIG command (B[23:19] = 0100) updates the  
LDAC and LOAD functions of selected DACs. Issue the  
command with B16 = 0 to allow the DAC latches to oper-  
ate normally or with B16 = 1 to disable the DAC latches,  
making them perpetually transparent. Mode settings of  
the selected DACs are updated while the mode settings  
of the rest of the DACs remain unchanged; DAC(s) are  
selected by bits B[11:8]. See Table 9.  
If RF2 (B18) is set to zero (default) in the REF command,  
the reference will be powered down any time all DAC  
channels are powered down (in STANDBY mode). If RF2  
(B18 = 1) is set to one, the reference will remain powered  
even if all DAC channels are powered down, allowing  
continued operation of external circuitry. In this mode,  
the 1FA shutdown state is not available. See Table 10.  
REF Command  
The REF command updates the global reference setting  
used for all DAC channels. Set B[17:16] = 00 to use an  
external reference for the DACs or set B[17:16] to 01, 10,  
Table 9. CONFIG Command Format  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
0
1
1
0
0
0
0
LDB  
X
X
X
X
D
C
B
A
X
X
X
X
X
X
X
X
DAC Select:  
1 = DAC Selected  
0 = DAC Not  
Selected  
CONFIG Command  
Don’t Care  
Don’t Care  
Default Values (all DACs) ➝  
0
X
X
X
X
1
1
1
1
X
X
X
X
X
X
X
X
Table 10. REF Command Format  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
X X X X X X  
0
1
1
1
0
RF2 RF1 RF0  
X
X
X
X
X
X
X
X
X
X
REF Mode:  
00 = EXT  
01 = 2.5V  
10 = 2.0V  
11 = 4.0V  
REF Command  
Don’t Care  
Don’t Care  
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Default Values ➝  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 25  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step height and  
Applications Information  
the ideal value of 1 LSB. If the magnitude of the DNL P  
1 LSB, the DAC guarantees no missing codes and is  
monotonic. If the magnitude of the DNL R1 LSB, the DAC  
output may still be monotonic.  
Power-On Reset (POR)  
When power is applied to V  
and V  
, the DAC out-  
DD  
DDIO  
put is set to zero scale. To optimize DAC linearity, wait  
until the supplies have settled and the internal setup and  
calibration sequence completes (200Fs, typ).  
Offset Error  
Offset error indicates how well the actual transfer func-  
tion matches the ideal transfer function at a single point.  
Typically, the point at which the offset error is specified  
is at or near the zero-scale point of the transfer function.  
Power Supplies and  
Bypassing Considerations  
Bypass V  
and V  
with high-quality ceramic capac-  
DD  
DDIO  
itors to a low-impedance ground as close as possible to  
the device. Minimize lead lengths to reduce lead induc-  
tance. Connect the GND to the analog ground plane.  
Gain Error  
Gain error is the difference between the ideal and the  
actual full-scale output voltage on the transfer curve,  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step.  
Layout Considerations  
Digital and AC transient signals on GND can create noise  
at the output. Connect GND to form the star ground for  
the DAC system. Refer remote DAC loads to this system  
ground for the best possible performance. Use proper  
grounding techniques, such as a multilayer board with a  
low-inductance ground plane, or star connect all ground  
return paths back to the MAX5813/MAX5814/MAX5815  
GND. Carefully layout the traces between channels to  
reduce AC cross-coupling. Do not use wire-wrapped  
boards and sockets. Use shielding to minimize noise immu-  
nity. Do not run analog and digital signals parallel to one  
another, especially clock signals. Avoid routing digital lines  
underneath the MAX5813/MAX5814/MAX5815 package.  
Settling Time  
The settling time is the amount of time required from the  
start of a transition, until the DAC output settles to the new  
output value within the converter’s specified accuracy.  
Digital Feedthrough  
Digital feedthrough is the amount of noise that appears  
on the DAC output when the DAC digital control lines are  
toggled.  
Digital-to-Analog Glitch Impulse  
A major carry transition occurs at the midscale point  
where the MSB changes from low to high and all other  
bits change from high to low, or where the MSB changes  
from high to low and all other bits change from low to  
high. The duration of the magnitude of the switching  
glitch during a major carry transition is referred to as the  
digital-to-analog glitch impulse.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the measured transfer function  
from a straight line drawn between two codes once offset  
and gain errors have been nullified.  
The digital-to-analog power-up glitch is the duration of  
the magnitude of the switching glitch that occurs as the  
device exits power-down mode.  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 26  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Detailed Functional Diagram  
V
DD  
REF  
100kI R  
IN  
MAX5813  
MAX5814  
MAX5815  
INTERNAL /EXTERNAL REFERENCE (USER OPTION)  
CODE  
REGISTER  
A
DAC  
LATCH  
A
8-/10-/12-BIT  
DAC A  
OUTA  
OUTB  
OUTC  
OUTD  
BUFFER A  
CLEAR/  
RESET  
CLEAR/  
RESET  
CODE  
CODE  
CODE  
CODE  
LOAD  
100kI  
1kI  
1kI  
1kI  
1kI  
POWER-DOWN  
DAC CONTROL LOGIC  
V
DDIO  
CODE  
REGISTER  
B
DAC  
LATCH  
B
8-/10-/12-BIT  
DAC B  
BUFFER B  
SCL  
SDA  
CLEAR/  
RESET  
CLEAR/  
RESET  
LOAD  
100kI  
POWER-DOWN  
DAC CONTROL LOGIC  
ADDR0  
(ADDR1)  
CLR  
2
I C SERIAL  
INTERFACE  
CODE  
REGISTER  
C
DAC  
LATCH  
C
8-/10-/12-BIT  
DAC C  
BUFFER C  
CLEAR/  
RESET  
CLEAR/  
RESET  
(LDAC)  
LOAD  
100kI  
POWER-DOWN  
DAC CONTROL LOGIC  
POR  
CODE  
REGISTER  
D
DAC  
LATCH  
D
8-/10-/12-BIT  
DAC D  
BUFFER D  
CLEAR/  
RESET  
CLEAR/  
RESET  
LOAD  
100kI  
POWER-DOWN  
DAC CONTROL LOGIC  
GND  
() TSSOP PACKAGE ONLY  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 27  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
100nF  
4.7µF  
100µF  
R
PU  
=
R
PU  
=
5kI  
5kI  
V
DDIO  
V
DD  
(LDAC)  
SDA  
OUT  
REF  
DAC  
MICRO-  
CONTROLLER  
SCL  
MAX5813  
MAX5814  
MAX5815  
ADDR0  
(ADDR1)  
CLR  
R1  
R2  
R1 = R2  
GND  
( ) TSSOP PACKAGE ONLY  
NOTE: ONE CHANNEL SHOWN  
Figure 9. Bipolar Operating Circuit  
Typical Operating Circuit  
100nF  
4.7µF  
100µF  
R
=
R
PU  
=
PU  
5kI  
5kI  
V
DDIO  
V
DD  
(LDAC)  
SDA  
OUT_  
DAC  
MICRO-  
CONTROLLER  
SCL  
MAX5813  
MAX5814  
MAX5815  
ADDR0  
(ADDR1)  
CLR  
REF  
GND  
( ) TSSOP PACKAGE ONLY  
NOTE: UNIPOLAR OPERATION (ONE CHANNEL SHOWN)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 28  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Ordering Information  
PART  
PIN-PACKAGE  
14 TSSOP  
14 TSSOP  
14 TSSOP  
14 TSSOP  
12 WLP  
RESOLUTION (BIT)  
INTERNAL REFERENCE TEMPCO (ppm/NC)  
MAX5813AUD+T*  
MAX5814AUD+T*  
MAX5815AAUD+T  
MAX5815BAUD+T*  
MAX5815AWC+T*  
8
10 (typ)  
10 (typ)  
10  
12  
12  
12  
3 (typ),10 (max)  
10 (typ)  
10 (typ)  
Note: All devices are specified over the -40°C to +125°C temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Future product—Contact factory for availability.  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE PACKAGE OUTLINE  
LAND  
TYPE  
CODE  
NO.  
PATTERN NO.  
14 TSSOP  
U14+1  
21-0066  
90-0113  
Refer to  
Application Note 1891  
12 WLP  
W121B2+1  
21-0009  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products 29  
MAX5813/MAX5814/MAX5815  
Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered  
2
Output DACs with Internal Reference and I C Interface  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
2/12  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
30  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY