MAX5895EGK+ [MAXIM]

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68;
MAX5895EGK+
型号: MAX5895EGK+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 2 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68

文件: 总31页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3545; Rev 2; 10/08  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
General Description  
Features  
The MAX5895 programmable interpolating, modulating,  
500Msps, dual digital-to-analog converter (DAC) offers  
superior dynamic performance and is optimized for  
high-performance, wideband single- and multicarrier  
transmit applications. The device integrates a selectable  
2x/4x/8x interpolating filter, a digital quadrature modula-  
tor, and dual 16-bit high-speed DACs on a single IC. At  
30MHz output frequency and 500Msps update rate, the  
in-band SFDR is 88dBc while consuming 1.1W. The  
device also delivers 71dB ACLR for four-carrier WCDMA  
at a 61.44MHz output frequency.  
o 71dB ACLR at f  
= 61.44MHz (Four-Carrier  
OUT  
WCDMA)  
®
o Meets Multicarrier UMTS, cdma2000 , GSM  
Spectral Masks (f  
= 122MHz)  
OUT  
o Noise Spectral Density = -158dBFS/Hz at  
f
= 16MHz  
OUT  
o 92dBc SFDR at Low-IF Frequency (10MHz)  
o 90dBc SFDR at High-IF Frequency (50MHz)  
o Low Power: 511mW (f  
o User Programmable  
= 100MHz)  
CLK  
The selectable interpolating filters allow lower input data  
rates while taking advantage of the high DAC update  
rates. These linear-phase interpolation filters ease  
reconstruction filter requirements and enhance the  
passband dynamic performance. Individual offset and  
gain programmability allow the user to calibrate out local  
oscillator (LO) feedthrough and sideband suppression  
errors generated by analog quadrature modulators.  
Selectable 2x, 4x, or 8x Interpolating Filters  
< 0.01dB Passband Ripple  
> 99dB Stopband Rejection  
Selectable Real or Complex Modulator Operation  
Selectable Modulator LO Frequency: OFF, fIM/2, or  
fIM/4  
Selectable Output Filter: Lowpass or Highpass  
Channel Gain and Offset Adjustment  
The MAX5895 features a f /4 digital image-reject mod-  
IM  
o EV Kit Available (Order the MAX5895 EV Kit)  
ulator. This modulator generates a quadrature-modulat-  
ed IF signal that can be presented to an analog I/Q  
modulator to complete the upconversion process. A  
second digital modulation mode allows the signal to be  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
frequency-translated with image pairs at f /2 or f /4.  
IM  
IM  
MAX5895EGK-D  
MAX5895EGK+D  
D = Dry pack.  
68 QFN-EP*  
The MAX5895 features a standard 1.8V CMOS, 3.3V tol-  
erant data input bus for easy interface. A 3.3V SPI™ port  
is provided for mode configuration. The programmable  
modes include the selection of 2x/4x/8x interpolating fil-  
68 QFN-EP*  
*EP = Exposed pad.  
ters, f /2, f /4 or no digital quadrature modulation with  
IM  
IM  
+Denotes a lead-free/RoHS-compliant package.  
image rejection, channel gain and offset adjustment, and  
offset binary or two’s complement data interface.  
Selector Guide  
Pin-compatible 12- and 14-bit devices are also available.  
Refer to the MAX5894 data sheet for the 14-bit version  
and the MAX5893 data sheet for the 12-bit version.  
RESOLUTION DAC UPDATE  
INPUT  
LOGIC  
PART  
(BITS)  
RATE (Msps)  
MAX5893  
MAX5894  
MAX5895  
MAX5898  
12  
14  
16  
16  
500  
500  
500  
500  
CMOS  
CMOS  
CMOS  
LVDS  
Applications  
Base Stations: 3G Multicarrier UMTS, CDMA, and GSM  
Broadband Wireless Transmitters  
Broadband Cable Infrastructure  
Instrumentation and Automatic Test Equipment (ATE)  
Analog Quadrature Modulation Architectures  
Simplified Diagram  
OUTI  
DAC  
DATA  
PORT A  
Pin Configuration appears at end of data sheet.  
DATACLK  
DATA  
PORT B  
SPI is a trademark of Motorola, Inc.  
cdma2000 is a registered trademark of the Telecommunications  
Industry Association.  
DAC  
OUTQ  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
ABSOLUTE MAXIMUM RATINGS  
DV  
AV  
, AV  
, AV  
to GND, DACREF ..................-0.3V to +2.16V  
DD1.8  
SDO, DATACLK, DATACLK/B14 Continuous Current ..........8mA  
DD1.8  
, DV  
to GND, DACREF........-0.3V to +3.9V  
Continuous Power Dissipation (T = +70°C)  
DD3.3  
CLK  
DD3.3  
A
DATACLK, A0–A15, B0–B13,  
SELIQ/B15, DATACLK/B14, CS, RESET, SCLK,  
SDI and SDO to GND, DACREF......-0.3V to (DV  
CLKP, CLKN to GND, DACREF..............-0.3V to (AV  
REFIO, FSADJ to GND, DACREF ........-0.3V to (AV  
OUTIP, OUTIN, OUTQP,  
68-Pin QFN (derate 41.7mW/°C above +70°C)  
(Note 1) ...................................................................3333.3mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD3.3  
CLK  
DD3.3  
OUTQN to GND, DACREF..................-1V to (AV  
+ 0.3V)  
Thermal Resistance θ (Note 1)....................................0.8°C/W  
DD3.3  
JC  
MAX895  
Note 1: Thermal resistance based on a multilayer board with 4 x 4 via array in exposed pad area.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK input mode, dual-port  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
mode, 50double-terminated outputs, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are  
A
at T = +25°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
16  
1
Bits  
LSB  
LSB  
%FS  
ppm/°C  
%FS  
ppm/°C  
mA  
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
DNL  
INL  
OS  
3
-0.025  
-4  
0.003 +0.025  
0.03  
Offset Drift  
Full-Scale Gain Error  
Gain-Error Drift  
GE  
0.6  
+4  
FS  
110  
Full-Scale Output Current  
Output Compliance  
I
2
20  
OUTFS  
-0.5  
+1.1  
V
Output Resistance  
R
C
1
5
M  
OUT  
Output Capacitance  
DYNAMIC PERFORMANCE  
Maximum Clock Frequency  
Minimum Clock Frequency  
Maximum DAC Update Rate  
Minimum DAC Update Rate  
Maximum Input Data Rate  
pF  
OUT  
f
f
500  
500  
125  
MHz  
MHz  
CLK  
1
1
CLK  
f
f
f
f
= f  
= f  
or f  
or f  
= f  
= f  
/2  
/2  
Msps  
Msps  
MWps  
DAC  
DAC  
DAC  
CLK  
DAC  
DAC  
CLK  
DAC  
CLK  
CLK  
f
DATA  
No interpolation  
2x interpolation  
4x interpolation  
-157  
-158  
-157  
f
f
= 125MHz,  
DATACLK  
= 16MHz, f  
OUT  
OFFSET  
= 10MHz, -12dBFS  
dBFS/  
Hz  
Noise Spectral Density  
f
f
= 125MHz,  
DATACLK  
= 16MHz, f  
4x interpolation  
-149  
OUT  
OFFSET  
= 10MHz, 0dBFS  
2
_______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
ELECTRICAL CHARACTERISTICS (continued)  
= 3.3V, modulator off, 2x interpolation, DATACLK input mode, dual-port  
DD3.3  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
DD1.8  
DD1.8  
CLK  
DD3.3  
mode, 50double-terminated outputs, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are  
at T = +25°C, unless otherwise noted.) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
90  
MAX  
UNITS  
f
f
f
f
f
f
f
f
f
= 10MHz  
= 30MHz  
= 50MHz  
= 10MHz  
= 30MHz  
= 50MHz  
= 10MHz  
= 30MHz  
= 50MHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
= 125MHz,  
interpolation off, 0dBFS  
DATACLK  
85  
73  
77  
90  
In-Band SFDR  
(DC to f /2)  
f
= 125MHz,  
2x interpolation, 0dBFS  
DATACLK  
SFDR  
89  
dBc  
DATA  
86  
92  
f
= 125MHz,  
4x interpolation, 0dBFS  
DATACLK  
88  
90  
No interpolation  
2x interpolation  
4x interpolation  
-103  
-103  
-103  
f
f
= 125MHz,  
DATACLK  
OUT1  
= 9MHz, f  
=
OUT2  
10MHz, -6.1dBFS  
2x interpolation,  
f
/4 complex  
-74  
-75  
IM  
f
f
= 125MHz,  
DATACLK  
modulation  
= 79MHz, f  
OUT1  
OUT2  
4x interpolation,  
= 80MHz, -6.1dBFS  
f
IM  
/4 complex  
modulation  
Two-Tone IMD  
TTIMD  
dBc  
f
f
= 62.5MHz,  
DATACLK  
= 9MHz, f  
=
8x interpolation  
8x interpolation,  
-100  
-75  
OUT1  
OUT2  
10MHz, -6.1dBFS  
f
f
= 62.5MHz,  
DATACLK  
OUT1  
= 69MHz, f  
f /4 complex  
IM  
OUT2  
= 70MHz, -6.1dBFS  
modulation  
8x, highpass  
interpolation,  
f
f
= 62.5MHz,  
DATACLK  
= 179MHz, f  
-65  
-97  
OUT1  
OUT2  
f
IM  
/4 complex  
= 180MHz, -6.1dBFS  
modulation  
spaced 1MHz  
OUT  
f
= 125MHz, f  
DATACLK  
apart from 32MHz, -12dBFS, 2x  
interpolation  
Four-Tone IMD  
FTIMD  
ACLR  
dBc  
4x interpolation  
8x interpolation  
80  
79  
f
f
= 61.44MHz,  
= baseband  
DATACLK  
OUT  
f
=
2x interpolation,  
f /4 complex  
IM  
modulation  
DATACLK  
122.88MHz, f  
61.44MHz  
=
=
75  
69  
ACLR for WCDMA  
(Note 3)  
OUT  
dB  
f
=
4x interpolation,  
f /4 complex  
IM  
modulation  
DATACLK  
122.88MHz, f  
122.88MHz  
OUT  
_______________________________________________________________________________________  
3
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
= 3.3V, modulator off, 2x interpolation, DATACLK input mode, dual-port  
DD3.3  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
DD1.8  
DD1.8  
CLK  
DD3.3  
mode, 50double-terminated outputs, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are  
at T = +25°C, unless otherwise noted.) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
1x interpolation (Note 4)  
MIN  
TYP  
MAX  
UNITS  
Output Propagation Delay  
Output Rise Time  
t
2.9  
0.75  
1.0  
ns  
ns  
PD  
t
10% to 90% (Note 5)  
10% to 90% (Note 5)  
To 0.5% (Note 5)  
RISE  
Output Fall Time  
t
ns  
FALL  
MAX895  
Output Settling Time  
Output Bandwidth  
11  
ns  
-1dB bandwidth (Note 6)  
240  
MHz  
0.4 x  
Passband Width  
Ripple < -0.01dB  
f
DATA  
100  
100  
100  
22  
0.604 x f  
0.604 x f  
0.604 x f  
, 2x interpolation  
, 4x interpolation  
, 8x interpolation  
DATA  
DATA  
DATA  
Stopband Rejection  
dB  
1x interpolation  
2x interpolation  
4x interpolation  
8x interpolation  
70  
Clock  
Cycles  
Data Latency  
146  
311  
DAC INTERCHANNEL MATCHING  
Gain Match  
Gain  
Gain/°C  
Phase  
f
I
f
f
I
f
= DC - 80MHz, I  
= 20mA  
0.1  
0.02  
0.13  
0.006  
0.04  
-95  
dB  
ppm/°C  
Deg  
OUT  
OUTFS  
Gain-Match Tempco  
Phase Match  
= 20mA  
OUTFS  
= 60MHz, I  
= 60MHz, I  
= 20mA  
OUT  
OUTFS  
Phase-Match Tempco  
DC Gain Match  
Phase/°C  
= 20mA  
Deg/°C  
dB  
OUT  
OUTFS  
= 20mA  
-0.2  
+0.2  
OUTFS  
Channel-to-Channel Crosstalk  
REFERENCE  
= 50MHz, f  
= 250MHz, 0dBFS  
dB  
OUT  
DAC  
Reference Input Range  
Reference Output Voltage  
Reference Input Resistance  
Reference Voltage Drift  
0.125  
1.14  
1.250  
1.27  
V
V
V
Internal reference  
1.20  
10  
REFIO  
R
kΩ  
REFIO  
50  
ppm/°C  
CMOS LOGIC INPUT/OUTPUT (A15–A0, SELIQ/B15, DATACLK/B14, B13–B0, DATACLK)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD1.8  
0.3 x  
V
IL  
DV  
DD1.8  
Input Current  
I
1
3
20  
µA  
pF  
IN  
Input Capacitance  
C
IN  
4
_______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
ELECTRICAL CHARACTERISTICS (continued)  
= 3.3V, modulator off, 2x interpolation, DATACLK input mode, dual-port  
DD3.3  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
DD1.8  
DD1.8  
CLK  
DD3.3  
mode, 50double-terminated outputs, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are  
at T = +25°C, unless otherwise noted.) (Note 2)  
A
A
PARAMETER  
Output High Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.8 x  
V
200µA load  
V
OH  
DV  
DD3.3  
0.2 x  
Output Low Voltage  
V
200µA load  
Three-state  
V
OL  
DV  
DD3.3  
Output Leakage Current  
Rise/Fall Time  
1
µA  
ns  
C
= 10pF, 20% to 80%  
1.5  
LOAD  
CLOCK INPUT (CLKP, CLKN)  
Sine-wave input  
> 1.5  
> 0.5  
> 100  
Differential Input Voltage Swing  
V
V
P-P  
DIFF  
Square-wave input  
Differential Input Slew Rate  
Common-Mode Voltage  
Input Resistance  
V/µs  
V
V
AC-coupled  
AV  
/2  
COM  
CLK  
5
R
kΩ  
pF  
%
CLK  
CLK  
Input Capacitance  
C
3
Minimum Clock Duty Cycle  
Maximum Clock Duty Cycle  
45  
55  
%
CLKP/CLKN, DATACLK TIMING (Figure 4, Notes 7, 8)  
CLK to DATACLK Delay  
t
DATACLK output mode, C  
Capturing rising edge  
Capturing falling edge  
Capturing rising edge  
Capturing falling edge  
Capturing rising edge  
Capturing falling edge  
Capturing rising edge  
Capturing falling edge  
= 10pF  
LOAD  
6.2  
ns  
ns  
D
1.0  
2.1  
0.4  
-0.7  
1.0  
2.3  
0.2  
-0.4  
Data Hold Time, DATACLK  
Input/Output (Pin 14)  
t
DH  
Data Setup Time, DATACLK  
Input/Output (Pin 14)  
t
ns  
ns  
ns  
DS  
DH  
Data Hold Time, DATACLK/B14  
Input/Output (Pin 27)  
t
Data Setup Time, DATACLK/B14  
Input/Output (Pin 27)  
t
DS  
SERIAL-PORT INTERFACE TIMING (Figure 3, Note 7)  
SCLK Frequency  
CS Setup Time  
f
10  
MHz  
ns  
SCLK  
t
2.5  
0
SS  
Input Hold Time  
Input Setup Time  
Data Valid Duration  
t
ns  
SDH  
t
t
4.5  
6.5  
ns  
SDS  
SDV  
16.5  
ns  
_______________________________________________________________________________________  
5
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
= 3.3V, modulator off, 2x interpolation, DATACLK input mode, dual-port  
DD3.3  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
DD1.8  
DD1.8  
CLK  
DD3.3  
mode, 50double-terminated outputs, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are  
at T = +25°C, unless otherwise noted.) (Note 2)  
A
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Supply Voltage  
Digital I/O Supply Voltage  
Clock Supply Voltage  
DV  
DV  
1.71  
3.0  
1.8  
3.3  
3.3  
3.3  
1.8  
1.89  
3.6  
V
V
V
DD1.8  
DD3.3  
MAX895  
AV  
3.135  
3.135  
1.71  
3.465  
3.465  
1.89  
CLK  
AV  
DD3.3  
DD1.8  
Analog Supply Voltage  
V
AV  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz, DATACLK output mode  
CLK  
I
I
110  
27  
225  
21  
3
130  
32  
250  
32  
5
AVDD3.3  
AVDD1.8  
DVDD1.8  
DVDD3.3  
OUT  
Analog Supply Current  
mA  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz, DATACLK output mode  
CLK  
OUT  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz, DATACLK output mode  
CLK  
OUT  
Digital Supply Current  
I
I
mA  
mA  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz, DATACLK output mode  
CLK  
OUT  
Digital I/O Supply Current  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz, DATACLK output mode  
CLK  
OUT  
Clock Supply Current  
Total Power Dissipation  
I
mA  
AVCLK  
P
511  
450  
1
mW  
TOTAL  
AV  
AV  
DV  
DV  
AV  
DD3.3  
DD1.8  
DD1.8  
DD3.3  
CLK  
All I/O are static high or  
low, bit 2 to bit 4 of  
address 00h are set high  
Power-Down Current  
10  
100  
1
µA  
AV  
Ratio  
Power-Supply Rejection  
DD3.3  
PSRR  
(Note 9)  
0.125  
%FS/V  
A
Note 2: All specifications are 100% tested at T +25°C. Specifications at T < +25°C are guaranteed by design and  
A
A
characterization data.  
Note 3: 3.84MHz bandwidth, single carrier.  
Note 4: Excludes data latency.  
Note 5: Measured single-ended into a 50load.  
Note 6: Excludes sin(x)/x rolloff.  
Note 7: Guaranteed by design and characterization.  
Note 8: Setup and hold time specifications characterized with 3.3V CMOS logic levels.  
Note 9: Parameter defined as the change in midscale output caused by a 5% variation in the nominal supply voltage.  
6
_______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Typical Operating Characteristics  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, output is transformer-coupled to  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50load, T = +25°C, unless otherwise noted.)  
A
SFDR vs. OUTPUT FREQUENCY  
0UT-OF-BAND SFDR vs. OUTPUT FREQUENCY  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
f
= 125MWps, NO INTERPOLATION  
f
= 125MWps, 2x INTERPOLATION  
f
= 125MWps, 2x INTERPOLATION  
DATA  
DATA  
DATA  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
-0.1dBFS  
-6dBFS  
-0.1dBFS  
-6dBFS  
-0.1dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
-0.1dBFS  
-12dBFS  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
SPURS MEASURED BETWEEN  
0MHz AND 62.5MHz  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
OUT-OF-BAND SFDR vs. OUTPUT FREQUENCY  
f
= 125MWps, 4x INTERPOLATION  
f
= 125MWps, 2x INTERPOLATION  
DATA  
f
= 125MWps, 4x INTERPOLATION  
DATA  
DATA  
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-6dBFS  
-6dBFS  
-0.1dBFS  
-0.1dBFS  
-6dBFS  
-0.1dBFS  
-12dBFS  
-12dBFS  
-12dBFS  
UPPER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
SPURS MEASURED BETWEEN  
0MHz AND 62.5MHz  
SPURS MEASURED BETWEEN  
62.5MHz AND 250MHz  
0
10  
20  
30  
40  
50  
62.5  
72.5  
82.5  
92.5  
102.5  
112.5  
0
10  
20  
30  
40  
50  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
f
= 125MWps, 4x INTERPOLATION  
f
= 125MWps, 4x INTERPOLATION  
f
= 125MWps, NO INTERPOLATION  
DATA  
DATA  
DATA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
-0.1dBFS  
-12dBFS  
-6dBFS  
-0.1dBFS  
-9dBFS  
-6dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
UPPER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
62.5MHz AND 187.5MHz  
LOWER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
1MHz CARRIER SPACING  
75  
85  
95  
105  
115  
125  
125  
135  
145  
155  
165  
175  
0
10  
20  
30  
40  
50  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
CENTER FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
Typical Operating Characteristics (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, output is transformer-coupled to  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50load, T = +25°C, unless otherwise noted.)  
A
TWO-TONE IMD vs. OUTPUT FREQUENCY  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
GAIN MISMATCH vs. TEMPERATURE  
f
= 125MWps, NO INTERPOLATION  
f
= 125MWps, 4x INTERPOLATION  
f
= 125MWps, 2x INTERPOLATION  
DATA  
DATA  
DATA  
120  
100  
80  
60  
40  
20  
0
120  
90  
60  
30  
0
0.100  
0.075  
0.050  
0.025  
0
-6dBFS  
-12dBFS  
f
A
= 22.7MHz  
= -6dBFS  
OUT  
OUT  
-12dBFS  
MAX895  
-9dBFS  
-6dBFS  
-9dBFS  
1MHz CARRIER SPACING  
COMPLEX MODULATION FOR  
OUTPUT FREQUENCIES  
GREATER THAN 50MHz  
1MHz CARRIER SPACING  
10 20  
0
30  
40  
50  
0
30  
60  
90  
120  
150  
-40  
-15  
10  
35  
60  
85  
CENTER FREQUENCY (MHz)  
CENTER FREQUENCY (MHz)  
TEMPERATURE (°C)  
MULTITONE POWER RATIO PLOT  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
f
= 125MWps, 2x INTERPOLATION  
DATA  
5
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
5
A
THROUGH A  
= -18dBFS,  
OUT1  
OUT8  
4
3
SPAN = 25MHz  
2
3
1
2
0
-1  
-2  
-3  
-4  
-5  
1
0
-1  
8192  
24586  
40960  
57344  
f
= 35.7MHz, 1MHz TONE SPACING  
8192  
24576  
40960  
57344  
CENTER  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
SUPPLY CURRENTS vs. DAC UPDATE RATE  
SUPPLY CURRENTS vs. DAC UPDATE RATE  
8x INTERPOLATION, f = 5MHz  
SUPPLY CURRENTS vs. DAC UPDATE RATE  
4x INTERPOLATION, f = 5MHz  
2x INTERPOLATION, f  
= 5MHz  
OUT  
OUT  
OUT  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.8V TOTAL  
1.8V TOTAL  
1.8V TOTAL  
3.3V TOTAL  
3.3V TOTAL  
3.3V TOTAL  
0
0
0
100  
150  
200  
(MHz)  
250  
300  
100  
200  
300  
(MHz)  
400  
500  
100  
200  
300  
(MHz)  
400  
500  
f
f
DAC  
f
DAC  
DAC  
8
_______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Typical Operating Characteristics (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, output is transformer-coupled to  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50load, T = +25°C, unless otherwise noted.)  
A
NOISE DENSITY vs. DAC UPDATE RATE  
WCDMA ACLR vs. OUTPUT FREQUENCY  
f
= 16MHz, 10MHz OFFSET  
f
= 122.88MWps, 4x INTERPOLATION  
OUT  
DATA  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
2x, 4x, AND 8x INTERPOLATION  
SINGLE-CARRIER  
ALTERNATE CHANNEL  
SINGLE-CARRIER  
SINGLE-CARRIER  
ALTERNATE CHANNEL  
A
= -12dBFS  
OUT  
SINGLE-CARRIER  
ADJACENT CHANNEL  
ADJACENT CHANNEL  
FOUR-CARRIER  
ALTERNATE CHANNEL  
FOUR-CARRIER  
ALTERNATE CHANNEL  
FOUR-CARRIER  
ADJACENT CHANNEL  
FOUR-CARRIER  
ADJACENT CHANNEL  
100  
200  
300  
(MHz)  
400  
500  
0
40  
80  
120  
160  
0
40  
80  
f
f
(MHz)  
f
(MHz)  
CENTER  
DAC  
CENTER  
WCDMA ACLR SPECTRAL PLOT  
FOUR-CARRIER WCDMA ACLR SPECTRAL PLO  
= 61.44MWps, 8x INTERPOLATION  
f
= 61.44MWps, 8x INTERPOLATION  
f
DATA  
DATA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
f
= 61.44MHz, SPAN = 25.5MHz  
f
= 61.44MHz, SPAN = 40.6MHz  
CENTER  
CENTER  
WCDMA ACLR SPECTRAL PLOT  
= 122.88MWps, 4x INTERPOLATION  
FOUR-CARRIER WCDMA ACLR SPECTRAL PLOT  
= 122.88MWps, 4x INTERPOLATION  
f
f
DATA  
DATA  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
f
= 122.88MHz, SPAN = 40.6MHz  
f
= 122.88MHz, SPAN = 25.5MHz  
CENTER  
CENTER  
_______________________________________________________________________________________  
9
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
Pin Description  
PIN  
1
NAME  
CLKP  
CLKN  
N.C.  
FUNCTION  
Noninverting Differential Clock Input  
Inverting Differential Clock Input  
2
3, 4, 5  
Internally Connected. Do not connect.  
Digital Power Supply. Accepts a 1.71V to 1.89V supply range. Bypass each pin to ground with a  
0.1µF capacitor as close to the pin as possible.  
6, 21, 30, 37  
DV  
DD1.8  
MAX895  
A-Port Data Inputs.  
Dual-port mode:  
7–12, 15–20,  
22–25  
A15–A0  
I-channel data input. Data is latched on the rising/falling edge (programmable) of the DATACLK.  
Single-port mode:  
I-channel and Q-channel data input, with SELIQ.  
CMOS I/O Power Supply. Accepts a 3.0V to 3.6V supply range. Bypass each pin to ground with a  
0.1µF capacitor as close to the pin as possible.  
13, 44  
14  
DV  
DD3.3  
DATACLK  
Programmable Data Clock Input/Output. See the DATACLK Modes section for details.  
Select I/Q-Channel Input or B-Port MSB Input.  
Single-port mode:  
If SELIQ = LOW, data is latched into Q-channel on the rising/falling edge (programmable) of  
the DATACLK.  
26  
27  
SELIQ/B15  
If SELIQ = HIGH, data is latched into I-channel on the rising/falling edge (programmable) of the  
DATACLK.  
Dual-port mode:  
Q-channel MSB input.  
Alternate DATACLK Input/Output or B-Port Bit 14 Input.  
Single-port mode:  
See the DATACLK Modes section for details.  
Dual-port mode:  
DATACLK/B14  
Q-channel bit 14 input.  
If unused connect to GND.  
B-Port Data Bits 13–0.  
Dual-port mode:  
28, 29, 31–36,  
38–43  
B13–B0  
Q-channel inputs. Data is latched on the rising/falling (programmable) edge of the DATACLK.  
Single-port mode:  
Connect to GND.  
45  
46  
47  
48  
49  
50  
SDO  
SDI  
Serial-Port Data Output  
Serial-Port Data Input  
SCLK  
CS  
Serial-Port Clock Input. Data on SDI is latched on the rising edge of SCLK.  
Serial-Port Interface Select. Drive CS low to enable serial-port interface.  
Reset Input. Set RESET low during power-up.  
RESET  
REFIO  
Reference Input/Output. Bypass to ground with a 1µF capacitor as close to the pin as possible.  
Current-Set Resistor Return Path. For a 20mA full-scale output current, connect a 2kresistor  
between FSADJ and DACREF. Internally connected to GND. Do not use as an external ground  
connection.  
51  
52  
DACREF  
FSADJ  
Full-Scale Adjust Input. This input sets the full-scale output current of the DAC. For a 20mA full-  
scale output current, connect a 2kresistor between FSADJ and DACREF.  
10 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Low Analog Power Supply. Accepts a 1.71V to 1.89V supply range. Bypass each pin to GND with  
a 0.1µF capacitor as close to the pin as possible.  
53, 67  
AV  
DD1.8  
54, 56, 59, 61,  
64, 66  
GND  
Ground  
Analog Power Supply. Accepts a 3.135V to 3.465V supply range. Bypass each pin to GND with a  
0.1µF capacitor as close to the pin as possible.  
55, 60, 65  
AV  
DD3.3  
57  
58  
62  
63  
OUTQN  
OUTQP  
OUTIN  
OUTIP  
Inverting Differential DAC Current Output for Q-Channel  
Noninverting Differential DAC Current Output for Q-Channel  
Inverting Differential DAC Current Output for I-Channel  
Noninverting Differential DAC Current Output for I-Channel  
Clock Power Supply. Accepts a 3.135V to 3.465V supply range. Bypass to ground with a 0.1µF  
capacitor as close to the pin as possible.  
68  
AV  
CLK  
EP  
Exposed Pad. Must be connected to GND through a low-impedance path.  
Functional Diagram  
MODULATOR  
DIGITAL  
OFFSET  
ADJUST  
DIGITAL  
GAIN  
ADJUST  
OUTIP  
OUTIN  
IDAC  
A0–A15  
f
DAC  
DATACLK  
I
Q
f
IM  
I
/2, f /4  
IM  
DIGITAL  
OFFSET  
ADJUST  
MAX5895  
Q
B0–B15  
SELIQ  
DIGITAL  
GAIN  
ADJUST  
OUTQP  
OUTQN  
QDAC  
f
DAC  
/2  
/2  
/2  
/2  
CONTROL REGISTERS  
SERIAL INTERFACE  
f
CLK  
CLOCK BUFFERS  
AND DIVIDERS  
REFERENCE  
RESET  
SDO  
SDI  
CS  
SCLK  
DACREF FSADJ  
REFIO  
CLKN  
CLKP  
______________________________________________________________________________________ 11  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
The power-down modes can be used to turn off each  
Detailed Description  
DAC’s output current or the entire digital section.  
The MAX5895 dual, 500Msps, high-speed, 16-bit, cur-  
Programming both DACs into power-down simultane-  
rent-output DAC provides superior performance in  
ously will automatically power down the digital interpo-  
communication systems requiring low-distortion ana-  
lator filters. Note the SPI section is always active.  
log-signal reconstruction. The MAX5895 combines two  
The analog and digital sections of the MAX5895 have  
separate power-supply inputs (AV , AV  
DAC cores with 8x/4x/2x/1x programmable digital inter-  
polation filters, a digital quadrature modulator, an SPI-  
compatible serial interface for programming the device,  
and an on-chip 1.20V reference. The full-scale output  
current range is programmable from 2mA to 20mA to  
optimize power dissipation and gain control.  
,
DD1.8  
DD3.3  
AV  
, DV  
, and DV  
), which minimize noise  
coupling from one supply to the other. AV  
CLK  
DD3.3  
DD1.8  
and  
DD1.8  
MAX895  
DV  
operate from a typical 1.8V supply, and all  
DD1.8  
other supply inputs operate from a typical 3.3V supply.  
Each channel contains three selectable interpolating fil-  
ters making the MAX5895 capable of 1x, 2x, 4x, or 8x  
interpolation, which allows for low-input and high-out-  
put data rates. When operating in 8x interpolation  
mode, the interpolator increases the DAC conversion  
rate by a factor of eight, providing an eight-fold  
increase in separation between the reconstructed  
waveform spectrum and its first image. The MAX5895  
accepts either two’s complement or offset binary input  
data format and can operate from either a single- or  
dual-port input bus.  
Serial Interface  
The SPI-compatible serial interface programs the  
MAX5895 registers. The serial interface consists of the  
CS, SDI, SCLK, and SDO. Data is shifted into SDI on  
the rising edge of the SCLK when CS is low. When CS  
is high, data presented at SDI is ignored and SDO is in  
high-impedance mode. Note: CS must transition high  
after each read/write operation. SDO is the serial data  
output for reading registers to facilitate easy debug-  
ging during development. SDI and SDO can be con-  
nected together to form a 3-wire serial interface bus or  
remain separate and form a 4-wire SPI bus.  
The MAX5895 includes modulation modes at f /2 and  
IM  
f /4, where f is the data rate at the input of the modula-  
IM  
IM  
The serial interface supports two-byte transfer in a  
communication cycle. The first byte is a control byte  
written to the MAX5895 only. The second byte is a data  
byte and can be written to or read from the MAX5895.  
tor. If 2x interpolation is used, this data rate is 2x the input  
data rate. If 4x or 8x interpolation is used, this data rate is  
4x the input data rate. Table 1 summarizes the modulator  
operating data rates for dual-port mode.  
Table 1. Quadrature Modulator Operating Data Rates (fIM is the Data Rate at the Input of  
the Modulator) for Dual-Port Mode  
MODULATION FREQUENCY  
MODULATION FREQUENCY  
INTERPOLATION RATE  
MODULATION MODE (f  
)
LO  
RELATIVE TO f  
RELATIVE TO f  
DAC  
DATA  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
/2  
/4  
/2  
/4  
/2  
/4  
/2  
/4  
f
f
f
f
f
f
f
f
/2  
/4  
/2  
/4  
/2  
/4  
/4  
/8  
f
f
/2  
/4  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DATA  
1x  
2x  
4x  
8x  
DATA  
f
DATA  
f
/2  
DATA  
2 x f  
DATA  
f
DATA  
2 x f  
DATA  
f
DATA  
12 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
When writing to the MAX5895, data is shifted into SDI;  
data is shifted out of SDO in a read operation. Bits 0 to  
3 of the control byte are the address bits. These bits set  
the address of the register to be written to or read from.  
Bits 4 to 6 of the control byte must always be set to 0.  
Bit 7 is a read/write bit: 0 for write operation and 1 for  
read operation. The most significant bit (MSB) is shifted  
in first in default mode. If the serial port is set to LSB-  
first mode, both the control byte and data byte are shifted  
LSB in first. Figures 1 and 2 show the SPI serial interface  
operation in the default write and read mode, respectively.  
Figure 3 is a timing diagram for the SPI serial interface.  
CS  
SCLK  
0
0
0
0
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
HIGH IMPEDANCE  
SDO  
Figure 1. SPI Serial Interface Write Cycle, MSB-First Mode  
CS  
READ CYCLE N - 1  
READ CYCLE N  
READ CYCLE N + 1  
SCLK  
SDI  
ADDRESS  
DATA  
ADDRESS  
DATA  
ADDRESS  
DATA  
1 0 0 0 3 2 1 0  
1 0 0 0 3 2 1 0  
1 0 0 0 3 2 1 0  
IGNORED  
IGNORED  
IGNORED  
HIGH  
IMPEDANCE  
HIGH  
HIGH  
SDO  
DATA N - 2  
DATA N - 1  
DATA N  
IMPEDANCE  
IMPEDANCE  
Figure 2. SPI Serial Interface Read Cycle, MSB-First Mode  
______________________________________________________________________________________ 13  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
t
SS  
CS  
MAX895  
SCLK  
SDI  
t
t
SDH  
SDS  
t
SDV  
SDO  
Figure 3. SPI Serial-Interface Timing Diagram  
14 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
of the registers. The following are descriptions of each  
register.  
Programming Registers  
Programming its registers with the SPI serial interface  
sets the MAX5895 operation modes. Table 2 shows all  
Table 2. MAX5895 Programmable Registers  
ADD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Software Reset  
0 = Normal  
1 = Reset all  
registers  
Interpolator  
Power-Down  
0 = Normal  
IDAC Power-  
Down  
0 = Normal  
QDAC Power-  
Down  
0 = Normal  
0 = MSB first  
1 = LSB first  
00h Unused  
Unused  
1 = Power-down 1 = Power-down 1 = Power-down  
Interpolation Rate  
(Bit 7, Bit 6)  
00 = No interpolation  
01 = 2x interpolation  
10 = 4x interpolation  
11 = 8x interpolation  
Third  
Interpolation  
Filter  
Configuration  
0 = Lowpass  
1 = Highpass  
Modulation Mode  
(Bit 4, Bit 3)  
00 = Modulation off  
01 = f /2  
IM  
10 = f /4  
IM  
11 = f /4  
IM  
Mixer Modulation Modulation  
Mode  
Sign  
01h  
02h  
Unused  
0 = Complex  
1 = Real  
0 = e-jω  
1 = e+jω  
0 = Input data  
latched on  
rising clock  
edge  
1 = Input data  
latched on falling  
clock edge  
0 = Two’s  
complement  
input data  
1 = Offset  
binary input  
data  
0 = Single  
port (A),  
interleaved  
I/Q  
1 = Dual port on DATA CLK/B14  
I/Q input  
0 = Clock output  
on DATACLK  
1 = Clock output  
0 = Data clock  
input enabled  
1 = Data clock  
output enabled  
Data  
Synchronizer  
0 = Enabled  
1 = Disabled  
Unused  
03h Unused  
04h 8-Bit IDAC Fine-Gain Adjustment (see the Gain Adjustment section). Bit 7 is MSB and bit 0 is LSB. Default: 00h  
4-Bit IDAC Coarse-Gain Adjustment (see the Gain Adjustment  
section). Bit 3 is MSB and bit 0 is LSB. Default: Fh  
05h Unused  
10-Bit IDAC Offset Adjustment (see the Offset Adjustment section). Bits 7 to 0 of the 06h register are the MSB bits. Bit 1 and bit 0 are the LSB  
bits in 07h register. Default: 000h  
06h  
IDAC IOFFSET  
Direction  
0 = Current on  
OUTIN  
1 = Current on  
OUTIP  
IDAC Offset  
Adjustment  
Bit 1  
(see 06h  
register)  
IDAC Offset  
Adjustment  
Bit 0  
(see 06h  
register)  
07h  
Unused  
08h 8-Bit QDAC Fine-Gain Adjustment (see the Gain Adjustment section). Bit 7 is MSB and bit 0 is LSB. Default: 00h  
4-Bit QDAC Coarse-Gain Adjustment (see the Gain Adjustment  
section). Bit 3 is MSB and bit 0 is LSB. Default: Fh  
09h Unused  
10-Bit QDAC Offset Adjustment (see the Offset Adjustment section). Bits 7 to 0 of the 0Ah register are the MSB bits. Bit 1 and bit 0 are the  
LSB bits in 0Bh register. Default: 000h  
0Ah  
0Bh  
QDAC  
IOFFSET  
QDAC Offset QDAC Offset  
Direction  
0 = Current on  
OUTQN  
1 = Current on  
OUTQP  
Adjustment  
Bit 1  
(see 0Ah  
register)  
Adjustment  
Bit 0  
(see 0Ah  
register)  
Unused  
0Ch Reserved, do not write to these bits.  
0Dh Reserved, do not write to these bits.  
0Eh Reserved, do not write to these bits.  
Conditions in bold are default states after reset.  
______________________________________________________________________________________ 15  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
Address 00h  
to be e+jw, cancelling the lower image when  
used with an external quadrature modulator.  
Bit 6  
Logic 0 (default) causes the serial port to use  
MSB first address/data format. When set to a  
logic 1, the serial port will use LSB first  
address/data format.  
Address 02h  
Bit 7  
Logic 0 (default) configures the data port for  
two’s complement. A logic 1 configures the  
data ports for offset binary.  
Bit 5  
Bit 4  
When set to a logic 1, all registers reset to  
their default state (this bit included).  
Bit 6  
Logic 0 (default) configures the data bus for  
single-port, interleaved I/Q data. I and Q data  
enter through one 16-bit bus. Logic 1 config-  
ures the data bus for dual-port I/Q data. I and  
Q data enter on separate buses.  
Logic 1 stops the clock to the digital interpo-  
lators. DAC outputs hold last value prior to  
interpolator power-down.  
MAX895  
Bit 3  
Bit 2  
IDAC power-down mode. A logic 1 to this bit  
powers down the IDAC.  
Bit 5  
Bit 4  
Logic 0 (default) configures the data clock  
for pin 14. A logic 1 configures the data clock  
for pin 27 (DATACLK/B14).  
QDAC power-down mode. A logic 1 to this bit  
powers down the QDAC.  
Logic 0 (default) sets the internal latches to  
latch the data on the rising edge of DATACLK.  
A logic 1 sets the internal latches to latch the  
data on the falling edge of DATACLK.  
Note: If both bit 2 and bit 3 are 1, the MAX5895 is in  
full-power-down mode, leaving only the serial interface  
active.  
Address 01h  
Bit 3  
Bit 2  
Logic 0 (default) configures the DATACLK  
pin (pin 14 or pin 27) to be an input. A logic 1  
configures the DATACLK pin to be an output.  
Bits 7, 6 Configure the interpolation filters according  
to the following table:  
00  
01  
10  
11  
1x (no interpolation)  
Logic 0 (default) enables the data synchro-  
nizer circuitry. A logic 1 disables the data  
synchronizer circuitry.  
2x  
4x  
Address 03h  
Bits 7–0 Unused.  
Address 04h  
Bits 7–0 These 8 bits define the binary number for  
fine-gain adjustment of the IDAC full-scale  
current (see the Gain Adjustment section). Bit  
7 is the MSB. Default is all zeros.  
8x (default)  
Bit 5  
Logic 0 configures FIR3 as a lowpass digital  
filter (default). A logic 1 configures FIR3 as a  
highpass digital filter.  
Bits 4, 3 Configure the modulation frequency accord-  
ing to the following table:  
00  
01  
10  
11  
No modulation  
Address 05h  
f
IM  
f
IM  
f
IM  
/2 modulation  
Bits 3–0 These four bits define the binary number for  
the coarse-gain adjustment of the IDAC full-  
scale current (see the Gain Adjustment sec-  
tion). Bit 3 is the MSB. Default is all ones.  
/4 modulation (default)  
/4 modulation  
where f is the data rate at the input of the  
IM  
modulator.  
Address 06h, Bits 7 to 0; Address 07h, Bit 1 and Bit 0  
Bit 2  
Bit 1  
Configures the modulation mode for either  
real or complex (image reject) modulation.  
Logic 1 sets the modulator to the real mode  
(default). Complex modulation is only avail-  
These 10 bits represent a binary number that  
defines the magnitude of the offset added to  
the IDAC output (see the Offset Adjustment  
section). Default is all zeros.  
able for f /4 modulation.  
IM  
Quadrature modulator sign inversion. With I-  
channel data leading Q-channel data by 90°,  
logic 0 sets the complex modulation to be  
e-jw (default), cancelling the upper image  
when used with an external quadrature mod-  
ulator. A logic 1 sets the complex modulation  
16 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Address 07h  
Bit 7  
tively. FINE is the register content of register 04h and  
08h for the I- and Q-channel, respectively. The range of  
coarse is from 0 to 15, with 15 being the default. The  
range for FINE is from 0 to 255 with 0 being the default.  
Given this, the gain can be adjusted in steps of approx-  
imately 0.01dB.  
Logic 0 (default) adds the 10 bits offset cur-  
rent to OUTIN. A logic 1 adds the 10 bits off-  
set current to OUTIP.  
Address 08h  
Bits 7–0 These eight bits define the binary number for  
fine-gain adjustment of the QDAC full-scale  
current (see the Gain Adjustment section). Bit  
7 is the MSB. Default is all zeros.  
Single-Port/Dual-Port Data Input Modes  
The MAX5895 is capable of capturing data in single-  
port and dual-port modes (selected through bit 6,  
address 02h). In single-port mode, the data for both  
channels is input through the A port (A15–A0).  
The channel for the input data is determined through  
the state of the SELIQ/B15 (pin 26) bit. When SELIQ is  
set to logic-high, the input data is presented to the  
I-channel, when set to logic-low, the input data is  
presented to the Q-channel. The unused B-port inputs  
(DATACLK/B14, B13–B0) should be grounded when  
running in single-port mode.  
Address 09h  
Bits 3–0 These four bits define the binary number for  
the coarse-gain adjustment of the QDAC full-  
scale current (see the Gain Adjustment sec-  
tion). Bit 3 is the MSB. Default is all ones.  
Address 0Ah, Bits 7 to 0; Address 0Bh, Bit 1 and Bit 0  
These 10 bits represent a binary number that  
defines the magnitude of the offset added to  
the QDAC output (see the Offset Adjustment  
section). Default is all zeros.  
Dual-port mode, as the name implies, requires that  
each channel receives its data from a separate data  
bus. SELIQ/B15 and DATACLK/B14 revert to data bit  
inputs for the Q-channel in dual-port mode.  
Address 0Bh  
Bit 7  
Logic 0 (default) adds the 10 bits offset to  
OUTQN. A logic 1 adds the 10 bits offset to  
OUTQP.  
The MAX5895 control registers can be programmed to  
allow either signed or unsigned binary format (bit 7,  
address 02h) data in either single-port or dual-port  
mode. Table 3 shows the corresponding DAC output  
levels when using signed or unsigned data modes.  
Offset Adjustment  
Offset adjustment is achieved by adding a digital code  
to the DAC inputs. The code OFFSET (see equation  
below), as stored in the relevant control registers, has a  
range from 0 to 1023 and a sign bit. The applied DAC  
offset is 4 times the code stored in the register, provid-  
ing an offset adjustment range of 4092 LSB codes.  
The resolution is 4 LSB.  
Table 3. DAC Output Code Table  
DIGITAL INPUT CODE  
OFFSET  
BINARY  
(UNSIGNED)  
TWO'S  
COMPLEMENT  
(SIGNED)  
OUT_P  
OUT_N  
0000 0000 0000  
1000 0000 0000  
4 x OFFSET  
0
I
OUTFS  
I
=
x I  
OUTFS  
OFFSET  
16  
0111 1111 1111 1111 0000 0000 0000 0000  
1111 1111 1111 0111 1111 1111  
I
/2  
I
/2  
OUTFS  
OUTFS  
0
2
I
OUTFS  
Gain Trim  
Gain trimming is done by varying the full-scale current  
according to the following formula:  
Data Synchronization Modes  
Data synchronization circuitry is provided to allow oper-  
ation with an input data clock. The data clock must be  
frequency locked to the DAC clock (f  
), but can  
DAC  
⎠ ⎝  
256  
have arbitrary phase with respect to the DAC clock.  
The synchronization circuitry allows for phase jitter on  
the input data clock of up to 1 data clock cycles.  
Synchronization is initially established when the reset  
pin is asynchronously deasserted and the input data  
clock has been running for at least 4 clock cycles.  
Subsequently, the MAX5895 monitors the phase rela-  
3 ×I  
3 ×I  
REF  
32  
COARSE +1  
FINE  
1024  
24  
REF  
I
=
⎟⎥ ⎜  
OUTFS  
4
16  
where I  
is the reference current (see the Internal  
REF  
Reference section). COARSE is the register content of  
registers 05h and 09h for the I- and Q-channel, respec-  
______________________________________________________________________________________ 17  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
tionship and detects if the phase drifts more than  
1
Table 4. Clock Frequency Ratios in  
data clock cycle. If this occurs, the synchronizer auto-  
matically reestablishes synchronization. However, dur-  
ing the resynchronization phase, up to 8 data words  
may be lost or repeated.  
Various Modes  
INPUT  
MODE  
INTERPOLATION  
RATE  
f
:f  
f
:f  
DATA CLK  
DAC CLK  
Bit 2 of register 02h disables or enables (default) the  
automatic data clock phase detection. Disabling the  
data synchronization circuitry requires the data clock  
and the DAC clock phase to be locked.  
1x  
2x  
4x  
8x  
1x  
2x  
4x  
8x  
1:1  
1:1  
1:2  
1:4  
1:1  
1:2  
1:4  
1:8  
1:2  
1:1  
1:1  
1:1  
1:1  
1:1  
1:1  
1:1  
Single  
Port  
MAX895  
DATACLK Modes  
The MAX5895 has a main DATACLK available at  
pin 14. An alternate DATACLK is available at pin 27  
(DATACLK/B14) when configured in single-port data  
input mode (bit 5, address 02h). The DATACLK can be  
configured to accept an input clock signal for latching  
the input data, or to source a clock signal that can drive  
up to 10pF load while latching the input data (bit 3,  
address 02h). If DATACLK is configured as an output, it  
Dual Port  
is frequency divided from the CLKP/CLKN input,  
depending on the operating mode, see Table 4.  
CLKP–CLKN  
t
CLK  
DATACLK  
t
D
t
DS  
t
DH  
A0–A15/B0–B15  
Figure 4. Data Input Timing Diagram  
18 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
The MAX5895 can be configured to latch the input  
data on either the rising edge or falling edge of the  
DATACLK signal (bit 4, address 02h). Figure 4 shows  
the timing requirements between the DATACLK signal  
and the input data bus with latching on the rising edge.  
Interpolating Filter  
The MAX5895 features three cascaded FIR half-band  
filters. The interpolating filters are enabled or disabled  
in combinations to support 1x (no interpolation), 2x, 4x,  
or 8x interpolation. Bits 7 and 6 of register 01h set the  
interpolation rate (see Table 2). The last interpolation fil-  
0
0
-20  
-20  
PASSBAND DETAIL  
PASSBAND DETAIL  
-40  
0
-40  
0
-0.0002  
-0.0002  
-60  
-60  
-0.0004  
-0.0004  
0
0.1  
0.2  
0.3  
0.4  
0.4  
0
0.1  
0.2  
0.3  
-80  
-80  
-100  
-100  
-120  
-120  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
- NORMALIZED TO INPUT DATA RATE  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
- NORMALIZED TO INPUT DATA RATE  
f
f
OUT  
OUT  
Figure 5. Interpolation Filter Frequency Response, 2x  
Interpolation Mode  
Figure 6. Interpolation Filter Frequency Response, 4x  
Interpolation Mode  
0
0
-20  
-20  
PASSBAND DETAIL  
PASSBAND DETAIL  
-40  
0
-40  
0
-0.0002  
-0.0002  
-60  
-60  
-0.0004  
-0.0004  
0
0.1  
0.2  
0.3  
0.4  
3.6  
3.8  
4.0  
4.2  
4.4  
-80  
-80  
-100  
-100  
-120  
-120  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
f
- NORMALIZED TO INPUT DATA RATE  
f
- NORMALIZED TO INPUT DATA RATE  
OUT  
OUT  
Figure 7. Interpolation Filter Frequency Response, 8x  
Interpolation Mode (FIR3 Lowpass Mode)  
Figure 8. Interpolation Filter Frequency Response, 8x  
Interpolation Mode (FIR3 Highpass Mode)  
______________________________________________________________________________________ 19  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
ter is located after the modulator. In the 8x interpolation  
mode, the last filter (FIR3) can be configured as low-  
pass or highpass (bit 5, address 01h) to select the  
lower or upper sideband from the modulation output.  
The frequency responses of these three filters are plot-  
ted in Figures 5–8.  
DAC image. The original spectral images, appearing at  
around multiples of the input data rate, are attenuated  
by the internal digital filters. This feature provides three  
benefits:  
1) Image separation reduces complexity of analog  
reconstruction filters.  
The programmable interpolation filters multiply the  
MAX5895 input data rate by a factor of 2x, 4x, or 8x to  
separate the reconstructed waveform spectrum and the  
2) Lower input data rates eliminate board-level high-  
speed data transmission.  
MAX895  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
f
f
f
2f  
2f  
2f  
2f  
3f  
3f  
3f  
3f  
4f  
4f  
4f  
4f  
5f  
5f  
5f  
5f  
6f  
6f  
6f  
6f  
7f  
7f  
7f  
7f  
8f  
8f  
8f  
8f  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
IMAGE  
2x INTERPOLATION  
4x INTERPOLATION  
8x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
INPUT  
IMAGE  
FILTER  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
RESPONSE  
f
f
2f  
2f  
3f  
S
4f  
4f  
5f  
5f  
6f  
6f  
7f  
S
8f  
8f  
S
S
S
S
S
S
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
3f  
S
7f  
S
S
S
S
S
S
S
Figure 9. Spectral Representation of Interpolating Filter Responses (Output Frequencies are Relative to the Data Input Frequency, f )  
S
20 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
3) Sin(x)/x rolloff is reduced over the effective bandwidth.  
in the second Nyquist zone between f /2 and f . The first  
S S  
interpolating filter removes this image. In fact, all of the  
images at odd numbers of f are filtered. At the output of  
Figure 9 illustrates a practical example of the benefits  
when using the MAX5895 in 2x, 4x, and 8x interpolation  
modes with the third filter configured as a lowpass filter.  
With no interpolation filter, the first image signal appears  
S
the first filter, the images are at 2f , 4f , etc. This signal is  
S
S
then passed to the second interpolating filter, which is  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
S
f
S
f
S
f
S
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
4f  
4f  
4f  
S
S
S
S
SIGNAL  
SIGNAL  
SIGNAL  
2x INTERPOLATION  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
FILTER  
RESPONSE  
IMAGE  
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
SIGNAL  
LOWER  
SIDEBAND  
UPPER  
SIDEBAND  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
S
2f  
S
3f  
S
4f  
S
FOR COMPLEX MODULATION THE MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
Figure 10. Spectral Representation of 4x Interpolation Filter with f /4 Modulation (Output Frequencies are Relative to the Data Input  
IM  
Frequency, f )  
S
______________________________________________________________________________________ 21  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
f
f
f
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
4f  
4f  
4f  
5f  
S
5f  
S
5f  
S
5f  
S
6f  
S
6f  
S
6f  
S
6f  
S
7f  
S
7f  
S
7f  
S
7f  
S
8f  
S
8f  
S
8f  
S
8f  
S
S
S
S
S
S
MAX895  
IMAGE  
2x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
S
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
S
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
S
SIGNAL  
LOWER  
UPPER  
SIDEBAND  
IMAGE  
SIDEBAND  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
2f  
3f  
4f  
5f  
6f  
7f  
7f  
8f  
8f  
S
S
S
S
S
S
S
S
FOR COMPLEX MODULATION THE MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
FILTER RESPONSE  
SIGNAL  
INPUT  
IMAGE  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
f
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
S
S
S
8x INTERPOLATION  
SIGNAL  
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
f
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
7f  
S
8f  
S
S
Figure 11. Spectral Representation of 8x Interpolation Filter with f /4 Modulation and Lowpass Mode Enabled (Output Frequencies  
IM  
are Relative to the Data Input Frequency, f )  
S
22 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
f
f
f
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
S
4f  
S
4f  
S
4f  
S
5f  
S
5f  
S
5f  
S
5f  
S
6f  
S
6f  
S
6f  
S
6f  
S
7f  
S
7f  
S
7f  
S
7f  
S
8f  
S
8f  
S
8f  
S
8f  
S
S
S
S
S
IMAGE  
2x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
SIGNAL  
LOWER  
UPPER  
SIDEBAND  
IMAGE  
SIDEBAND  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
2f  
3f  
4f  
5f  
6f  
7f  
7f  
8f  
8f  
S
S
S
S
S
S
S
S
FOR COMPLEX MODULATION THE MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
FILTER  
RESPONSE  
SIGNAL  
INPUT  
IMAGE  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
f
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
S
S
S
8x INTERPOLATION  
SIGNAL  
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
f
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
7f  
S
8f  
S
S
Figure 12. Spectral Representation of 8x Interpolation Filter with f /4 Modulation and Highpass Mode Enabled (Output Frequencies  
IM  
are Relative to the Data Input Frequency, f )  
S
______________________________________________________________________________________ 23  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
similar to the first filter and removes the images at 2f , 6f ,  
When f /2 is chosen as the LO frequency, the input  
IM  
S
S
10f , etc. Finally, the third filter removes images at 4f ,  
signal is multiplied by [-1, 1] on both channels. This pro-  
S
S
12f , 20f , etc. Figures 10, 11, and 12 similarly illustrate  
duces images around f /2. The complex image-reject  
IM  
modulation mode is not available for this LO frequency.  
S
S
the spectral responses when using the interpolating filters  
combined with the digital modulator.  
The outputs of the modulator can be expressed as:  
Digital Modulator  
The MAX5895 features digital modulation at frequen-  
I t = A t × cos ωt B t × sin ωt  
( )  
( )  
(
)
( )  
( )  
cies of f /2 and f /4, where f is the data rate at the  
IM  
IM  
IM  
MAX895  
input to the modulator. f equals f  
in 1x, 2x, and 4x  
Q t = A t × sin ωt + B t × cos ωt  
( ) ( ) ( ) ( )  
IM  
DAC  
(
)
interpolation modes. In 8x interpolation mode, f  
IM  
equals f  
/2. The output rate of the modulator is  
in complex modulation, e+jwt  
DAC  
always the same as the input data rate to the modula-  
tor, f  
.
IM  
I t = A t × cos ωt + B t × sin ωt  
( ) ( ) ( ) ( )  
In complex modulation mode, data from the second  
interpolation filter is frequency mixed with the on-chip  
in-phase and quadrature (I/Q) local oscillator (LO).  
Complex modulation provides the benefit of image  
sideband rejection when combined with an external  
quadrature modulator commonly found in wireless  
communication systems.  
(
(
)
)
Q t = A t × sin ωt + B t × cos ωt  
( ) ( ) ( ) ( )  
in complex modulation, e-jwt  
where ω = 2 x π x f  
.
LO  
For real modulation, The outputs of the modulator can  
be expressed as:  
In the f = f /4 mode, real or complex modulation can  
LO  
IM  
be used. The modulator multiplies successive input data  
I t = A t × cos ωt  
( )  
( )  
( )  
samples by the sequence [1, 0, -1, 0] for a cos(ωt). The  
modulator modulates the input signal up to f /4, creat-  
IM  
Q t = A t × cos ωt  
( ) ( )  
(
)
ing upper and lower images around f /4. The quadra-  
IM  
ture LO sin(ωt) is realized by delaying the cos(ωt)  
sequence by one clock cycle. Using complex modula-  
tion, complex IF is generated. The complex IF combined  
with an external quadrature modulator provides image  
rejection. The sign of the LO can be changed to allow  
the user to select whether the upper or the lower image  
should be rejected (bit 1 of register 01h).  
If more than one MAX5895 is used, their LO phases can  
be synchronized by simultaneously releasing RESET.  
This sets the MAX5895 to its predefined initial phase.  
Device Reset  
The MAX5895 can be reset by holding the RESET pin  
low for 10ns. This will program the control registers to  
I-CHANNEL  
INPUT DATA  
I-CHANNEL  
INPUT DATA  
I-CHANNEL  
OUTPUT DATA  
I-CHANNEL  
OUTPUT DATA  
cos(ωt)  
cos(ωt)  
sin(ωt)  
sin(ωt)  
TO  
FIR3  
TO  
FIR3  
sin(ωt)  
sin(ωt)  
Q-CHANNEL  
Q-CHANNEL  
OUTPUT DATA  
OUTPUT DATA  
Q-CHANNEL  
INPUT DATA  
Q-CHANNEL  
INPUT DATA  
cos(ωt)  
cos(ωt)  
(a)  
(b)  
Figure 13. (a) Modulator in Complex Modulation Mode; (b) Modulator in Real Modulation Mode  
24 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Data Clock  
The MAX5895 features synchronizers that allow for  
arbitrary phase alignment between DATACLK and  
CLKP/CLKN. The DATACLK causes internal switching  
in the MAX5895 and the phase between DATACLK  
(input mode) to CLKP/CLKN will influence the images  
at DATACLK. Optimum image rejection is achieved  
when DATACLK transitions are aligned with the falling  
edge of CLKP. Figure 14 shows the image level near  
DATACLK as a function of the DATACLK (input mode)  
to CLKP/CLKN phase at 500Msps, 4x interpolation for a  
10MHz, -6dBFS output signal.  
their default values in Table 2. During power-on, RESET  
must be held low until all power supplies have stabi-  
lized. Alternatively, programming bit 5 of address 00h  
to a logic-high also resets the MAX5895 after power-up.  
Power-Down Mode  
The MAX5895 features three power-saving modes.  
Each DAC can be individually powered down through  
bits 2 and 3 of address 00h. The interpolation filters can  
also be powered down through bit 4 of address 00h,  
preserving the output level of each DAC (the DACs  
remain powered). Powering down both DACs will auto-  
matically put the MAX5895 into full power-down, includ-  
ing the interpolation filters.  
Clock Interface  
The MAX5895 features a flexible differential clock input  
Applications Information  
(CLKP, CLKN) with a separate supply (AV  
) to  
CLK  
achieve optimum jitter performance. It uses an ultra-low  
jitter clock to achieve the required noise density. Clock  
Frequency Planning  
System designers need to take the DAC into account  
during frequency planning for high-performance appli-  
cations. Proper frequency planning can ensure that  
optimal system performance is achieved. The  
MAX5895 is designed to deliver excellent dynamic per-  
formance across wide bandwidths, as required for  
communication systems and, in particular, for multicar-  
rier applications. As with all DACs, some combinations  
of output frequency and update rate produce better  
performance than others.  
jitter must be less than 0.5ps  
to meet the specified  
RMS  
noise density. For that reason, the CLKP/CLKN input  
source must be designed carefully. The differential  
clock (CLKN and CLKP) input can be driven from a sin-  
gle-ended or a differential clock source. Differential  
clock drive is required to achieve the best dynamic  
performance from the DAC. For single-ended opera-  
tion, drive CLKP with a low noise source and bypass  
CLKN to GND with a 0.1µF capacitor.  
The CLKP and CLKN pins are internally biased to  
Harmonics are often folded down into the band of inter-  
est. Specifically, if the DAC outputs a frequency close  
to f /N, the Mth harmonic of the output signal will be  
S
AV  
/2. This allows the user to AC-couple clock  
CLK  
aliased down to:  
NM  
N
f = f M x f  
OUT  
= f  
S
S
f /4 IMAGES vs. CLKP/CLKN to DATACLK DELAY  
S
f
= 125MWps, 4x INTERPOLATION  
DATA  
-50  
-60  
Thus, if N (M + 1), the Mth harmonic will be close to  
the output frequency. SFDR performance of a current-  
steering DAC is often dominated by third-order har-  
monic distortion. If this is a concern, placing the output  
f /4 - f  
S
OUT  
-70  
signal at a different frequency other than f /4 should be  
S
considered.  
-80  
Common to interpolating DACs are images near the  
divided clocks. In a DAC configured for 4x interpolation  
-90  
this applies to images around f /4 and f /2. In a DAC  
S
S
f /4 + f  
S
OUT  
configured for 8x interpolation this applies to images  
around f /8, f /4, and f /2. Most of these images are  
-100  
-110  
f
A
= 10MHz  
= -6dBFS  
OUT  
OUT  
S
S
S
not part of the in-band (0 to f  
/2) SFDR specifica-  
DATA  
tion, though they are a consideration for out-of-band  
(f /2 - f /2) SFDR and may depend on the rela-  
0
2.0  
4.0  
6.0  
8.0  
DATA  
DAC  
CLKP/CLKN DELAY (ns)  
tionship of the DATACLK to DAC update clock (see the  
Data Clock section). When specifying the output recon-  
struction filter for other than baseband signals, these  
images should not be ignored.  
Figure 14. Effect of CLKP/CLKN to DATACLK Phase on f /4  
S
Images  
______________________________________________________________________________________ 25  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
sources directly to the device without external resistors  
to define the DC level. The input resistance of CLKP  
and CLKN is 5k.  
A convenient way to apply a differential signal is with a  
balun transformer as shown in Figure 15. Alternatively,  
these inputs may be driven from a CMOS-compatible  
clock source, however it is recommended to use  
sine-wave or AC-coupled differential ECL/PECL drive for  
best dynamic performance.  
Output Interface (OUTI, OUTQ)  
The MAX5895 outputs complementary currents (OUTIP,  
OUTIN) and (OUTQP, OUTQN), that can be utilized in a  
differential configuration. Load resistors convert these  
two output currents into a differential output voltage.  
100nF  
CLKP  
MAX895  
MINI-CIRCUITS  
ADTL1-12  
24.9Ω  
SINGLE-ENDED  
IINPUT  
MAX5895  
The differential output between OUTIP (OUTQP) and  
OUTIN (OUTQN) can be converted to a single-ended  
output using a transformer or a differential amplifier.  
Figure 16 shows a typical transformer-based applica-  
tion circuit for generation of IF output signals. In this  
configuration, the MAX5895 operates in differential  
mode, which reduces even-order harmonics, and  
increases the available output power. Pay close atten-  
tion to the transformer core saturation characteristics  
when selecting a transformer. Transformer core satura-  
tion can introduce strong second harmonic distortion,  
1:1 RATIO  
24.9Ω  
100nF  
CLKN  
Figure 15. Single-Ended-to-Differential Clock Conversion Using  
a Balun Transformer  
50Ω  
V
IOUT  
, SINGLE-ENDED  
1:1  
OUTIP  
IDAC  
100Ω  
16  
1:1  
OUTIN  
50Ω  
MAX5895  
50Ω  
V
QOUT  
, SINGLE-ENDED  
1:1  
OUTQP  
QDAC  
100Ω  
16  
1:1  
OUTQN  
50Ω  
Figure 16. Differential-to-Single-Ended Conversion Using Wideband RF Transformers  
26 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
especially at low output frequencies and high signal  
amplitudes. It is recommended to connect the trans-  
former center tap to ground.  
25Ω  
If a transformer is not used, the outputs must have a  
resistive termination to ground. Figure 17 shows the  
OUTIP  
MAX5895 output configured for differential DC-coupled  
mode. The DC-coupled configuration can be used to  
eliminate waveform distortion due to highpass filter  
effects. Applications include communication systems  
employing analog quadrature upconverters and requir-  
ing a high-speed DAC for baseband I/Q synthesis.  
IDAC  
50Ω  
25Ω  
16  
OUTIN  
If a single-ended DC-coupled unipolar output is desir-  
able, OUTIP (OUTQP) should be selected as the out-  
put, and connect OUTIN (OUTQN) to ground. Using the  
MAX5895 output single-ended is not recommended  
because it introduces additional noise and distortion.  
MAX5895  
25Ω  
50Ω  
The distortion performance of the DAC also depends  
on the load impedance. The MAX5895 is optimized for  
a 50double termination. It can be used with a trans-  
former output as shown in Figure 16 or just one 25Ω  
resistor from each output to ground and one 50resis-  
tor between the outputs (Figure 17). Higher output ter-  
mination resistors may be used, as long as each output  
voltage does not exceed +1V with respect to GND, but  
at the cost of degraded distortion performance and  
increased output noise voltage.  
OUTQP  
OUTQN  
QDAC  
16  
25Ω  
Figure 17. The DC-Coupled Differential Output Configuration  
______________________________________________________________________________________ 27  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
The MAX5895’s reference circuit (Figure 19) employs a  
control amplifier, designed to regulate the full-scale  
Reference Input/Output  
The MAX5895 supports operation with the on-chip 1.2V  
bandgap reference or an external reference voltage  
source. REFIO serves as the input for an external, low-  
impedance reference source, and as the output if the  
DAC is operating with the internal reference.  
current I  
for the differential current outputs of the  
OUT  
DAC. The output current can be calculated as:  
I
= 32 x I - 1LSB  
OUTFS  
REFIO  
I
= 32 x I  
- (I  
/216)  
OUT  
OUTFS  
REFIO  
For stable operation with the internal reference, REFIO  
should be decoupled to GND with a 1µF capacitor.  
REFIO must be buffered with an external amplifier, if heavy  
loading is required, due to its 10koutput resistance.  
Alternatively, apply a temperature-stable external refer-  
ence to REFIO (Figure 18). The internal reference is over-  
driven by the external reference. For improved accuracy  
and drift performance, choose a fixed output voltage ref-  
erence such as the MAX6520 bandgap reference.  
where I  
REFIO SET  
is the reference output current (I  
=
REFIO  
REFIO  
V
/R  
) and I  
is the full-scale output current  
OUT  
MAX895  
of the DAC. Located between FSADJ and DACREF,  
is the reference resistor, which determines the  
R
SET  
amplifier’s output current for the DAC. Use Table 5 for a  
matrix of different I  
and R  
selections.  
OUTFS  
SET  
1.2V  
REFERENCE  
1.2V  
REFERENCE  
MAX5895  
MAX5895  
10k  
10kΩ  
EXTERNAL  
REFIO  
REFIO  
1.25V  
REFERENCE  
1µF  
1µF  
FSADJ  
FSADJ  
CURRENT-  
SOURCE  
ARRAY DAC  
CURRENT-  
SOURCE  
ARRAY DAC  
I
REF  
I
REF  
R
SET  
R
SET  
DACREF  
DACREF  
Figure 18. Typical External Reference Circuit  
Figure 19. MAX5895 Internal Reference Architecture  
Table 5. IOUTFS and RSET Selection Matrix Based on a Typical 1.20V Reference Voltage  
FULL-SCALE  
CURRENT  
REFERENCE  
CURRENT  
R
()  
OUTPUT VOLTAGE  
* (mV  
SET  
I
(mA)  
I
(µA)  
CALCULATED  
19.2k  
1% EIA STD  
19.1k  
V
)
P-P  
OUTFS  
REF  
IOUTP/N  
2
62.50  
100  
5
156.26  
312.50  
468.75  
625.00  
7.68k  
7.5k  
250  
500  
10  
15  
20  
3.84k  
3.83k  
2.56k  
2.55k  
750  
1.92k  
1.91k  
1000  
*Terminated into a 50load.  
28 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Power Supplies, Bypassing,  
Static Performance Parameter  
Decoupling, and Layout  
Definitions  
Integral Nonlinearity (INL)  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5895 performance. Unwanted digital  
crosstalk can couple through the input, reference,  
power-supply, and ground connections, which can  
affect dynamic specifications like signal-to-noise ratio  
or spurious-free dynamic range. In addition, electro-  
magnetic interference (EMI) can either couple into or  
be generated by the MAX5895. Observe the grounding  
and power-supply decoupling guidelines for high-  
speed, high-frequency applications. Follow the power-  
supply and filter configuration guidelines to achieve  
optimum dynamic performance.  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from either a best straight-line fit  
(closest approximation to the actual transfer curve) or a  
line drawn between the end points of the transfer func-  
tion, once offset and gain errors have been nullified.  
For a DAC, the deviations are measured at every indi-  
vidual step.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step height and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function.  
Using a multilayer PCB with separate ground and  
power-supply planes, run high-speed signals on lines  
directly above the ground plane. Since the MAX5895  
has separate analog and digital sections, the PCB  
should include separate analog and digital ground sec-  
tions with only one point connecting the three planes at  
the exposed paddle under the MAX5895. Run digital  
signals above the digital ground plane and  
analog/clock signals above the analog/clock ground  
plane. Keep digital signals as far away from sensitive  
analog inputs, reference lines, and clock inputs as  
practical. Use a symmetric design of clock input and  
the analog output lines to minimize 2nd-order harmonic  
distortion components, thus optimizing the dynamic  
performance of the DAC. Keep digital signal paths  
short and run lengths matched to avoid propagation  
delay and data skew mismatches.  
Offset Error  
The offset error is the difference between the ideal and  
the actual offset current. For a DAC, the offset point is  
the average value at the output for the two midscale  
digital input codes with respect to the full-scale of the  
DAC. This error affects all codes by the same amount.  
Gain Error  
A gain error is the difference between the ideal and the  
actual full-scale output voltage on the transfer curve,  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step.  
Dynamic Performance  
Parameter Definitions  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles its new  
output value to within the specified accuracy.  
The MAX5895 requires five separate power-supply  
inputs for the analog (AV  
and AV  
), digital  
DD3.3  
) circuitry.  
CLK  
DD1.8  
), and clock (AV  
(DV  
and DV  
DD1.8  
DD3.3  
Decouple each voltage supply pin with a separate  
0.1µF capacitor as close to the device as possible and  
with the shortest possible connection to the appropriate  
ground plane. Minimize the analog and digital load  
capacitances for optimized operation. Decouple all  
power-supply voltages at the point they enter the PCB  
with tantalum or electrolytic capacitors. Ferrite beads  
with additional decoupling capacitors forming a pi-net-  
work could also improve performance.  
Noise Spectral Density  
The DAC output noise is the sum of the quantization  
noise and thermal noise. Noise spectral density is the  
noise power in 1Hz bandwidth, specified in dBFS/Hz.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog output (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
maximum SNR can be derived from the DAC’s resolu-  
tion (N bits):  
The exposed pad (EP) MUST be soldered to the  
ground. Use multiple vias, an array of at least 4 x 4  
vias, directly under the EP to provide a low thermal and  
electrical impedance path for the IC.  
SNR = 6.02 x N + 1.76  
dB  
dB  
dB  
______________________________________________________________________________________ 29  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
However, noise sources such as thermal noise, refer-  
ence noise, clock jitter, etc. affect the ideal reading.  
Therefore, SNR is computed by taking the ratio of the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the fundamental, the first four  
harmonics, and the DC offset.  
Two-/Four-Tone Intermodulation  
Distortion (IMD)  
The two-tone IMD is the ratio expressed in dBc (or  
dBFS) of the worst 3rd-order (or higher) IMD products  
to either output tone.  
Adjacent Channel Leakage  
Power Ratio (ACLR)  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the carrier  
frequency (maximum signal components) to the RMS  
value of their next largest distortion component. SFDR  
is usually measured in dBc and with respect to the car-  
rier frequency amplitude or in dBFS with respect to the  
DAC’s full-scale range. Depending on its test condition,  
SFDR is observed within a predefined window or  
to Nyquist.  
Commonly used in combination with WCDMA (wide-  
band code-division multiple-access), ACLR reflects the  
leakage power ratio in dB between the measured pow-  
ers within a channel relative to its adjacent channel.  
ACLR provides a quantifiable method of determining  
out-of-band spectral energy and its influence on an  
adjacent channel when a bandwidth-limited RF signal  
passes through a nonlinear device.  
MAX895  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
CLKP  
CLKN  
N.C.  
1
2
3
4
5
6
7
8
9
EXPOSED PAD  
51 DACREF  
50 REFIO  
49 RESET  
48 CS  
N.C.  
N.C.  
47 SCLK  
46 SDI  
D
VDD1.8  
A15  
45 SDO  
A14  
44 DV  
43 B0  
42 B1  
41 B2  
40 B3  
39 B4  
38 B5  
37 DV  
36 B6  
35 B7  
DD3.3  
A13  
MAX5895  
A12 10  
A11 11  
A10 12  
D
VDD3.3 13  
DATACLK 14  
A9 15  
DD1.8  
A8 16  
A7 17  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0122  
68 QFN-EP  
G6800-4  
30 ______________________________________________________________________________________  
16-Bit, 500Msps Interpolating and Modulating  
Dual DAC with CMOS Inputs  
MAX895  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
Initial release  
4/07  
10/08  
Add note to setup and hold specifications.  
5, 6  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY