MAX5898EGK [MAXIM]

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68;
MAX5898EGK
型号: MAX5898EGK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68

文件: 总32页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3756; Rev 1; 7/07  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
General Description  
Features  
71dB ACLR at f  
= 61.44MHz (Four-Carrier  
The MAX5898 programmable interpolating, modulating,  
500Msps, dual digital-to-analog converter (DAC) offers  
superior dynamic performance and is optimized for high-  
performance wideband, single- and multicarrier transmit  
applications. The device integrates a selectable 2x/4x/8x  
interpolating filter, a digital quadrature modulator, and  
dual 16-bit, high-speed DACs on a single integrated cir-  
cuit. At 30MHz output frequency and 500Msps update  
rate, the in-band SFDR is 81dBc, while only consuming  
1.2W. The device also delivers 71dB ACLR for four-  
carrier WCDMA at a 61.44MHz output frequency.  
OUT  
WCDMA)  
Meets Multicarrier UMTS, cdma2000®, GSM  
Spectral Masks (f = 122MHz)  
OUT  
Noise Spectral Density = -160dBFS/Hz at  
= 16MHz  
90dBc SFDR at Low-IF Frequency (10MHz)  
88dBc SFDR at High-IF Frequency (50MHz)  
f
OUT  
Low Power: 831mW (f  
User Programmable  
= 250MHz)  
CLK  
The selectable interpolating filters allow lower input data  
rates while taking advantage of the high DAC update  
rates. These linear-phase interpolation filters ease recon-  
struction filter requirements and enhance the passband  
dynamic performance. Each channel includes offset and  
gain programmability, allowing the user to calibrate out  
local oscillator (LO) feedthrough and sideband suppres-  
sion errors generated by analog quadrature modulators.  
Selectable 2x, 4x, or 8x Interpolating Filters  
< 0.01dB Passband Ripple  
> 95dB Stopband Rejection  
Selectable Real or Complex Modulator Operation  
Selectable Modulator LO Frequency: OFF, f / 2,  
IM  
or f / 4  
IM  
Selectable Output Filter: Lowpass or Highpass  
Per Channel Gain and Offset Adjustment  
EV Kit Available (Order the MAX5898EVKIT)  
Ordering Information  
PKG  
The MAX5898 features a f / 4 digital image-reject  
IM  
modulator. This modulator generates a quadrature-mod-  
ulated IF signal that can be presented to an analog I/Q  
modulator to complete the upconversion process. A  
second digital modulation mode allows the signal to be  
PART  
TEMP RANGE PIN-PACKAGE  
CODE  
frequency-translated with image pairs at f / 2 or f / 4.  
IM  
IM  
68 QFN-EP*  
(10mm x 10mm)  
MAX5898EGK+D -40°C to +85°C  
MAX5898EGK-D -40°C to +85°C  
G6800-4  
The MAX5898 features a standard LVDS interface for  
low electromagnetic interference (EMI). Interleaved  
data is applied through a single 16-bit bus. A 3.3V  
SPI™ port is provided for mode configuration. The pro-  
grammable modes include the selection of 2x/4x/8x  
68 QFN-EP*  
(10mm x 10mm)  
G6800-4  
+Denotes a lead-free package.  
D = Dry pack.  
*EP = Exposed paddle.  
interpolating filters, f / 2, f / 4 or no digital quadra-  
IM  
IM  
Selector Guide  
ture modulation with image rejection, individual channel  
gain and offset adjustment, and offset binary or two’s-  
complement data interface.  
RESOLUTION DAC UPDATE  
INPUT  
LOGIC  
PART  
(BITS)  
RATE (Msps)  
Compatible versions with CMOS interfaces and 12-, 14-,  
and 16-bit resolutions are also available. Refer to the  
MAX5893 data sheet for 12-bit CMOS, MAX5894 for 14-  
bit CMOS, and the MAX5895 for 16-bit CMOS versions.  
MAX5893  
MAX5894  
MAX5895  
MAX5898  
12  
14  
16  
16  
500  
500  
500  
500  
CMOS  
CMOS  
CMOS  
LVDS  
Applications  
Base Stations: 3G Multicarrier UMTS, CDMA, and GSM  
Broadband Wireless Transmitters  
Simplified Diagram  
Broadband Cable Infrastructure  
OUTI  
DAC  
DATA PORT  
DATACLK  
Instrumentation and Automatic Test Equipment (ATE)  
Analog Quadrature Modulation Architectures  
DAC  
OUTQ  
SPI is a trademark of Motorola, Inc.  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ABSOLUTE MAXIMUM RATINGS  
DV  
AV  
, AV  
, AV  
to GND, DACREF ..................-0.3V to +2.16V  
DOUT, DATACLKP, DATACLKN Continuous Current ..........8mA  
DD1.8  
DD3.3  
DD1.8  
, DV  
to GND, DACREF........-0.3V to +3.9V  
DD3.3  
Continuous Power Dissipation (T = +70°C)  
CLK  
A
DATACLKP, DATACLKN, D0P–D15P,  
D0N–D15N, SELIQP, SELIQN to GND,  
DACREF ..........................................-0.3V to (DV  
CS, RESET, SCLK, DIN, DOUT to  
GND, DACREF ................................-0.3V to (DV  
CLKP, CLKN to GND, DACREF..............-0.3V to (AV  
68-Pin QFN (derate 41.7mW/°C above +70°C)  
(Note 1) ...................................................................3333.3mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
DD1.8  
DD3.3  
CLK  
DD3.3  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
REFIO, FSADJ to GND, DACREF ........-0.3V to (AV  
OUTIP, OUTIN, OUTQP,  
OUTQN to GND, DACREF...............-0.3V to (AV  
+ 0.3V)  
DD3.3  
Note 1: Thermal resistance based on a multilayer board with 4 x 4 via array in exposed paddle area.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK output mode, output is  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50Ω double-terminated, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
16  
1
Bits  
LSB  
LSB  
%FS  
ppm/°C  
%FS  
ppm/°C  
mA  
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
DNL  
INL  
OS  
3
-0.02  
-4  
0.003 +0.02  
0.03  
Offset Drift  
Gain Error  
GE  
(Note 3)  
(Note 3)  
0.06  
110  
+4  
FS  
Gain-Error Drift  
Full-Scale Output Current  
Output Compliance  
I
2
20  
OUTFS  
-0.5  
+1.1  
V
Output Resistance  
R
C
1
5
MΩ  
OUT  
Output Capacitance  
DYNAMIC PERFORMANCE  
Maximum Clock Frequency  
Minimum Clock Frequency  
Maximum DAC Update Rate  
Minimum DAC Update Rate  
Maximum Data Clock Frequency  
Maximum Input Data Rate  
pF  
OUT  
f
f
500  
500  
MHz  
MHz  
CLK  
10  
10  
CLK  
f
f
f
= f  
= f  
or f  
or f  
= f  
= f  
/ 2  
/ 2  
Msps  
Msps  
MHz  
DAC  
DAC  
DAC  
CLK  
DAC  
DAC  
CLK  
f
DAC  
CLK  
CLK  
f
Interleaved data  
Per channel  
250  
125  
DATACLK  
f
MWps  
DATA  
No interpolation  
2x interpolation  
4x interpolation  
-156  
-157  
-157  
f
f
= 125Mwps,  
DATA  
= 16MHz, f  
OUT  
OFFSET  
= 10MHz, -12dBFS  
dBFS/  
Hz  
Noise Spectral Density  
f
f
= 125Mwps,  
DATA  
= 16MHz, f  
4x interpolation  
-154  
OUT  
OFFSET  
= 10MHz, 0dBFS  
2
_______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK output mode, output is  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50Ω double-terminated, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
90  
MAX  
UNITS  
f
f
f
f
f
f
f
f
f
= 10MHz  
= 30MHz  
= 50MHz  
= 10MHz  
= 30MHz  
= 50MHz  
= 10MHz  
= 30MHz  
= 50MHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
= 125Mwps,  
interpolation off,  
-0.1dBFS  
DATA  
84  
77  
79  
89  
f
= 125Mwps,  
2x interpolation,  
-0.1dBFS  
DATA  
In-Band SFDR  
SFDR  
83  
dBc  
(DC to f  
/ 2)  
DATA  
92  
89  
f
= 125Mwps,  
4x interpolation,  
-0.1dBFS  
DATA  
83  
89  
No interpolation  
2x interpolation  
4x interpolation  
-96  
-99  
-95  
f
f
= 125Mwps,  
DATA  
= 9MHz, f  
=
OUT1  
OUT2  
10MHz, -6.1dBFS  
2x interpolation,  
f
/ 4 complex  
-81  
-71  
-94  
-71  
IM  
f
f
f
= 125Mwps,  
= 79MHz,  
= 80MHz,  
DATA  
OUT1  
OUT2  
modulation  
4x interpolation,  
-6.1dBFS  
f
IM  
/ 4 complex  
modulation  
Two-Tone IMD  
TTIMD  
dBc  
f
f
= 62.5Mwps,  
= 9MHz, f  
DATA  
OUT1  
=
8x interpolation  
8x interpolation,  
OUT2  
10MHz, -6.1dBFS  
f
f
= 62.5Mwps,  
DATA  
= 69MHz, f  
f
IM  
/ 4 complex  
OUT1  
OUT2  
= 70MHz, -6.1dBFS  
modulation  
8x, highpass  
interpolation,  
f
f
= 62.5Mwps,  
DATA  
= 179MHz, f  
-71  
-89  
OUT1  
OUT2  
f
IM  
/ 4 complex  
= 180MHz, -6.1dBFS  
modulation  
f
= 125Mwps, f  
spaced 1MHz  
OUT  
apart from 32MHz, -12dBFS, 2x  
interpolation  
DATA  
Four-Tone IMD  
FTIMD  
ACLR  
dBc  
4x interpolation  
8x interpolation  
79  
79  
f
f
= 61.44Mwps,  
= baseband  
DATA  
OUT  
2x interpolation,  
f
f
= 122.88Mwps,  
= 61.44MHz  
DATA  
f
IM  
/ 4 complex  
76  
68  
ACLR for WCDMA  
(Note 4)  
OUT  
modulation  
dB  
4x interpolation,  
f
f
= 122.88Mwps,  
= 122.88MHz  
DATA  
f
IM  
/ 4 complex  
OUT  
modulation  
_______________________________________________________________________________________  
3
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK output mode, output is  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50Ω double-terminated, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Propagation Delay  
Output Rise Time  
t
1x interpolation (Note 5)  
10% to 90% (Note 6)  
10% to 90% (Note 6)  
To 0.5% (Note 6)  
2.9  
0.75  
1
ns  
ns  
PD  
t
RISE  
Output Fall Time  
t
ns  
FALL  
Output Settling Time  
Output Bandwidth  
11  
ns  
-1dB bandwidth (Note 7)  
240  
MHz  
0.4 x  
Passband Width  
Ripple < -0.01dB  
f
DATA  
100  
100  
100  
22  
0.604 x f  
0.604 x f  
0.604 x f  
, 2x interpolation  
, 4x interpolation  
, 8x interpolation  
DATA  
DATA  
DATA  
Stopband Rejection  
dB  
1x interpolation  
2x interpolation  
4x interpolation  
8x interpolation  
70  
Clock  
Cycles  
Data Latency  
146  
311  
DAC INTERCHANNEL MATCHING  
Gain Match  
ΔGain  
ΔGain/°C  
ΔPhase  
f
I
f
I
I
f
= DC - 80MHz, I  
= 20mA  
0.1  
0.02  
0.13  
0.006  
0.04  
-95  
dB  
ppm/°C  
Deg  
OUT  
OUTFS  
Gain-Match Tempco  
Phase Match  
= 20mA  
OUTFS  
= 60MHz, I  
= 20mA  
OUT  
OUTFS  
Phase-Match Tempco  
DC Gain Match  
ΔPhase/°C  
= 20mA  
Deg/°C  
dB  
OUTFS  
OUTFS  
= 20mA (Note 3)  
= 250MHz  
-0.2  
+0.2  
Crosstalk  
= 50MHz, f  
dB  
OUT  
DAC  
REFERENCE  
Reference Input Range  
Reference Output Voltage  
Reference Input Resistance  
Reference Voltage Drift  
0.12  
1.14  
1.32  
1.28  
V
V
V
Internal reference  
1.2  
10  
50  
REFIO  
R
kΩ  
REFIO  
ppm/°C  
CMOS LOGIC INPUTS (SCLK, CS, RESET, DIN)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD3.3  
0.3 x  
V
IL  
DV  
DD3.3  
Input Current  
I
-10  
0.1  
3
+10  
µA  
pF  
IN  
Input Capacitance  
C
IN  
CMOS LOGIC OUTPUT (DOUT)  
0.8 x  
Output High Voltage  
V
I
I
= 200µA  
= 200µA  
V
OH  
LOAD  
DV  
DD3.3  
0.2 x  
Output Low Voltage  
V
V
OL  
SINK  
DV  
DD3.3  
Output Leakage Current  
Tri-state  
1
µA  
4
_______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK output mode, output is  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50Ω double-terminated, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Rise/Fall Time  
C
= 10pF, 20% to 80%  
1.5  
ns  
LOAD  
LVDS LOGIC INPUTS (D15P–D0P, D15N–D0N, SELIQP, SELIQN)  
Differential Input Logic High  
Differential Input Logic Low  
Input Common-Mode Voltage  
Differential Input Resistance  
Input Capacitance  
V
100  
mV  
mV  
V
IH  
V
-100  
IL  
V
1.125  
1.25  
110  
2.5  
1.375  
ICM  
R
Ω
IN  
IN  
C
pF  
LVDS CLOCK INPUT/OUTPUT (DATACLKP, DATACLKN)  
Differential Input Amplitude High  
Differential Input Amplitude Low  
Differential Output Amplitude High  
Differential Output Amplitude Low  
Output Common-Mode Voltage  
V
250  
250  
mV  
mV  
mV  
mV  
V
IH  
V
-250  
-250  
IL  
V
R
R
= 100Ω differential (Note 3)  
= 100Ω differential (Note 3)  
340  
-340  
1.25  
OH  
LOAD  
V
OL  
LOAD  
V
OCM  
R
= 100Ω differential, C  
= 8pF,  
LOAD  
LOAD  
Output Rise/Fall Time  
0.9  
ns  
20% to 80%  
CLOCK INPUTS (CLKP, CLKN) (Note 8)  
Sine-wave input  
> 1.5  
> 0.5  
> 100  
Differential Input Voltage Swing  
Differential Input Slew Rate  
Common-Mode Voltage  
V
V
P-P  
DIFF  
Square-wave input  
V/µs  
V
AV  
/
CLK  
2
V
AC-coupled  
COM  
Differential Input Resistance  
Differential Input Capacitance  
Minimum Clock Duty Cycle  
Maximum Clock Duty Cycle  
R
C
5
5
kΩ  
pF  
%
CLK  
CLK  
45  
55  
%
CLKP/CLKN, DATACLK TIMING (Figure 4) (Note 9)  
CLK to DATACLK Delay  
Data Hold Time  
t
DATACLK output mode  
1.4  
ns  
ns  
ns  
D
t
1.65  
DH  
Data Setup Time  
t
-0.65  
DS  
SERIAL-PORT INTERFACE TIMING (Figure 3) (Note 9)  
SCLK Frequency  
f
10  
MHz  
ns  
SCLK  
CS Setup Time  
t
2.5  
0
SS  
Input Hold Time  
t
ns  
SDH  
Input Setup Time  
t
t
4.5  
6.5  
ns  
SDS  
SDV  
Data Valid Duration  
POWER SUPPLIES  
Digital Supply Voltage  
Digital I/O Supply Voltage  
16.5  
ns  
DV  
DV  
1.71  
3.0  
1.8  
3.3  
1.89  
3.6  
V
V
DD1.8  
DD3.3  
_______________________________________________________________________________________  
5
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, modulator off, 2x interpolation, DATACLK output mode, output is  
DD3.3  
DD1.8  
DD1.8  
CLK  
DD3.3  
50Ω double-terminated, external reference at 1.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
AV  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clock Supply Voltage  
3.135  
3.135  
1.71  
3.3  
3.3  
1.8  
3.465  
3.465  
1.89  
V
CLK  
AV  
AV  
DD3.3  
DD1.8  
Analog Supply Voltage  
Analog Supply Current  
V
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
OUT  
I
111  
27  
130  
32  
250  
12  
4
AVDD3.3  
AVDD1.8  
DVDD1.8  
DVDD3.3  
mA  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
OUT  
I
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
OUT  
Digital Supply Current  
Digital I/O Supply Current  
Clock Supply Current  
Total Power Dissipation  
I
I
229  
9
mA  
mA  
mA  
mW  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
OUT  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
I
2.3  
831  
AVCLK  
OUT  
f
f
= 250MHz, 2x interpolation, 0dBFS,  
= 10MHz  
CLK  
P
TOTAL  
OUT  
AV  
AV  
DV  
DV  
AV  
530  
1
DD3.3  
DD1.8  
DD1.8  
DD3.3  
CLK  
All I/O are static high or  
low, bit 2 to bit 4 of  
address 00h are set high  
Power-Down Current  
26  
350  
2
µA  
AV  
Ratio  
Power-Supply Rejection  
DD3.3  
PSRR  
(Note 10)  
0.125  
%FS/V  
A
Note 2: All specifications are 100% tested at T +25°C. Specifications at T < +25°C are guaranteed by design and characterization.  
A
A
Note 3: Specification is 100% production tested at T +25°C.  
A
Note 4: 3.84MHz bandwidth, single carrier.  
Note 5: Excludes data latency.  
Note 6: Measured single-ended into a 50Ω load.  
Note 7: Excludes sin(x)/x rolloff.  
Note 8: Differential voltage swing defined as V + V  
.
I PI I NI  
V(CLKN)  
V
V
N
P
V(CLKP)  
Note 9: Guaranteed by design and characterization.  
Note 10:Parameter defined as the change in midscale output caused by a 5% variation in the nominal supply voltage.  
6
_______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Typical Operating Characteristics  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, DATACLK output mode, external reference, V  
= +1.25V,  
DD1.8  
DD1.8  
CLK  
DD3.3  
DD3.3  
REFIO  
R
LOAD  
= 50Ω double-terminated, I = 20mA, T = +25°C, unless otherwise noted.)  
OUTFS A  
SFDR vs. OUTPUT FREQUENCY  
= 125Mwps, NO INTERPOLATION  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
0UT-OF-BAND SFDR vs. OUTPUT FREQUENCY  
= 125Mwps, 2x INTERPOLATION  
f
f
= 125Mwps, 2x INTERPOLATION  
f
DATA  
DATA  
DATA  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-0.1dBFS  
-12dBFS  
-0.1dBFS  
-6dBFS  
-6dBFS  
-0.1dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
-0.1dBFS  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
SPURS MEASURED BETWEEN  
0MHz AND 62.5MHz  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
= 125Mwps, 4x INTERPOLATION  
OUT-OF-BAND SFDR vs. OUTPUT FREQUENCY  
f
= 125Mwps, 2x INTERPOLATION  
f
f = 125Mwps, 4x INTERPOLATION  
DATA  
DATA  
DATA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-6dBFS -0.1dBFS  
-0.1dBFS  
-0.1dBFS  
-6dBFS  
-6dBFS  
-12dBFS  
-0.1dBFS  
-12dBFS  
-12dBFS  
UPPER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
SPURS MEASURED BETWEEN  
0MHz AND 62.5MHz  
SPURS MEASURED BETWEEN  
62.5MHz AND 250MHz  
62.5  
72.5  
82.5  
92.5  
102.5  
112.5  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
IN-BAND SFDR vs. OUTPUT FREQUENCY  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
f
= 125Mwps, 4x INTERPOLATION  
f
= 125Mwps, 4x INTERPOLATION  
f
= 125Mwps, NO INTERPOLATION  
DATA  
DATA  
DATA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
1MHz CARRIER SPACING  
-0.1dBFS  
-12dBFS  
-0.1dBFS  
-6dBFS  
-40  
-12dBFS  
-6dBFS  
-60  
-6dBFS  
-12dBFS  
-80  
LOWER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
62.5MHz AND 125MHz  
LOWER SIDEBAND MODULATION  
SPURS MEASURED BETWEEN  
125MHz AND 187.5MHz  
-100  
-120  
-9dBFS  
70  
80  
90  
100  
110  
120  
70  
80  
90  
100  
110  
120  
10  
15  
20  
25  
30  
35  
40  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
CENTER FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Typical Operating Characteristics (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, DATACLK output mode, external reference, V  
= +1.25V,  
DD1.8  
DD1.8  
CLK  
DD3.3  
DD3.3  
REFIO  
R
= 50Ω double-terminated, I = 20mA, T = +25°C, unless otherwise noted.)  
OUTFS A  
LOAD  
CHANNEL-TO-CHANNEL  
GAIN MISMATCH vs. TEMPERATURE  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
= 125Mwps, 2x INTERPOLATION  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
f
f
= 125Mwps, 4x INTERPOLATION  
f
= 125Mwps, 2x INTERPOLATION  
DATA  
DATA  
DATA  
0
-20  
0
-20  
0.100  
0.075  
0.050  
0.025  
0
1MHz CARRIER SPACING  
COMPLEX MODULATION FOR  
OUTPUT FREQUENCIES  
GREATER THAN 50MHz  
1MHz CARRIER SPACING  
COMPLEX MODULATION FOR  
OUTPUT FREQUENCIES  
GREATER THAN 50MHz  
f
A
= 22.7MHz  
= -6dBFS  
OUT  
OUT  
-40  
-40  
-6dBFS  
-6dBFS  
-60  
-60  
-12dBFS  
-12dBFS  
-80  
-80  
-12dBFS  
135  
-100  
-120  
-100  
-120  
-9dBFS  
-6dBFS  
-9dBFS  
-6dBFS  
25  
10  
40  
55  
70  
85  
100  
10  
35  
60  
85  
110  
160  
-40  
-15  
10  
35  
60  
85  
CENTER FREQUENCY (MHz)  
CENTER FREQUENCY (MHz)  
TEMPERATURE (°C)  
EIGHT-TONE POWER RATIO PLOT  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
f
= 125Mwps, 2x INTERPOLATION  
DATA  
-20  
-30  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.0  
3.0  
-40  
2.0  
-50  
1.0  
-60  
-70  
0
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-80  
-90  
-100  
-110  
-120  
-0.5  
-1.0  
16,384  
32,768  
49,152  
16,384  
32,768  
49,152  
f
= 35.7MHz, 1MHz TONE SPACING  
0
65,536  
0
65,536  
CENTER  
SPAN = 12.5MHz, A  
THROUGH A  
= -18dBFS  
OUT1  
OUT8  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
SUPPLY CURRENT vs. DAC UPDATE RATE  
SUPPLY CURRENT vs. DAC UPDATE RATE  
SUPPLY CURRENT vs. DAC UPDATE RATE  
2x INTERPOLATION, f  
= 5MHz  
4x INTERPOLATION, f  
= 5MHz  
8x INTERPOLATION, f = 5MHz  
OUT  
OUT  
OUT  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.8V TOTAL  
1.8V TOTAL  
1.8V TOTAL  
3.3V TOTAL  
3.3V TOTAL  
3.3V TOTAL  
0
0
0
100  
150  
200  
250  
300  
100  
200  
300  
(MHz)  
400  
500  
100  
200  
300  
(MHz)  
400  
500  
f
(MHz)  
f
f
DAC  
DAC  
DAC  
8
_______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Typical Operating Characteristics (continued)  
(DV  
= AV  
= 1.8V, AV  
= AV  
= DV  
= 3.3V, DATACLK output mode, external reference, V  
= +1.25V,  
DD1.8  
DD1.8  
CLK  
DD3.3  
DD3.3  
REFIO  
R
= 50Ω double-terminated, I = 20mA, T = +25°C, unless otherwise noted.)  
OUTFS A  
LOAD  
NOISE DENSITY vs. DAC UPDATE RATE  
= 16MHz, A = -12dBFS, 10MHz OFFSET  
WCDMA ACLR vs. OUTPUT FREQUENCY  
WCDMA ACLR vs. OUTPUT FREQUENCY  
f
f
= 122.88Mwps, 4x INTERPOLATION  
f
= 76.8Mwps, 4x INTERPOLATION  
OUT  
OUT  
DATA  
DATA  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
ONE-CARRIER  
ALTERNATE CHANNEL  
ONE-CARRIER  
ALTERNATE CHANNEL  
ONE-CARRIER  
ADJACENT CHANNEL  
ONE-CARRIER  
ADJACENT CHANNEL  
4x INTERPOLATION  
8x INTERPOLATION  
FOUR-CARRIER  
ALTERNATE CHANNEL  
FOUR-CARRIER  
ALTERNATE CHANNEL  
FOUR-CARRIER  
ADJACENT CHANNEL  
FOUR-CARRIER  
ADJACENT CHANNEL  
2x INTERPOLATION  
100  
200  
300  
(MHz)  
400  
500  
0
30.72  
61.44  
92.16 122.88 153.60  
0
15.36 30.72 46.08 61.44 76.80 92.16 107.50  
(MHz)  
f
f
(MHz)  
f
CENTER  
DAC  
CENTER  
WCDMA ACLR SPECTRAL PLOT  
= 61.44Mwps, 8x INTERPOLATION  
FOUR-CARRIER WCDMA ACLR SPECTRAL PLOT  
= 61.44Mwps, 8x INTERPOLATION  
WCDMA ACLR SPECTRAL PLOT  
f
f
f
= 122.88Mwps, 4x INTERPOLATION  
DATA  
DATA  
DATA  
-20  
-30  
-20  
-20  
-30  
-30  
-40  
-40  
-40  
-50  
-50  
-50  
-60  
-60  
-60  
-70  
-70  
-70  
-80  
-80  
-80  
-90  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-100  
-110  
-120  
f
= 61.44MHz  
f
= 61.44MHz  
f
= 122.88MHz  
CENTER  
CENTER  
CENTER  
SPAN = 25.5MHz  
SPAN = 40.6MHz  
SPAN = 25.5MHz  
FOUR-CARRIER WCDMA ACLR SPECTRAL PLOT  
= 122.88Mwps, 4x INTERPOLATION  
f
DATA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
f
= 122.88MHz  
CENTER  
SPAN = 40.6MHz  
_______________________________________________________________________________________  
9
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Pin Description  
PIN  
1
NAME  
CLKP  
FUNCTION  
Noninverting Differential Clock Input. Internally biased to AV  
/ 2.  
CLK  
/ 2.  
2
CLKN  
Inverting Differential Clock Input. Internally biased to AV  
Internally Connected. Do not connect.  
CLK  
3
N.C.  
4
DATACLKP  
DATACLKN  
LVDS Data Clock Input/Output. External 100Ω termination to DATACLKN required.  
5
Complementary LVDS Data Clock Input/Output. External 100Ω termination to DATACLKP required.  
Digital Power Supply. Accepts a 1.71V to 1.89V supply range. Bypass each pin to ground with a  
0.1µF capacitor as close to the pin as possible.  
6, 21, 30, 37  
DV  
DD1.8  
Complementary LVDS Channel Select Input. Set SELIQN low and SELIQP high to direct data to  
the channel. Set SELIQP low and SELIQN high to direct data to the channel. Internal 110Ω  
termination to SELIQP.  
7
SELIQN  
SELIQP  
LVDS Channel Select Input. Set SELIQN low and SELIQP high to direct data to the channel. Set  
SELIQP low and SELIQN high to direct data to the channel. Internal 110Ω termination to SELIQN.  
8
9
D15N  
D15P  
D14N  
D14P  
D13N  
D13P  
D12N  
D12P  
D11N  
D11P  
D10N  
D10P  
D9N  
Complementary LVDS Data Bit 15 (MSB). Internal 110Ω termination to D15P.  
LVDS Data Bit 15 (MSB). Internal 110Ω termination to D15N.  
Complementary LVDS Data Bit 14. Internal 110Ω termination to D14P.  
LVDS Data Bit 14. Internal 110Ω termination to D14N.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
31  
32  
33  
34  
Complementary LVDS Data Bit 13. Internal 110Ω termination to D13P.  
LVDS Data Bit 13. Internal 110Ω termination to D13N.  
Complementary LVDS Data Bit 12. Internal 110Ω termination to D12P.  
LVDS Data Bit 12. Internal 110Ω termination to D12N.  
Complementary LVDS Data Bit 11. Internal 110Ω termination to D11P.  
LVDS Data Bit 11. Internal 110Ω termination to D11N.  
Complementary LVDS Data Bit 10. Internal 110Ω termination to D10P.  
LVDS Data Bit 10. Internal 110Ω termination to D10N.  
Complementary LVDS Data Bit 9. Internal 110Ω termination to D9P.  
LVDS Data Bit 9. Internal 110Ω termination to D9N.  
D9P  
D8N  
Complementary LVDS Data Bit 8. Internal 110Ω termination to D8P.  
LVDS Data Bit 8. Internal 110Ω termination to D8N.  
D8P  
D7N  
Complementary LVDS Data Bit 7. Internal 110Ω termination to D7P.  
LVDS Data Bit 7. Internal 110Ω termination to D7N.  
D7P  
D6N  
Complementary LVDS Data Bit 6. Internal 110Ω termination to D6P.  
LVDS Data Bit 6. Internal 110Ω termination to D6N.  
D6P  
D5N  
Complementary LVDS Data Bit 5. Internal 110Ω termination to D5P.  
LVDS Data Bit 5. Internal 110Ω termination to D5N.  
D5P  
D4N  
Complementary LVDS Data Bit 4. Internal 110Ω termination to D4P.  
LVDS Data Bit 4. Internal 110Ω termination to D4N.  
D4P  
10 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Pin Description (continued)  
PIN  
35  
36  
38  
39  
40  
41  
42  
43  
NAME  
D3N  
D3P  
D2N  
D2P  
D1N  
D1P  
D0N  
D0P  
FUNCTION  
Complementary LVDS Data Bit 3. Internal 110Ω termination to D3P.  
LVDS Data Bit 3. Internal 110Ω termination to D3N.  
Complementary LVDS Data Bit 2. Internal 110Ω termination to D2P.  
LVDS Data Bit 2. Internal 110Ω termination to D2N.  
Complementary LVDS Data Bit 1. Internal 110Ω termination to D1P.  
LVDS Data Bit 1. Internal 110Ω termination to D1N.  
Complementary LVDS Data Bit 0 (LSB). Internal 110Ω termination to D0P.  
LVDS Data Bit 0 (LSB). Internal 110Ω termination to D0N.  
I/O Power Supply. Accepts a 3.0V to 3.6V supply range. Bypass with a 0.1µF capacitor as close to  
the pin as possible.  
44  
DV  
DD3.3  
45  
46  
47  
48  
49  
50  
DOUT  
DIN  
Serial-Port Data Output  
Serial-Port Data Input  
SCLK  
CS  
Serial-Port Clock Input. Data on DIN is latched on the rising edge of SCLK.  
Serial-Port Interface Select. Drive CS low to enable serial-port interface.  
Reset Input. Hold RESET low during power-up.  
RESET  
REFIO  
Reference Input/Output. Bypass to ground with a 1µF capacitor as close to the pin as possible.  
Current-Set Resistor Return Path. For a 20mA full-scale output current, use a 1.25V external reference  
and connect a 2kΩ resistor between FSADJ and DACREF. Internally connected to GND. DO NOT USE  
AS AN EXTERNAL GROUND CONNECTION.  
51  
DACREF  
FSADJ  
Full-Scale Adjust Input. For a 20mA full-scale output current, use a 1.25V external reference and  
connect a 2kΩ resistor between FSADJ and DACREF.  
52  
Low Analog Power Supply. Accepts a 1.71V to 1.89V supply range. Bypass each pin to GND with  
a 0.1µF capacitor as close to the pin as possible.  
53, 67  
AV  
DD1.8  
54, 56, 59, 61,  
64, 66  
GND  
Ground  
Analog Power Supply. Accepts a 3.135V to 3.465V supply range. Bypass each pin to GND with a  
0.1µF capacitor as close to the pin as possible.  
55, 60, 65  
AV  
DD3.3  
57  
58  
62  
63  
OUTQN  
OUTQP  
OUTIN  
OUTIP  
Inverting Differential DAC Current Output for Q Channel  
Noninverting Differential DAC Current Output for Q Channel  
Inverting Differential DAC Current Output for I Channel  
Noninverting Differential DAC Current Output for I Channel  
Clock Power Supply. Accepts a 3.135V to 3.465V supply range. Bypass to ground with a 0.1µF  
capacitor as close to the pin as possible.  
68  
EP  
AV  
CLK  
GND  
Exposed Paddle. Must be connected to GND through a low-impedance path.  
______________________________________________________________________________________ 11  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Functional Diagram  
MODULATOR  
DIGITAL  
OFFSET  
ADJUST  
DIGITAL  
GAIN  
ADJUST  
OUTIP  
OUTIN  
IDAC  
D0–D15  
f
DAC  
DATACLK  
I
Q
MAX5898  
f
IM  
I
/ 2, f / 4  
IM  
DIGITAL  
OFFSET  
ADJUST  
Q
DIGITAL  
GAIN  
ADJUST  
SELIQ  
OUTQP  
OUTQN  
QDAC  
f
DAC  
/2  
/2  
/2  
/2  
CONTROL REGISTERS  
SERIAL INTERFACE  
f
CLK  
CLOCK BUFFERS  
AND DIVIDERS  
REFERENCE  
RESET  
DOUT  
DIN  
CS  
SCLK  
DACREF FSADJ  
REFIO  
CLKN  
CLKP  
rate by a factor of eight, providing an eight-fold increase  
in separation between the reconstructed waveform spec-  
trum and its first image. The MAX5898 accepts either  
two’s complement or offset binary input data format on a  
single interleaved LVDS input bus.  
Detailed Description  
The MAX5898 dual, 500Msps, high-speed, 16-bit, cur-  
rent-output DAC provides superior performance in com-  
munication systems requiring low-distortion analog-signal  
reconstruction. The MAX5898 combines two DAC cores  
with 8x/4x/2x programmable digital interpolation filters, a  
digital quadrature modulator, an SPI-compatible serial  
interface for programming the device, and an on-chip  
1.2V reference. Individual DAC channel gain and offset  
adjustments are available to compensate for downstream  
signal-path imbalances. The full-scale output current  
range is adjustable from 2mA to 20mA to optimize power  
dissipation and gain control.  
The MAX5898 includes modulation modes at f / 2 and  
IM  
f
IM  
/ 4, where f is the data rate at the input of the mod-  
IM  
ulator. If 2x interpolation is used, this data rate is 2x the  
input data rate. If 4x or 8x interpolation is used, this data  
rate is 4x the input data rate. Table 1 summarizes the  
modulator operating data rates.  
The power-down modes can be used to turn off each  
DAC’s output current or the entire digital section.  
Programming both DACs into power-down simultane-  
ously powers down the digital interpolation filters. Note  
that the SPI section is always active.  
Each channel contains three selectable interpolating fil-  
ters making the MAX5898 capable of 2x, 4x, 8x, or no  
interpolation, which allows for low input data rates and  
high DAC update rates. When operating in 8x interpola-  
tion mode, the interpolator increases the DAC conversion  
The analog and digital sections of the MAX5898 have  
separate power-supply inputs (AV  
, AV  
,
DD1.8  
DD3.3  
12 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
AV  
, DV  
, and DV ), which minimize noise  
DD1.8  
The serial interface supports two-byte transfer in a  
communication cycle. The first byte is a control byte  
written to the MAX5898 only. The second byte is a data  
byte and can be written to or read from the MAX5898.  
When writing to the MAX5898, data is shifted into DIN;  
data is shifted out of DOUT in a read operation. Bits 0 to  
3 of the control byte are the address bits. These bits set  
the address of the register to be written to or read from.  
Bits 4 to 6 of the control byte must always be set to 0.  
Bit 7 is a read/write bit: 0 for write operation and 1 for  
read operation. The most significant bit (MSB) is shifted  
in first in default mode. If the serial port is set to LSB-first  
mode, both the control byte and data byte are shifted LSB  
first. Figures 1 and 2 show the SPI serial-interface opera-  
tion in the default write and read mode, respectively.  
Figure 3 is a timing diagram for the SPI serial interface.  
CLK  
DD3.3  
coupling from one supply to the other. AV  
and  
DD1.8  
DV  
operate from a typical 1.8V supply, and all  
DD1.8  
other supply inputs operate from a typical 3.3V supply.  
Serial Interface  
The SPI-compatible serial interface programs the  
MAX5898 registers. The serial interface consists of CS,  
DIN, SCLK, and DOUT. Data is shifted into DIN on the  
rising edge of SCLK when CS is low. When CS is high,  
data presented at DIN is ignored and DOUT is in high-  
impedance mode. Note: CS must transition high  
after each read/write operation. DOUT is the serial  
data output for reading registers to facilitate easy  
debugging during development. DIN and DOUT can  
be connected together to form a 3-wire serial interface  
bus or remain separate and form a 4-wire SPI bus.  
Table 1. Quadrature Modulator Operating Data Rates (fIM is the Data Rate at the Input of  
the Modulator)  
MODULATION FREQUENCY  
RELATIVE TO f  
MODULATION FREQUENCY  
RELATIVE TO f  
INTERPOLATION RATE  
MODULATION MODE (f  
)
LO  
DAC  
DATA  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
f
IM  
/ 2  
/ 4  
/ 2  
/ 4  
/ 2  
/ 4  
/ 2  
/ 4  
f
f
f
f
f
f
f
f
/ 2  
/ 4  
/ 2  
/ 4  
/ 2  
/ 4  
/ 4  
/ 8  
f
f
/ 2  
/ 4  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DATA  
DATA  
1x  
2x  
4x  
8x  
f
DATA  
f
/ 2  
DATA  
2 x f  
DATA  
f
DATA  
2 x f  
DATA  
f
DATA  
CS  
SCLK  
0
0
0
0
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIN  
HIGH IMPEDANCE  
DOUT  
Figure 1. SPI Serial-Interface Write Cycle, MSB-First Mode  
______________________________________________________________________________________ 13  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
CS  
READ CYCLE N - 1  
READ CYCLE N  
READ CYCLE N + 1  
SCLK  
DIN  
ADDRESS  
DATA  
ADDRESS  
DATA  
ADDRESS  
DATA  
1 0 0 0 3 2 1 0  
1 0 0 0 3 2 1 0  
1 0 0 0 3 2 1 0  
IGNORED  
IGNORED  
IGNORED  
HIGH  
IMPEDANCE  
HIGH  
HIGH  
DOUT  
DATA N - 2  
DATA N - 1  
DATA N  
IMPEDANCE  
IMPEDANCE  
Figure 2. SPI Serial-Interface Read Cycle, MSB-First Mode  
t
SS  
CS  
SCLK  
DIN  
t
t
SDH  
SDS  
t
SDV  
DOUT  
Figure 3. SPI Serial-Interface Timing Diagram  
14 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
of the registers. The following are descriptions of each  
register.  
Programming Registers  
Programming its registers with the SPI serial interface  
sets the MAX5898 operation modes. Table 2 shows all  
Table 2. MAX5898 Programmable Registers  
ADD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Software Reset  
0 = Normal  
1 = Reset all  
registers  
Interpolator  
Power-Down  
0 = Normal  
IDAC Power-  
Down  
0 = Normal  
QDAC Power-  
Down  
0 = Normal  
0 = MSB first  
1 = LSB first  
00h Unused  
Unused  
1 = Power-down 1 = Power-down 1 = Power-down  
Interpolation Rate  
(Bit 7, Bit 6)  
00 = No interpolation  
01 = 2x interpolation  
10 = 4x interpolation  
11 = 8x interpolation  
Third  
Interpolation  
Filter  
Configuration  
0 = Lowpass  
1 = Highpass  
Modulation Mode  
(Bit 4, Bit 3)  
00 = Modulation off  
01 = f / 2  
IM  
10 = f / 4  
IM  
11 = f / 4  
IM  
Mixer Modulation Modulation  
Mode  
Sign  
0 = e-jω  
1 = e+jω  
01h  
02h  
Unused  
0 = Complex  
1 = Real  
0 = Input data  
latched on  
rising clock  
edge  
1 = Input data  
latched on falling  
clock edge  
0 = Two’s-  
complement  
input data  
1 = Offset  
binary input  
data  
Data  
Synchronizer  
Disable  
0 = Enabled  
1 = Disabled  
0 = Data clock  
output disabled  
1 = Data clock  
output enabled  
Unused  
Unused  
Unused  
03h Unused  
04h 8-Bit IDAC Fine-Gain Adjustment (see the Gain Adjustment section). Bit 7 is MSB and bit 0 is LSB. Default: 00h  
4-Bit IDAC Coarse-Gain Adjustment (see the Gain Adjustment  
section). Bit 3 is MSB and bit 0 is LSB. Default: Fh  
05h Unused  
10-Bit IDAC Offset Adjustment (see the Offset Adjustment section). Bits 7 to 0 of the 06h register are the MSB bits. Bit 1 and bit 0 are the LSB  
bits in the 07h register. Default: 000h  
06h  
IDAC IOFFSET  
Direction  
0 = Current on  
OUTIN  
1 = Current on  
OUTIP  
IDAC Offset  
Adjustment  
Bit 1  
(see the 06h  
register)  
IDAC Offset  
Adjustment  
Bit 0  
(see the 06h  
register)  
07h  
Unused  
08h 8-Bit QDAC Fine-Gain Adjustment (see the Gain Adjustment section). Bit 7 is MSB and bit 0 is LSB. Default: 00h  
4-Bit QDAC Coarse-Gain Adjustment (see the Gain Adjustment  
section). Bit 3 is MSB and bit 0 is LSB. Default: Fh  
09h Unused  
10-Bit QDAC Offset Adjustment (see the Offset Adjustment section). Bits 7 to 0 of the 0Ah register are the MSB bits. Bit 1 and bit 0 are the  
LSB bits in the 0Bh register. Default: 000h  
0Ah  
0Bh  
QDAC  
IOFFSET  
QDAC Offset QDAC Offset  
Direction  
0 = Current on  
OUTQN  
1 = Current on  
OUTQP  
Adjustment  
Bit 1  
(see the 0Ah  
register)  
Adjustment  
Bit 0  
(see the 0Ah  
register)  
Unused  
0Ch Reserved, do not write to these bits.  
0Dh Reserved, do not write to these bits.  
0Eh Reserved, do not write to these bits.  
Conditions in bold are power-up defaults.  
______________________________________________________________________________________ 15  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Address 00h  
Bit 2  
Configures the modulation mode for either  
real or complex (image reject) modulation.  
Logic 1 sets the modulator to the real mode  
(default). Complex modulation is only avail-  
Bit 6  
Logic 0 (default) causes the serial port to use  
MSB first address/data format. When set to a  
logic 1, the serial port uses LSB first address/  
data format.  
able for f / 4 modulation.  
IM  
Bit 1  
Quadrature modulator sign inversion. With I-  
channel data leading Q-channel data by 90°,  
logic 0 sets the complex modulation to be  
e-jw (default), cancelling the upper image. A  
logic 1 sets the complex modulation to be  
e+jw, cancelling the lower image.  
Bit 5  
Bit 4  
When set to a logic 1 (default = 0), all registers  
reset to their default state (this bit included).  
Logic 1 (default = 0) stops the clock to the  
digital interpolators. DAC outputs hold last  
value prior to interpolator power-down.  
Bit 3  
Bit 2  
IDAC power-down mode. A logic 1 (default = 0)  
to this bit shuts down the output current from  
the IDAC.  
Address 02h  
Bit 7  
Logic 0 (default) configures the data port for  
two’s complement. A logic 1 configures the  
data ports for offset binary.  
QDAC power-down mode. A logic 1 (default = 0)  
to this bit shuts down the output current from  
the QDAC.  
Bit 4  
Logic 0 (default) sets the internal latches to  
latch the data on the rising edge of DATACLK.  
A logic 1 sets the internal latches to latch the  
data on the falling edge of DATACLK.  
Note: If both bit 2 and bit 3 are 1, the MAX5898 is in  
full-power-down mode, leaving only the serial interface  
active.  
Bit 3  
Bit 2  
Logic 0 (default) configures the DATACLK  
pin (pin 4 or pin 5) to be an input. A logic 1  
configures the DATACLK pin to be an output.  
Address 01h  
Bits 7, 6 Configure the interpolation filters according  
to the following:  
Logic 0 (default) enables the data synchro-  
nizer circuitry. A logic 1 disables the data  
synchronizer circuitry.  
00  
01  
10  
11  
1x (no interpolation)  
2x  
Address 04h  
4x  
Bits 7–0 These 8 bits define the binary number for  
fine-gain adjustment of the IDAC full-scale  
current (see the Gain Adjustment section). Bit  
7 is the MSB. Default is all zeros.  
8x (default)  
Bit 5  
Logic 0 configures FIR3 as a lowpass digital  
filter (default). A logic 1 configures FIR3 as a  
highpass digital filter.  
Address 05h  
Bits 4, 3 Configure the modulation frequency accord-  
ing to the following:  
Bits 3–0 These four bits define the binary number for  
the coarse-gain adjustment of the IDAC full-  
scale current (see the Gain Adjustment sec-  
tion). Bit 3 is the MSB. Default is all ones.  
00  
01  
10  
11  
No modulation  
f
IM  
f
IM  
f
IM  
/ 2 modulation  
/ 4 modulation (default)  
/ 4 modulation  
Address 06h, Bits 7–0; Address 07h, Bit 1 and Bit 0  
These 10 bits represent a binary number that  
defines the magnitude of the offset added to  
the IDAC output (see the Offset Adjustment  
section). Default is all zeros.  
where f is the data rate at the input of the  
IM  
modulator.  
16 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Address 07h  
Bit 7  
default. The range for FINE is from 0 to 255 with 0  
being the default. The gain can be adjusted in steps of  
approximately 0.01dB.  
Logic 0 (default) adds the 10 bits offset cur-  
rent to OUTIN. A logic 1 adds the 10 bits off-  
set current to OUTIP.  
Data Input Port  
The MAX5898 captures input data on a single LVDS  
port (D15P/N–D0P/N). The channel for the input data is  
determined through the state of SELIQP/SELIQN. When  
SELIQP is set to logic-high and SELIQN is set to logic-  
low the input data is presented to the I channel. Setting  
SELIQP to logic-low and SELIQN to logic-high presents  
the input data to the Q channel.  
Address 08h  
Bits 7–0 These 8 bits define the binary number for  
fine-gain adjustment of the QDAC full-scale  
current (see the Gain Adjustment section). Bit  
7 is the MSB. Default is all zeros.  
Address 09h  
Bits 3–0 These four bits define the binary number for  
the coarse-gain adjustment of the QDAC full-  
scale current (see the Gain Adjustment sec-  
tion). Bit 3 is the MSB. Default is all ones.  
The MAX5898 control registers can be programmed to  
allow either signed or unsigned binary format (bit 7,  
address 02h) data. Table 3 shows the corresponding DAC  
output levels when using signed or unsigned data modes.  
Address 0Ah, Bits 7–0; Address 0Bh, Bit 1 and Bit 0  
These 10 bits represent a binary number that  
defines the magnitude of the offset added to  
the QDAC output (see the Offset Adjustment  
section). Default is all zeros.  
Table 3. DAC Output Code Table  
DIGITAL INPUT CODE  
OFFSET  
BINARY  
(UNSIGNED)  
TWO'S  
COMPLEMENT  
(SIGNED)  
OUT_P OUT_N  
Address 0Bh  
Bit 7  
Logic 0 (default) adds the 10 bits offset to  
OUTQN. A logic 1 adds the 10 bits offset to  
OUTQP.  
0000 0000 0000 0000 1000 0000 0000 0000  
0111 1111 1111 1111 0000 0000 0000 0000  
1111 1111 1111 1111 0111 1111 1111 1111  
0
I
OUTFS  
I
/
I
/
OUTFS  
2
OUTFS  
2
Offset Adjustment  
I
0
OUTFS  
Offset adjustment is achieved by adding a digital code to  
the DAC inputs. The code OFFSET (see equation below),  
as stored in the relevant control registers, has a range  
from 0 to 1023 and a sign bit. The applied DAC offset  
is four times the code stored in the register, providing an  
offset adjustment range of 4092 LSB codes. The resolu-  
tion is 4 LSB.  
Data Synchronization Modes  
Data synchronization circuitry is provided to allow oper-  
ation with an input data clock. The data clock must be  
frequency locked to the DAC clock (f  
), but can  
DAC  
have arbitrary phase with respect to the DAC clock.  
The synchronization circuitry allows for phase jitter on  
the input data clock of up to 1 data clock cycles.  
Synchronization is initially established when the reset  
pin is asynchronously deasserted and the input data  
clock has been running for at least four clock cycles.  
Subsequently, the MAX5898 monitors the phase rela-  
4 × OFFSET  
I
=
×I  
OUTFS  
OFFSET  
16  
2
Gain Trim  
Gain adjustment is peformed by varying the full-scale  
current according to the following formula:  
tionship and detects if the phase drifts more than  
1
data clock cycle. If this occurs, the synchronizer auto-  
matically re-establishes synchronization. However, dur-  
ing the resynchronization phase, up to 8 data words  
may be lost or repeated.  
⎠ ⎝  
256  
3 ×I  
3 ×I  
REF  
32  
COARSE +1  
FINE  
1024  
24  
REF  
I
=
⎟⎥ ⎜  
OUTFS  
4
16  
where I  
is the reference current (see the Reference  
Bit 2 of register 02h disables or enables (default) the  
automatic data clock phase detection. Disabling the  
data synchronization circuitry requires the data clock  
and the DAC clock phase to be locked.  
REF  
Input/Output section). COARSE is the register content  
of registers 05h and 09h for the I and Q channel,  
respectively. FINE is the register content of register 04h  
and 08h for the I and Q channel, respectively. The  
range of COARSE is from 0 to 15, with 15 being the  
______________________________________________________________________________________ 17  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
DATACLK Modes  
Table 4. Clock Frequency Ratios in  
Various Modes  
The MAX5898 employs a differential LVDS DATACLK  
located at pins 4 and 5. The DATACLK can be config-  
ured as either an input or as an output (bit 3, address  
02h). If DATACLK is configured as an output, it is fre-  
quency-divided from the CLKP/CLKN input, depending  
on the operating mode, see Table 4.  
INTERPOLATION  
f
:f  
f
:f  
DATA CLK  
DAC CLK  
RATE  
1x  
2x  
4x  
8x  
1:1  
1:1  
1:2  
1:4  
1:2  
1:1  
1:1  
1:1  
The MAX5898 can be configured to latch the input  
data on either the rising edge or falling edge of the  
DATACLK signal (bit 4, address 02h). Figure 4 shows  
the timing requirements between the DATACLK signal  
and the input data bus with latching on the rising edge.  
CLKP–CLKN  
DATACLKP–DATACLKN  
t
t
t
DH  
D
DS  
D0–D15  
SELIQ  
Figure 4. Data-Input Timing Diagram  
18 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
ter is located after the modulator. In the 8x interpolation  
mode, the last filter (FIR3) can be configured as low-  
pass or highpass (bit 5, address 01h) to select the  
lower or upper sideband from the modulation output.  
The frequency responses of these three filters are plot-  
ted in Figures 5–8.  
Interpolating Filter  
The MAX5898 features three cascaded FIR half-band  
filters. The interpolating filters are enabled or disabled  
in combinations to support 1x (no interpolation), 2x, 4x,  
or 8x interpolation. Bits 7 and 6 of register 01h set the  
interpolation rate (see Table 2). The last interpolation fil-  
0
0
-20  
-20  
PASSBAND DETAIL  
PASSBAND DETAIL  
-40  
-60  
0
-0.0002  
-0.0004  
-40  
0
-0.0002  
-60  
-0.0004  
0.4  
0.4  
0
0.1  
0.2  
0.3  
0.2  
0.3  
0.1  
0
-80  
-80  
-100  
-100  
-120  
-120  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
- NORMALIZED TO INPUT DATA RATE  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
- NORMALIZED TO INPUT DATA RATE  
f
f
OUT  
OUT  
Figure 6. Interpolation Filter Frequency Response, 4x  
Interpolation Mode  
Figure 5. Interpolation Filter Frequency Response, 2x  
Interpolation Mode  
0
0
-20  
-20  
PASSBAND DETAIL  
PASSBAND DETAIL  
0
-40  
-40  
0
-0.0002  
-0.0002  
-60  
-60  
-0.0004  
0.2  
0.3  
0.4  
-0.0004  
0.1  
0
3.6  
3.8  
4.0  
4.2  
4.4  
-80  
-80  
-100  
-100  
-120  
-120  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
f
- NORMALIZED TO INPUT DATA RATE  
f
- NORMALIZED TO INPUT DATA RATE  
OUT  
OUT  
Figure 8. Interpolation Filter Frequency Response, 8x  
Interpolation Mode (FIR3 Highpass Mode)  
Figure 7. Interpolation Filter Frequency Response, 8x  
Interpolation Mode (FIR3 Lowpass Mode)  
______________________________________________________________________________________ 19  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
The programmable interpolation filters multiply the  
MAX5898 input data rate by a factor of 2x, 4x, or 8x to  
separate the reconstructed waveform spectrum and the  
DAC image. The original spectral images, appearing at  
around multiples of the input data rate, are attenuated  
by the internal digital filters. This feature provides three  
benefits:  
2) Lower input data rates eliminate board-level high-  
speed data transmission.  
3) Sin(x)/x rolloff is reduced over the effective bandwidth.  
Figure 9 illustrates a practical example of the benefits  
when using the MAX5898 in 2x, 4x, and 8x interpolation  
modes with the third filter configured as a lowpass filter.  
With no interpolation filter, the first image signal appears  
1) Image separation reduces complexity of analog  
reconstruction filters.  
in the second Nyquist zone between f / 2 and f . The first  
S
S
interpolating filter removes this image. In fact, all of the  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
f
f
f
2f  
2f  
2f  
2f  
3f  
3f  
3f  
3f  
4f  
4f  
4f  
4f  
5f  
5f  
5f  
5f  
6f  
6f  
6f  
6f  
7f  
7f  
7f  
7f  
8f  
8f  
8f  
8f  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
IMAGE  
2x INTERPOLATION  
4x INTERPOLATION  
8x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
INPUT  
IMAGE  
FILTER  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
RESPONSE  
f
f
2f  
2f  
3f  
S
4f  
4f  
5f  
5f  
6f  
6f  
7f  
S
8f  
8f  
S
S
S
S
S
S
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
3f  
S
7f  
S
S
S
S
S
S
S
Figure 9. Spectral Representation of Interpolating Filter Responses (Output Frequencies are Relative to the Data Input Frequency, f )  
S
20 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
images at odd numbers of f are filtered. At the output of  
10f , etc. Finally, the third filter removes images at 4f ,  
S S  
12f , 20f , etc. Figures 10, 11, and 12 similarly illustrate  
S S  
S
the first filter, the images are at 2f , 4f , etc. This signal is  
S
S
then passed to the second interpolating filter, which is  
similar to the first filter and removes the images at 2f , 6f ,  
the spectral responses when using the interpolating filters  
combined with the digital modulator.  
S
S
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
S
f
S
f
S
f
S
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
S
4f  
S
4f  
S
4f  
S
2x INTERPOLATION  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
FILTER  
RESPONSE  
IMAGE  
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
SIGNAL  
LOWER  
SIDEBAND  
UPPER  
SIDEBAND  
IMAGE  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
S
2f  
S
3f  
S
4f  
S
FOR COMPLEX MODULATION THE MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
Figure 10. Spectral Representation of 4x Interpolation Filter with f / 4 Modulation (Output Frequencies are Relative to the Data Input  
IM  
Frequency, f )  
S
______________________________________________________________________________________ 21  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
S
f
S
f
S
f
S
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
S
4f  
S
4f  
S
4f  
S
5f  
S
5f  
S
5f  
S
5f  
S
6f  
S
6f  
S
6f  
S
6f  
S
7f  
S
7f  
S
7f  
S
7f  
S
8f  
S
8f  
S
8f  
S
8f  
S
IMAGE  
2x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
SIGNAL  
LOWER  
UPPER  
SIDEBAND  
IMAGE  
SIDEBAND  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
2f  
3f  
4f  
5f  
6f  
7f  
7f  
8f  
8f  
S
S
S
S
S
S
S
S
FOR COMPLEX MODULATION THE MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
FILTER RESPONSE  
SIGNAL  
INPUT  
IMAGE  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
f
S
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
S
S
8x INTERPOLATION  
SIGNAL  
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
f
S
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
7f  
S
8f  
S
Figure 11. Spectral Representation of 8x Interpolation Filter with f / 4 Modulation and Lowpass Mode Enabled (Output Frequencies  
IM  
are Relative to the Data Input Frequency, f )  
S
22 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
FILTER  
RESPONSE  
NO INTERPOLATION  
SIGNAL  
SIGNAL  
SIGNAL  
SIGNAL  
IMAGE  
INPUT  
SPECTRUM  
AND FIRST  
FILTER  
RESPONSE  
f
f
f
f
2f  
S
2f  
S
2f  
S
2f  
S
3f  
S
3f  
S
3f  
S
3f  
S
4f  
S
4f  
S
4f  
S
4f  
S
5f  
S
5f  
S
5f  
S
5f  
S
6f  
S
6f  
S
6f  
S
6f  
S
7f  
S
7f  
S
7f  
S
7f  
S
8f  
S
8f  
S
8f  
S
8f  
S
S
S
S
S
IMAGE  
2x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
FIRST  
FILTER  
FILTER  
RESPONSE  
INPUT  
SPECTRUM  
AND  
SECOND  
FILTER  
RESPONSE  
IMAGE  
4x INTERPOLATION  
OUTPUT  
SPECTRUM  
OF THE  
SECOND  
FILTER  
IMAGE  
SIGNAL  
LOWER  
UPPER  
SIDEBAND  
IMAGE  
SIDEBAND  
OUTPUT  
SPECTRUM  
OF THE  
MODULATOR  
f
2f  
3f  
4f  
5f  
5f  
6f  
6f  
7f  
7f  
8f  
8f  
S
S
S
S
S
S
S
S
MODULATION SIGN (BIT 1, ADDRESS 01h) SELECTS UPPER OR LOWER SIDEBAND  
FILTER  
RESPONSE  
SIGNAL  
INPUT  
IMAGE  
SPECTRUM  
AND THIRD  
FILTER  
RESPONSE  
f
2f  
S
3f  
S
4f  
S
S
S
S
S
S
8x INTERPOLATION  
SIGNAL  
OUTPUT  
SPECTRUM  
OF THE  
THIRD  
IMAGE  
FILTER  
f
2f  
S
3f  
S
4f  
S
5f  
S
6f  
S
7f  
S
8f  
S
S
Figure 12. Spectral Representation of 8x Interpolation Filter with f / 4 Modulation and Highpass Mode Enabled (Output Frequencies  
IM  
are Relative to the Data Input Frequency, f )  
S
______________________________________________________________________________________ 23  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
The outputs of the modulator can be expressed as:  
Digital Modulator  
The MAX5898 features digital modulation at frequencies  
of f / 2 and f / 4, where f is the data rate at the  
IM  
IM  
IM  
I
t =I t × cos ωt Q t × sin ωt  
( ) ( ) ( ) ( )  
(
)
input to the modulator. f equals f  
in 1x, 2x, and 4x  
OD  
ID  
ID  
IM  
DAC  
interpolation modes. In 8x interpolation mode, f equals  
IM  
Q
t =I t × sin ωt +Q t × cos ωt  
( ) ( ) ( )  
(
)
(
)
OD  
ID  
ID  
f
/ 2. The output rate of the modulator is always the  
same as the input data rate to the modulator, f  
DAC  
.
IM  
in complex modulation, e+jwt  
In complex modulation mode, data from the second  
interpolation filter is frequency-mixed with the on-chip  
in-phase and quadrature (I/Q) local oscillator (LO).  
Complex modulation provides the benefit of image  
sideband rejection.  
I
t =I t × cos ωt +Q t × sin ωt  
( ) ( ) ( ) ( )  
(
)
OD  
ID  
ID  
Q
t =I t × sin ωt +Q t × cos ωt  
( ) ( ) ( )  
(
)
(
)
OD  
ID  
ID  
In the f  
= f / 4 mode, real or complex modulation  
IM  
LO  
in complex modulation, e-jwt  
can be used. The modulator multiplies successive input  
For real modulation, the outputs of the modulator can  
be expressed as:  
data samples by the sequence [1, 0, -1, 0] for a cos(ωt).  
The modulator modulates the input signal up to f / 4,  
IM  
creating upper and lower images around f / 4. The  
IM  
I
t =I t × cos ωt  
( ) ( )  
(
)
quadrature LO sin(ωt) is realized by delaying the cos(ωt)  
sequence by one clock cycle. Using complex modula-  
tion, complex IF is generated. The complex IF combined  
with an external quadrature modulator provides image  
rejection. The sign of the LO can be changed to allow  
the user to select whether the upper or the lower image  
should be rejected (bit 1 of register 01h).  
OD  
ID  
Q
t = Q t × cos ωt  
( ) ( )  
(
)
OD  
ID  
where ω = 2 x π x f  
.
LO  
If more than one MAX5898 is used, their LO phases  
can be synchronized by simultaneously releasing  
RESET. This sets the MAX5898 to its predefined initial  
phase.  
When f / 2 is chosen as the LO frequency, the input  
IM  
signal is multiplied by [-1, 1] on both channels. This pro-  
duces images around f / 2. The complex image-reject  
IM  
Device Reset  
The MAX5898 can be reset by holding the RESET pin  
low for 10ns. This will program the control registers to  
their default values in Table 2. During power-on, RESET  
must be held low until all power supplies have stabi-  
lized. Alternately, programming bit 5 of address 00h to  
a logic-high also resets the MAX5898.  
modulation mode is not available for this LO frequency.  
I-CHANNEL  
INPUT DATA  
I-CHANNEL  
INPUT DATA  
I-CHANNEL  
OUTPUT DATA  
I-CHANNEL  
OUTPUT DATA  
cos(ωt)  
cos(ωt)  
sin(ωt)  
sin(ωt)  
TO  
TO  
FIR3  
FIR3  
sin(ωt)  
sin(ωt)  
Q-CHANNEL  
Q-CHANNEL  
OUTPUT DATA  
OUTPUT DATA  
Q-CHANNEL  
INPUT DATA  
Q-CHANNEL  
INPUT DATA  
cos(ωt)  
cos(ωt)  
(a)  
(b)  
Figure 13. (a) Modulator in Complex Modulation Mode; (b) Modulator in Real Modulation Mode  
24 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Power-Down Mode  
The MAX5898 features three power-saving modes.  
Each DAC can be individually powered down through  
bits 2 and 3 of address 00h. The interpolation filters can  
also be powered down through bit 4 of address 00h,  
preserving the output level of each DAC (the DACs  
remain powered). Powering down both DACs automati-  
cally puts the MAX5898 into full power-down, including  
the interpolation filters.  
Data Clock  
The MAX5898 features synchronizers that allow for arbi-  
trary phase alignment between DATACLK and  
CLKP/CLKN. The DATACLK causes internal switching in  
the MAX5898 and the phase between DATACLK (input  
mode) to CLKP/CLKN influences the images at DATACLK.  
Figure 14 shows the image level near DATACLK as a  
function of the DATACLK (input mode) to CLKP/CLKN  
phase at 500Msps, 4x interpolation for a 10MHz, -6dBFS  
output signal.  
Applications Information  
Frequency Planning  
System designers need to take the DAC into account  
during frequency-planning for high-performance appli-  
cations. Proper frequency planning can ensure that  
optimal system performance is achieved. The  
MAX5898 is designed to deliver excellent dynamic per-  
formance across wide bandwidths, as required for  
communication systems. As with all DACs, some com-  
binations of output frequency and update rate produce  
better performance than others.  
f / 4 IMAGES vs. CLKP/CLKN to DATACLK DELAY  
S
f
= 125Mwps, 4x INTERPOLATION  
DATA  
-70  
-75  
f
A
= 10MHz  
= -6dBFS  
OUT  
OUT  
f / 4 - f  
S OUT  
-80  
f / 4 + f  
S
OUT  
-85  
Harmonics are often folded down into the band of inter-  
est. Specifically, if the DAC outputs a frequency close  
-90  
f / 4 - f  
S
OUT  
f / 4 + f  
to f / N, the Mth harmonic of the output signal will be  
S
S
OUT  
-95  
aliased down to:  
-100  
NM  
N
f = f M× f  
OUT  
= f  
S
0
2
4
6
8
S
CLKP/CLKN DELAY (s)  
Thus, if N (M + 1), the Mth harmonic will be close to  
the output frequency. SFDR performance of a current-  
steering DAC is often dominated by 3rd-order harmonic  
distortion. If this is a concern, placing the output signal  
Figure 14. Effect of CLKP/CLKN to DATACLK Phase on f / 4  
S
Images  
Clock Interface  
at a frequency other than f / 4 should be considered.  
S
The MAX5898 features a flexible differential clock input  
(CLKP, CLKN) with a separate supply (AV  
) to  
Common to interpolating DACs are images near the  
divided clocks. In a DAC configured for 4x interpolation,  
CLK  
achieve optimum jitter performance. Use an ultra-low  
jitter clock to achieve the required noise density. Clock  
this applies to images around f / 4 and f / 2. In a DAC  
S
S
jitter must be less than 0.5ps  
to meet the specified  
configured for 8x interpolation, this applies to images  
around f / 8, f / 4, and f / 2. Most of these images  
RMS  
noise density. For that reason, the CLKP/CLKN input  
source must be designed carefully. The differential  
clock (CLKN and CLKP) input can be driven from a sin-  
gle-ended or a differential clock source. Differential  
clock drive is required to achieve the best dynamic  
performance from the DAC. For single-ended opera-  
tion, drive CLKP with a low noise source and bypass  
CLKN to GND with a 0.1µF capacitor.  
S
S
S
are not part of the in-band (0 to f  
/ 2) SFDR specifi-  
DATA  
cation, though they are a consideration for out-of-band  
(f / 2 to f / 2) SFDR and may depend on the  
DATA  
DAC  
relationship of the DATACLK to DAC update clock (see  
the Data Clock section). When specifying the output  
reconstruction filter for other than baseband signals,  
these images should not be ignored.  
The CLKP and CLKN pins are internally biased to  
AV  
/ 2. This allows the user to AC-couple clock  
CLK  
______________________________________________________________________________________ 25  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
sources directly to the device without external resistors  
to define the DC level. The input resistance of CLKP  
and CLKN is 5kΩ.  
A convenient way to apply a differential signal is with a  
balun transformer as shown in Figure 15. Alternatively,  
these inputs may be driven from a CMOS-compatible  
clock source, however it is recommended to use sine-  
wave or AC-coupled differential ECL/PECL drive for best  
dynamic performance.  
Output Interface (OUTI, OUTQ)  
The MAX5898 outputs complementary currents (OUTIP,  
OUTIN, OUTQP, and OUTQN) that can be utilized in a  
differential configuration. Load resistors convert these  
two output currents into a differential output voltage.  
The differential output between OUTIP (OUTQP) and  
OUTIN (OUTQN) can be converted to a single-ended  
output using a transformer or a differential amplifier.  
Figure 16 shows a typical transformer-based applica-  
tion circuit for generation of IF output signals. In this  
configuration, the MAX5898 operates in differential  
mode, which reduces even-order harmonics, and  
increases the available output power. Pay close atten-  
tion to the transformer core saturation characteristics  
when selecting a transformer. Transformer core satura-  
tion can introduce strong second harmonic distortion,  
especially at low output frequencies and high signal  
amplitudes. It is recommended to connect the trans-  
former center tap to ground.  
100nF  
CLKP  
MINI-CIRCUITS  
ADTL1-12  
24.9Ω  
SINGLE-ENDED  
IINPUT  
MAX5898  
1:1 RATIO  
24.9Ω  
100nF  
CLKN  
Figure 15. Single-Ended-to-Differential Clock Conversion Using  
a Balun Transformer  
50Ω  
V
, SINGLE-ENDED  
IOUT  
1:1  
OUTIP  
IDAC  
100Ω  
16  
1:1  
OUTIN  
50Ω  
MAX5898  
50Ω  
V
, SINGLE-ENDED  
QOUT  
1:1  
OUTQP  
QDAC  
100Ω  
16  
1:1  
OUTQN  
50Ω  
Figure 16. Differential-to-Single-Ended Conversion Using Wideband RF Transformers  
26 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
If a transformer is not used, the outputs must have a  
resistive termination to ground. Figure 17 shows the  
MAX5898 output configured for differential DC-coupled  
mode. The DC-coupled configuration can be used to  
eliminate waveform distortion due to highpass filter  
effects. Applications include communication systems  
employing analog quadrature upconverters and requir-  
ing a high-speed DAC for baseband I/Q synthesis.  
Reference Input/Output  
The MAX5898 supports operation with the on-chip 1.2V  
bandgap reference or an external reference voltage  
source. REFIO serves as the input for an external, low-  
impedance reference source, and as the output if the  
DAC is operating with the internal reference.  
For stable operation with the internal reference, REFIO  
should be decoupled to GND with a 1µF capacitor.  
If a single-ended DC-coupled unipolar output is desir-  
able, OUTIP (OUTQP) should be selected as the out-  
put, and connect OUTIN (OUTQN) to ground. Using  
the MAX5898 output single-ended is not recommended  
because it introduces additional noise and distortion.  
REFIO must be buffered with an external amplifier,  
if heavy loading is required, due to its 10kΩ output  
resistance.  
Alternatively, apply a temperature-stable external refer-  
ence to REFIO (Figure 18). The internal reference is over-  
driven by the external reference. For improved accuracy  
and drift performance, choose a fixed output voltage ref-  
erence such as the MAX6520 bandgap reference.  
The distortion performance of the DAC also depends  
on the load impedance. The MAX5898 is optimized for  
a 50Ω double termination. It can be used with a trans-  
former output as shown in Figure 16 or just one 25Ω  
resistor from each output to ground and one 50Ω resis-  
tor between the outputs (Figure 17). Higher output ter-  
mination resistors can be used, as long as each output  
voltage does not exceed +1V with respect to GND, but  
at the cost of degraded distortion performance and  
increased output noise voltage.  
The MAX5898’s reference circuit (Figure 19) employs a  
control amplifier, designed to regulate the full-scale  
current I  
for the differential current outputs of the  
OUT  
DAC. The output current can be calculated as:  
I
= 32 x I  
x 65,535 / 65,536  
OUTFS  
REF  
where I  
SET  
is the reference output current (I  
OUTFS  
= V  
/
REF  
) and I  
REF  
REFIO  
R
is the full-scale output current of the  
DAC. Located between FSADJ and DACREF, R  
is the  
SET  
reference resistor, which determines the amplifier’s output  
current for the DAC. See Table 5 for a matrix of different  
25Ω  
OUTIP  
I
and R  
selections.  
OUTFS  
SET  
Power Supplies, Bypassing,  
Decoupling, and Layout  
IDAC  
50Ω  
25Ω  
16  
Grounding and power-supply decoupling strongly influ-  
ence the MAX5898 performance. Unwanted digital  
crosstalk can couple through the input, reference,  
power-supply, and ground connections, which can  
affect dynamic specifications like signal-to-noise ratio  
or spurious-free dynamic range. In addition, electro-  
magnetic interference (EMI) can either couple into or  
be generated by the MAX5898. Observe the grounding  
and power-supply decoupling guidelines for high-  
speed, high-frequency applications. Follow the power-  
supply and filter configuration guidelines to achieve  
optimum dynamic performance.  
OUTIN  
MAX5898  
25Ω  
50Ω  
OUTQP  
OUTQN  
QDAC  
16  
Using a multilayer printed-circuit board (PCB) with sep-  
arate ground and power-supply planes, run high-speed  
signals on lines directly above the ground plane. Since  
the MAX5898 has separate analog and digital sections,  
the PCB should include separate analog and digital  
25Ω  
Figure 17. DC-Coupled Differential Output Configuration  
______________________________________________________________________________________ 27  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
1.2V  
1.2V  
REFERENCE  
REFERENCE  
MAX5898  
MAX5898  
10kΩ  
10kΩ  
EXTERNAL  
1.25V  
REFERENCE  
REFIO  
REFIO  
1μF  
1μF  
FSADJ  
FSADJ  
CURRENT-  
CURRENT-  
SOURCE  
SOURCE  
I
I
REF  
REF  
ARRAY DAC  
ARRAY DAC  
R
SET  
R
SET  
DACREF  
DACREF  
Figure 18. Typical External Reference Circuit  
Figure 19. Internal Reference Architecture  
Table 5. IOUTFS and RSET Selection Matrix Based on a Typical 1.20V Reference Voltage  
FULL-SCALE  
CURRENT  
REFERENCE  
CURRENT  
R
(kΩ)  
SET  
OUTPUT VOLTAGE  
* (mV  
V
)
P-P  
IOUTP/N  
I
(mA)  
I
(µA)  
OUTFS  
REF  
CALCULATED  
1% EIA STD  
19.1  
2
62.50  
19.2  
7.68  
3.84  
2.56  
1.92  
100  
5
156.26  
312.50  
468.75  
625.00  
7.5  
250  
500  
10  
15  
20  
3.83  
2.55  
750  
1.91  
1000  
*Terminated into a 50Ω load.  
ground sections with only one point connecting the  
three planes at the exposed paddle under the  
MAX5898. Run digital signals above the digital ground  
plane and analog/clock signals above the analog/clock  
ground plane. Keep digital signals as far away from  
sensitive analog inputs, reference lines, and clock  
inputs as practical. Use a symmetric design of clock  
input and the analog output lines to minimize 2nd-order  
harmonic distortion components, thus optimizing the  
dynamic performance of the DAC. Keep digital signal  
paths short and run lengths matched to avoid propaga-  
tion delay and data skew mismatches.  
Decouple each voltage supply pin with a separate  
0.1µF capacitor as close to the device as possible and  
with the shortest possible connection to the appropriate  
ground plane. Minimize the analog and digital load  
capacitances for optimized operation. Decouple all  
power-supply voltages at the point they enter the PCB  
with tantalum or electrolytic capacitors. Ferrite beads  
with additional decoupling capacitors forming a pi-net-  
work could also improve performance.  
The exposed paddle MUST be soldered to the ground.  
Use multiple vias, an array of at least 4 x 4 vias, directly  
under the EP to provide a low thermal and electrical  
impedance path for the IC.  
The MAX5898 requires five separate power-supply  
inputs for the analog (AV  
and AV  
), digital  
DD3.3  
) circuitry.  
CLK  
DD1.8  
), and clock (AV  
(DV  
and DV  
DD1.8  
DD3.3  
28 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Signal-to-Noise Ratio (SNR)  
Static Performance Parameter  
For a waveform perfectly reconstructed from digital  
Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog output (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
maximum SNR can be derived from the DAC’s resolu-  
actual transfer function from either a best-straight-line  
tion (N bits):  
fit (closest approximation to the actual transfer curve)  
or a line drawn between the end points of the transfer  
function, once offset and gain errors have been nulli-  
fied. For a DAC, the deviations are measured at every  
individual step.  
SNR = 6.02 x N + 1.76  
dB  
dB  
dB  
However, noise sources such as thermal noise, refer-  
ence noise, clock jitter, etc., affect the ideal reading.  
Therefore, SNR is computed by taking the ratio of the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the fundamental, the first four  
harmonics, and the DC offset.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step height and the ideal value of 1 LSB. A DNL  
error specification greater than -1 LSB guarantees a  
monotonic transfer function.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the carrier  
frequency (maximum signal components) to the RMS  
value of their next largest distortion component. SFDR  
is usually measured in dBc with respect to the carrier  
frequency amplitude or in dBFS with respect to the  
DAC’s full-scale range. Depending on its test condition,  
SFDR is observed within a predefined window or  
to Nyquist.  
Offset Error  
The offset error is the difference between the ideal and  
the actual offset current. For a DAC, the offset point is  
the average value at the output for the two midscale  
digital input codes with respect to the full scale of the  
DAC. This error affects all codes by the same amount.  
Gain Error  
A gain error is the difference between the ideal and the  
actual full-scale output voltage on the transfer curve,  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step.  
Two-/Four-Tone Intermodulation  
Distortion (IMD)  
The two-/four-tone IMD is the ratio expressed in dBc (or  
dBFS) of the worst 3rd-order (or higher) IMD products to  
any output tone.  
Adjacent Channel Leakage  
Power Ratio (ACLR)  
Dynamic Performance  
Parameter Definitions  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles its new  
output value to within the specified accuracy.  
Commonly used in combination with WCDMA, ACLR  
reflects the leakage power ratio in dB between the  
measured powers within a channel relative to its adja-  
cent channel. ACLR provides a quantifiable method of  
determining out-of-band spectral energy and its influ-  
ence on an adjacent channel when a bandwidth-limited  
RF signal passes through a nonlinear device.  
Noise Spectral Density  
The DAC output noise is the sum of the quantization  
noise and thermal noise. Noise spectral density is the  
noise power in a 1Hz bandwidth, specified in dBFS/Hz.  
______________________________________________________________________________________ 29  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
EXPOSED PADDLE  
CLKP  
CLKN  
1
2
3
4
5
6
7
8
9
51  
DACREF  
50 REFIO  
49 RESET  
48 CS  
N.C.  
DATACLKP  
DATACLKN  
47 SCLK  
46 DIN  
D
VDD1.8  
SELIQN  
SELIQP  
D15N  
45 DOUT  
44 DV  
DD3.3  
MAX5898  
43 D0P  
42 D0N  
41 D1P  
40 D1N  
39 D2P  
38 D2N  
D15P 10  
D14N 11  
D14P 12  
D13N  
13  
D13P 14  
D12N 15  
D12P 16  
D11N 17  
37 DV  
DD1.8  
36 D3P  
35 D3N  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
30 ______________________________________________________________________________________  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
______________________________________________________________________________________ 31  
16-Bit, 500Msps, Interpolating and Modulating  
Dual DAC with Interleaved LVDS Inputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
____________________Revision History  
Pages changed at Rev 1: 1, 2, 4, 5, 27, 28, 31  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY