MAX5924DEUB+T [MAXIM]

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10;
MAX5924DEUB+T
型号: MAX5924DEUB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10

信息通信管理 光电二极管
文件: 总22页 (文件大小:1609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
General Description  
Benefits and Features  
Hot Swap 1V to 13.2V with V  
The MAX5924/MAX5925/MAX5926 1V to 13.2V hot-swap  
controllers allow the safe insertion and removal of circuit  
cards into live backplanes. These devices hot swap supplies  
ranging from 1V to 13.2V provided that the device supply  
≥ 2.25V  
CC  
Drive High-Side nMOSFET  
Operation With or Without R  
SENSE  
Temperature-Compensated R  
Sensing  
voltage, V , is at or above 2.25V and the hot-swapped  
DS(ON)  
CC  
supply, V , does not exceed V  
.
S
CC  
Protected During Turn-On into Shorted Load  
Adjustable Circuit-Breaker Threshold  
Programmable Slew-Rate Control  
Programmable Turn-On Voltage  
The MAX5924/MAX5925/MAX5926 hot-swap controllers  
limit the inrush current to the load and provide a circuit-  
breaker function for overcurrent protection. The devices  
operate with or without a sense resistor. When operating  
without a sense resistor, load-probing circuitry ensures a  
short circuit is not present during startup, then gradually  
turns on the external MOSFET. After the load probing  
is complete, on-chip comparators provide overcurrent  
protection by monitoring the voltage drop across the  
external MOSFET on-resistance. In the event of a fault  
condition, the load is disconnected.  
Autoretry or Latched Fault Management  
®
● 10-Pin μMAX or 16-Pin QSOP Packages  
Typical Operating Circuits  
TYPICAL OPERATION WITHOUT R  
SENSE  
BACKPLANE  
REMOVABLE CARD  
N
V
OUT  
1V TO V  
CC  
The devices include many integrated features that reduce  
component count and design time, including configurable  
turn-on voltage, slew rate, and circuit-breaker threshold. An  
on-board charge pump provides the gate drive for a low-  
cost, external nMOSFET.  
V
S
2.25V TO 13.2V  
V
CC  
R
CB  
R
SC  
OUT  
CB  
GATE SENSE  
SC_DET  
V
The MAX5924/MAX5925/MAX5926 are available with  
open-drain PGOOD and/or PGOOD outputs. The  
MAX5925/MAX5926 also feature a circuit breaker  
CC  
MAX5925  
MAX5926  
GND  
GND  
with temperature-compensated R  
sensing. The  
DS(ON)  
MAX5926 features a selectable 0ppm/°C or 3300ppm/°C  
temperature coefficient. The MAX5924 temperature  
coefficient is 0ppm/°C and the MAX5925 temperature  
coefficient is 3300ppm/°C. Autoretry and latched fault-  
management configurations are available (see the  
Selector Guide).  
SEE FIGURE 1 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITHOUT R  
.
SENSE  
TYPICAL OPERATION WITH R  
SENSE  
BACKPLANE  
REMOVABLE CARD  
R
SENSE  
N
V
1V TO V  
OUT  
CC  
V
S
2.25V TO 13.2V  
V
CC  
Applications  
R
CB  
Base Stations  
RAID  
CB  
OUT  
SENSE GATE  
Remote-Access Servers  
Network Routers and Switches  
Servers  
V
CC  
MAX5924  
MAX5926  
GND  
GND  
Portable Device Bays  
μMAX is a registered trademark of Maxim Integrated Products, Inc.  
SEE FIGURE 2 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITH R  
.
SENSE  
Selector Guide and Ordering Information appears at end of  
data sheet.  
19-3443; Rev 4; 1/16  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Absolute Maximum Ratings  
(All voltages referenced to GND, unless otherwise noted.)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................-0.3V to +14V  
10-Pin μMAX (derate 6.9mW/°C above +70°C)..........556mW  
16-Pin QSOP (derate 18.9mW/°C above +70°C) .....1509mW  
Operating Temperature Range......................... -40°C to +105°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC  
GATE*....................................................................-0.3V to +20V  
All Other Pins ......... -0.3V to the lower of (V + 0.3V) or +14V  
SC_DET Current (200ms pulse width, 15% duty cycle) ..140mA  
Continuous Current (all other pins)....................................20mA  
CC  
*GATE is internally driven and clamped. Do not drive GATE with external source.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.7V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ;  
CC  
S
CC  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500Ω from OUT to GND, C = 1μF, SLEW = open,  
A
CC  
L
L
T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
Operating Range  
V
2.7  
1.0  
13.2  
V
V
CC  
CC  
Operating Range  
V
V
as defined in Figure 1  
V
CC  
S
S
S
Supply Current  
I
FET is fully enhanced, SC_DET = V  
1.5  
2.5  
2.47  
350  
mA  
CC  
CC  
UNDERVOLTAGE LOCKOUT (UVLO)  
UVLO Threshold  
V
Default value, V and V  
S
increasing, Figure 1  
1.73  
123  
2.06  
900  
200  
V
UVLO  
CC  
V
V
UVLO Deglitch Time  
UVLO Startup Delay  
t
(Note 2)  
µs  
ms  
CC  
CC  
DG  
D,UVLO  
t
LOAD-PROBE  
2.7V < V  
< 5V  
4
3
30  
10  
65  
20  
CC  
Load-Probe Resistance (Note 3)  
R
LP  
5V < V  
< 13.2V  
CC  
Load-Probe Timeout  
t
43  
172  
102  
200  
205  
235  
ms  
LP  
Load-Probe Threshold Voltage  
CIRCUIT BREAKER  
V
(Note 4)  
mV  
LP,TH  
V
= 2.7V and V = 1V  
37  
37  
TC = high (MAX5926),  
MAX5924  
CC  
CB  
I
CB  
2.7V ≤ V  
≤ 13.2V  
34  
30  
42  
50  
CC  
V
= 2.7V, V  
= 1V,  
CC  
CB  
40  
T
= +25°C  
A
V
= 2.7V, V  
CC  
CB  
= 1V, T = +105°C  
45  
60  
80  
TC = low  
A
(MAX5925D)  
I
I
(MAX5926),  
MAX5925 (Note 5)  
CB25  
Circuit-Breaker Programming  
Current  
2.7V ≤ V  
≤ 13.2V,  
µA  
CC  
40  
40  
40  
50  
50  
60  
50  
60  
60  
80  
60  
70  
T
= +25°C  
A
2.7V ≤ V ≤ 13.2V,  
CC  
T = +105°C (MAX5925D)  
A
V
V
= 2.7V and  
CC  
CB  
TC = low  
(MAX5926),  
MAX5925 (Note 5)  
= 1V, T = +85°C  
A
CB85  
2.7V ≤ V  
≤ 13.2V,  
CC  
T
= +85°C  
A
Maxim Integrated  
2  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Electrical Characteristics (continued)  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.7V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ;  
CC  
S
CC  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500Ω from OUT to GND, C = 1μF, SLEW = open,  
A
CC  
L
L
T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Circuit-Breaker Programming  
Current During Startup  
I
2 x I  
µA  
CB,SU  
CB  
Circuit-Breaker Enable Threshold  
V
V
- V  
, rising gate voltage (Note 6)  
2.3  
3.6  
0.3  
4.65  
±4.7  
V
CB,EN  
GATE  
OUT  
Circuit-Breaker Comparator Offset  
Voltage  
V
mV  
CB_OS  
Fast Circuit-Breaker Offset  
Resistor  
R
Figure 3  
1.2  
1.9  
2.7  
kΩ  
CBF  
Slow Circuit-Breaker Delay  
Fast Circuit-Breaker Delay  
t
V
V
- V  
- V  
= 10mV  
0.95  
1.6  
2.95  
ms  
ns  
CBS  
CB  
CB  
SENSE  
t
= 500mV  
280  
CBF  
SENSE  
V
= 2.5V, V  
= 13.2V, T = -40°C to  
GATE  
CC  
A
13.5  
12  
27  
27  
mA  
mA  
+85°C  
Circuit-Breaker Trip Gate Pulldown  
Current  
I
GATE,PD  
V
= 2.5V, V  
= 13.2V, T = -40°C to  
GATE  
CC  
A
+105°C (MAX5925D)  
MAX5924, TC = high (MAX5926)  
MAX5925, TC = low (MAX5926)  
0
Circuit-Breaker Temperature  
Coefficient  
TC  
ppm/°C  
µA  
ICB  
3300  
OUT Current  
I
120  
OUT  
MOSFET DRIVER  
2.7V ≤ V  
= -40°C to +85°C  
≤ 13.2V, T  
A
CC  
4.2  
5.5  
5.5  
7.2  
7.2  
External Gate Drive  
V
V
- V  
OUT  
V
GS  
GATE  
2.7V ≤ V ≤ 13.2V,  
TA = -40°C to +105°C  
(MAX5925D)  
CC  
4.0  
SLEW = open, C  
= 10nF  
2.19  
9.5  
GATE  
Load Voltage Slew Rate  
SR  
V/ms  
µA  
C
= 300nF, C  
= 10nF (Note 8)  
0.84  
SLEW  
GATE  
Gate Pullup Current Capacity  
I
V
= 0V  
239  
GATE  
GATE  
ENABLE COMPARATOR  
V
V
(MAX5924/MAX5925) or  
EN  
0.747  
0.747  
0.795 0.850  
(MAX5926) rising, T = -40°C to +85°C  
EN1  
A
EN, EN1 Reference Threshold  
V
V
EN/UVLO  
V
(MAX5925D) rising,  
EN  
0.795 0.875  
30  
TA = -40°C to +105°C  
EN, EN1 Hysteresis  
V
mV  
nA  
EN,HYS  
EN (MAX5924/MAX5925) = V  
EN1 (MAX5926) = V  
,
CC  
EN, EN1 Input Bias Current  
I
±8  
±50  
EN  
CC  
DIGITAL OUTPUTS (PGOOD, PGOOD)  
Power-Good Output Low Voltage  
V
I
= 1mA  
OL  
0.3  
0.2  
0.4  
1
V
OL  
Power-Good Output Open-Drain  
Leakage Current  
I
PGOOD/PGOOD = 13.2V  
- V , rising gate voltage  
µA  
OH  
Power-Good Trip Point  
Power-Good Hysteresis  
V
V
V
CB_EN  
3.6  
4.7  
V
V
THPGOOD  
GATE  
OUT  
V
0.36  
PG,HYS  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Electrical Characteristics (continued)  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.7V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ;  
CC  
S
CC  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500Ω from OUT to GND, C = 1μF, SLEW = open,  
A
CC  
L
L
T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.6  
MAX UNITS  
LOGIC AND TIMING (TC, LATCH (MAX5926), EN2 (MAX5926)  
Autoretry Delay  
t
Autoretry mode  
0.6  
2.0  
3.3  
0.4  
s
V
RETRY  
V
IH  
Input Voltage  
V
IL  
Input Bias Current  
I
Logic high at 13.2V  
3
µA  
BIAS  
MAX5924A/MAX5924B  
MAX5925A/MAX5925B  
MAX5926 in latched mode  
Time to Clear a Latched Fault  
T
200  
µS  
CLR  
Note 1: All devices are 100% tested at T = +25°C and +85°C. All temperature limits at -40°C are guaranteed by design.  
A
Note 2: V  
drops 30% below the undervoltage lockout voltage during t  
are ignored.  
CC  
DG  
Note 3: R is the resistance measured between V  
and SC_DET during the load-probing phase, t  
.
LP  
CC  
LP  
Note 4: Tested at +25°C and +85°C. Guaranteed by design at -40°C.  
Note 5: The circuit-breaker programming current increases linearly from V  
Supply Voltage graph in the Typical Operating Characteristics.  
Note 6: See the Startup Mode section for more information.  
= 2.25V to 5V. See the Circuit-Breaker Current vs.  
CC  
Note 7: V  
is clamped to 17V (typ) above ground.  
GATE  
Note 8: dv/dt = 330 x 10-9/C  
(V/ms), nMOS device used for measurement was IRF9530N. Slew rate is measured at the load.  
SLEW  
Typical Operating Characteristics  
(V  
= 5V, C = 1μF, C  
= 330nF, C  
= 10nF, R = 500Ω, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE  
L
A
MAX5926 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
GATE-DRIVE VOLTAGE  
vs. SUPPLY VOLTAGE  
MAX5926 SUPPLY CURRENT  
vs. TEMPERATURE  
2.0  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
7
6
5
4
3
2
V
CC  
= V  
S
V
= V  
S
CC  
ENABLED  
1.6  
1.2  
0.8  
0.4  
0
V
= 13.2V  
CC  
V
S
= 1V  
DISABLED  
V
= 5.0V  
CC  
V
S
= V  
CC  
V
S
= 3V  
V
= 3.0V  
V
= 5V  
CC  
S
V
CC  
= 2.25V  
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
V
CC  
(V)  
TEMPERATURE (°C)  
V
CC  
(V)  
Maxim Integrated  
4  
www.maximintegrated.com  
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1μF, C  
= 330nF, C  
= 10nF, R = 500Ω, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE L A  
CIRCUIT-BREAKER CURRENT  
vs. HOT-SWAP VOLTAGE  
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 3300ppm/°C)  
GATE DRIVE VOLTAGE  
vs. TEMPERATURE  
56  
52  
48  
44  
40  
36  
55  
53  
51  
49  
47  
6.0  
V
CC  
= V  
S
V
CC  
= V  
S
TC = 3300ppm/°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
V
= 5.0V  
CC  
V
= 3.0V  
CC  
V
= 13.2V  
CC  
TC = 0ppm/°C  
V
= 13.2V  
12  
CC  
0
2
4
6
8
10  
14  
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
V
S
(V)  
V
CC  
(V)  
TEMPERATURE (°C)  
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 0ppm/°C)  
CIRCUIT-BREAKER PROGRAMMING  
CURRENT vs. TEMPERATURE  
SLEW RATE vs. C  
SLEW  
39.4  
39.2  
39.0  
38.8  
38.6  
38.4  
38.2  
80  
70  
60  
50  
40  
30  
20  
100  
10  
1
V
CC  
= V  
S
V
= V = 5V  
S
CC  
TC = 3300ppm/°C  
TC = 0ppm/°C  
0.1  
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
0
500  
1000  
(nF)  
SLEW  
1500  
2000  
V
(V)  
TEMPERATURE (°C)  
C
CC  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1μF, C  
= 330nF, C  
= 10nF, R = 500Ω, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE L A  
TURN-ON WAVEFORM  
(C = OPEN)  
TURN-ON WAVEFORM  
(C = 330nF)  
SLEW  
SLEW  
MAX5924 toc10  
MAX5924 toc11  
GATE  
5V/div  
0V  
GATE  
5V/div  
0V  
OUT  
5V/div  
0V  
OUT  
5V/div  
0V  
PGOOD  
5V/div  
0V  
PGOOD  
5V/div  
0V  
200µs/div  
2ms/div  
TURN-OFF WAVEFORM  
OVERCURRENT CIRCUIT-BREAKER EVENT  
MAX5924 toc13  
MAX5924 toc12  
1A/div  
EN1  
5V/div  
0V  
I
FET  
0A  
t
CBS  
10V/div  
GATE  
5V/div  
0V  
GATE  
OUT  
0V  
10V/div  
0V  
PGOOD  
5V/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400µs/div  
SHORT-CIRCUIT CIRCUIT-BREAKER EVENT  
AUTORETRY DELAY  
MAX5924 toc14  
MAX5924 toc15  
I
FET  
1A/div  
EN1  
5V/div  
0V  
t
D,UVLO  
0A  
t
RETRY  
GATE  
OUT  
5V/div  
5V/div  
0V  
SC_DET  
OUT  
0V  
5V/div  
0V  
100mV/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400ms/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1μF, C  
= 330nF, C  
= 10nF, R = 500Ω, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE L A  
OVERCURRENT FAULT AND  
AUTORETRY DELAY  
UVLO DELAY AND LOAD PROBING  
MAX5924 toc16  
MAX5924 toc17  
EN1  
EN1  
5V/div  
0V  
5V/div  
0V  
GATE  
5V/div  
0V  
t
t
LP  
D,UVLO  
5V/div  
0V  
5V/div  
0V  
SC_DET  
OUT  
SC_DET  
OUT  
200mV/div  
0V  
100mV/div  
0V  
400ms/div  
40ms/div  
UVLO RESPONSE  
UVLO DEGLITCH RESPONSE  
MAX5924 toc19  
MAX5924 toc18  
>t  
DG  
2V/div  
GATE  
GATE  
2V/div  
0V  
<t  
DG  
0V  
1V/div  
1V/div  
0V  
V
CC  
V
CC  
0V  
200µs/div  
200µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Pin Configurations  
TOP VIEW  
V
CC  
1
2
3
4
5
6
7
8
16 CB  
SC_DET  
EN1  
15 SENSE  
14 OUT  
13 GATE  
12 SLEW  
11 N.C.  
10 N.C.  
V
1
2
3
4
5
10 CB  
CC  
SC_DET  
EN  
9
8
7
6
SENSE  
MAX5924  
MAX5925  
PGOOD  
GND  
MAX5926  
OUT  
PGOOD (PGOOD)  
GND  
GATE  
SLEW  
EN2  
PGOOD  
LATCH  
EP  
MAX  
9
TC  
( ) FOR THE MAX5924A, MAX5924C, MAX5925A, AND MAX5925C.  
QSOP  
Pin Description  
PIN  
MAX5924A/ MAX5924B/  
MAX5924C/ MAX5924D/  
MAX5925A/ MAX5925B/  
NAME  
FUNCTION  
MAX5926  
MAX5925C  
MAX5925D  
Power-Supply Input. Connect V  
to a voltage between 2.47V and 13.2V.  
CC  
1
1
1
V
CC  
V
must always be equal to or greater than V (see Figure 1).  
S
CC  
Short-Circuit Detection Output. Connect SC_DET to V  
through a series  
OUT  
resistor, R , when not using R  
. SC_DET forces current (limited to  
SC  
SENSE  
≈200mA) into the external load through R  
there is a short circuit (load probing). Connect SC_DET directly to V  
at startup to determine whether  
SC  
2
2
3
2
SC_DET  
when  
CC  
using R  
, Do not connect SC_DET to V  
when not using R  
in an  
SENSE  
SENSE  
CC  
attempt to disable load probing.  
ON/OFF Control Input. Drive EN high to enable the device. Drive EN low to  
disable the device. An optional external resistive-divider connected between  
3
EN  
V
, EN, and GND sets the programmable turn-on voltage.  
CC  
4
5
4
4
7
5
PGOOD Open-Drain Active-Low Power-Good Output  
PGOOD Open-Drain Active-High Power-Good Output  
5
GND  
Ground  
Slew-Rate Adjustment Input. Connect an external capacitor between SLEW  
6
6
12  
SLEW and GND to adjust the gate slew rate. Leave SLEW unconnected for the default  
slew rate.  
Gate-Drive Output. Connect GATE to the gate of the external n-channel  
MOSFET.  
7
8
7
8
13  
14  
GATE  
OUT  
Output Voltage. Connect OUT to the source of the external MOSFET.  
Circuit-Breaker Sense Input. Connect SENSE to OUT when not using an  
9
9
15  
16  
SENSE external R  
(Figure 1). Connect SENSE to the drain of the external  
SENSE  
MOSFET when using an external R  
(Figure 2).  
SENSE  
Circuit-Breaker Threshold Programming Input. Connect an external resistor,  
, from CB to V to set the circuit-breaker threshold voltage.  
10  
10  
CB  
R
CB  
S
Maxim Integrated  
8  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Pin Description (continued)  
PIN  
MAX5924A/ MAX5924B/  
MAX5924C/ MAX5924D/  
MAX5925A/ MAX5925B/  
NAME  
FUNCTION  
MAX5926  
MAX5925C  
MAX5925D  
Active-High ON/OFF Control Input. Drive EN1 high to enable the device when  
EN2 is low. Drive EN1 low to disable the device, regardless of the state of EN2.  
3
EN1  
An optional external resistive-divider between V , EN1, and GND sets the  
CC  
programmable turn-on voltage while EN2 is low.  
Active-Low ON/OFF Control Input. Drive EN2 low to enable the device when  
EN1 is high. Drive EN2 high to disable the device, regardless of the state of  
EN1.  
6
8
9
EN2  
LATCH  
TC  
Latch Mode Input. Drive LATCH low for autoretry mode. Drive LATCH high for  
latched mode.  
Circuit-Breaker Temperature Coefficient Selection Input. Drive TC low to select  
a 3300ppm/°C temperature coefficient. Drive TC high to select a 0ppm/°C  
temperature coefficient.  
10, 11  
EP  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect EP to GND.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
BACKPLANE  
REMOVABLE CARD  
1V TO V  
CC  
V
S
2.25V TO 13.2V  
V
CC  
R
SC  
20k  
R
CB  
10Ω  
CB  
GATE SENSE OUT  
SC_DET  
V+  
ON (ON*)  
V
CC  
1µF  
MAX5925  
MAX5926  
GND  
C
L
PGOOD**  
EN (EN1**)  
EN  
PGOOD (PGOOD*)  
EN2**  
EN2  
GND  
SLEW  
GND  
TC** LATCH**  
C
SLEW  
*MAX5925A AND MAX5925C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 1. Typical Operating Circuit (Without R  
)
SENSE  
BACKPLANE  
REMOVABLE CARD  
1V TO V  
R
SENSE  
CC  
V
S
2.25V TO 13.2V  
V
CC  
20k  
R
CB  
10Ω  
10Ω  
CB  
SENSE GATE OUT  
V+  
ON (ON*)  
V
CC  
SC_DET  
1µF  
MAX5924  
MAX5926  
GND  
C
L
PGOOD**  
EN (EN1**)  
EN  
PGOOD (PGOOD*)  
EN2**  
EN2  
GND  
SLEW  
GND  
TC**  
LATCH**  
C
SLEW  
V
CC  
*MAX5924A AND MAX5924C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 2. Typical Operating Circuit (With R  
)
SENSE  
Maxim Integrated  
10  
www.maximintegrated.com  
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
GATE  
50k  
V
CC  
CHARGE PUMP  
V = 9V  
Z
MAX5924  
MAX5925  
MAX5926  
2µA  
N
SLEW  
A
V
CC  
R
LP  
N
SC_DET  
OUT  
V
CB,TH  
CB  
SLOW  
COMPARATOR  
V
S
75kΩ  
75kΩ  
TIMER  
R
CBF  
0.2V  
V
OSCILLATOR  
CBF,TH  
FAST  
COMPARATOR  
I
TC***  
CB  
PGOOD*  
PGOOD**  
LOGIC  
SENSE  
CONTROL  
LATCH***  
V
V
CC  
EN/(EN1***)  
V
CC  
0.8V  
CC  
GND  
1.24V  
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, MAX5926 ONLY.  
***MAX5926 ONLY.  
EN2***  
Figure 3. Functional Diagram  
Maxim Integrated  
11  
www.maximintegrated.com  
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Detailed Description  
V
CC  
RISES ABOVE V  
UVLO  
The MAX5924/MAX5925/MAX5926 are hot-swap controller  
ICs designed for applications where a line card is inserted  
into a live backplane. Normally, when a line card is  
plugged into a live backplane, the card’s discharged filter  
capacitors provide a low impedance that can momentarily  
cause the main power supply to collapse. The MAX5924/  
MAX5925/MAX5926 are designed to reside either in the  
backplane or in the removable card to provide inrush  
current limiting and short-circuit protection. This is  
achieved using an external nMOSFET and an optional  
external current-sense resistor.  
NO  
ENABLE TRUE?  
YES  
FAULT MANAGEMENT  
UVLO 200ms DELAY  
NO  
DISABLE FAULT PROTECTION,  
ENABLE LOAD PROBE  
R
SENSE  
YES  
Several critical parameters can be configured:  
Slew rate (inrush current)  
PRESENT?  
Circuit-breaker threshold  
Turn-on voltage  
Fault-management mode (MAX5926)  
Circuit-breaker temperature coefficient (MAX5926)  
I
= 2 x I  
CB  
CB,SU  
NO  
LOAD PROBE  
DISABLE SLOW  
COMPARATOR  
SUCCESSFUL?  
YES  
See the Selector Guide for a device-specific list of factory-  
preset features and parameters.  
SLEW-RATE-LIMITED  
STARTUP  
Startup Mode  
It is important that both V  
rate of 100mV/ms during the critical time when power  
voltages are below those values required for proper logic  
and V rise at a minimum  
S
CC  
ENABLE STANDARD BILEVEL  
FAULT PROTECTION  
BEGIN NORMAL OPERATION  
YES  
V
V
GS CB,EN  
V
NO  
V
GS THPGOOD  
control of internal circuitry. This applies for 0.5V ≤ V  
CC  
PGOOD  
2.5V and 0.5V ≤ V ≤ 0.8V. This is particularly true when  
S
LATCH is tied high.  
Figure 4. Startup Flow Chart  
The MAX5924/MAX5925/MAX5926 control an external  
MOSFET placed in the positive power-supply pathway.  
When power is first applied, the MAX5924/MAX5925/  
MAX5926 hold the MOSFET off indefinitely if the supply  
voltage is below the undervoltage lockout level or if the  
device is disabled (see the EN (MAX5924/MAX5925),  
EN1/EN2 (MAX5926) section). If neither of these conditions  
exist, the device enters a UVLO startup delay period for  
≈200ms. Next, the MAX5924/MAX5925/MAX5926 detect  
whether an external sense resistor is present; and then  
autoconfigure accordingly (see Figure 4).  
● If the device detects an external R  
, circuit-  
SENSE  
breaker threshold is set at 2xI , the slow comparator  
CB  
is disabled, the startup phase begins without delay  
for load probing, and slew-rate limiting is employed to  
gradually turn on the MOSFET.  
During the startup phase, the voltage at the load, V  
rises at a rate determined by the selected slew rate (see  
the Slew Rate section). The inrush current (I  
,
OUT  
)
INRUSH  
to the load is limited to a level proportional to the load  
capacitance (C ) and the slew rate:  
L
If no sense resistor is present, bilevel fault protection  
is disabled and load-probing circuitry is enabled (see  
the Load Probing section).  
C × SR  
1000  
L
I
=
INRUSH  
If load probing is not successful, the fault is managed  
according to the selected fault management mode  
(see the Latched and Autoretry Fault Management  
section).  
where SR is the slew rate in V/ms and C is load capacitance  
L
in μF.  
For operation with and without R  
, once V  
-
SENSE  
GATE  
If load probing (see the Load Probing section) is successful,  
slew-rate limiting is employed to gradually turn on the  
MOSFET.  
V
exceeds V  
, PGOOD and/or PGOOD assert.  
OUT  
CB,EN  
OUT  
When V  
- V  
= V  
, the devices enable  
GATE  
CB,EN  
standard bilevel fault protection with normal I  
(see the  
CB  
Bilevel Fault Protection section).  
Maxim Integrated  
12  
www.maximintegrated.com  
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Load Probing  
Normal Operation  
The devices’ load-probing circuitry detects short-circuit  
conditions during startup. Load probing is active only  
In normal operation, after startup is complete, protection  
is provided by turning off the external MOSFET when a  
fault condition is encountered. Dual-speed/bilevel fault  
protection incorporates two comparators with different  
thresholds and response times to monitor the current:  
when no external R  
is detected. As the device  
SENSE  
begins load probing, SC_DET is connected to V  
CC  
through an internal switch with an on-resistance of R  
LP  
(Figure 6). V  
limited at ≈200mA.  
then charges the load with a probe current  
CC  
1) Slow comparator. This comparator has a 1.6ms (typ)  
response time. The slow comparator ignores low-  
amplitude momentary current glitches. After an extended  
overcurrent condition, a fault is acknowledged and the  
MOSFET gate is discharged.  
I
= (V  
- V  
)/(R + R )  
SC  
(Figure 1)  
(0.2V typ) within  
PROBE  
CC  
OUT  
LP  
If the load voltage does not reach V  
LP,TH  
t
LP  
, a short-circuit fault is detected and the startup mode  
is terminated according to the selected fault-management  
mode (see the Latched and Autoretry Fault Management  
section and Figure 5). If no fault condition is present,  
PGOOD/PGOOD asserts at the end of the startup period  
(see the Turn-On Waveforms in the Typical Operating  
Characteristics).  
2) Fast comparator. This comparator has a quick  
response time and a higher threshold voltage. The fast  
comparator turns off the MOSFET immediately when  
it detects a large high-current event such as a short  
circuit.  
In each case, when a fault is encountered, the power-  
good output deasserts and the device drives GATE low.  
After a fault, the MAX5924A, MAX5924B, MAX5925A,  
and MAX5925B latch GATE low and the MAX5924C,  
MAX5924D, MAX5925C, and MAX5925D enter the  
autoretry mode. The MAX5926 has selectable latched  
Load probing can only be, and must be, employed when  
not using an external R  
.
SENSE  
V
OUT  
SR = dV  
dt  
SR = dV  
dt  
C
= SMALL  
L
V
LP,TH  
(0.2V typ)  
V
OUT  
PGOOD*  
C
L
= LARGE  
I
INRUSH  
C
= SMALL  
L
PGOOD**  
I
PROBE  
t
I
LOAD  
I
LOAD  
< t  
V
GATE  
PROBE LP  
V
THPGOOD  
Figure 5. Startup Waveform  
3.0V TO 6.7V  
14  
12  
10  
8
V
OUT  
I
LIM  
I
LOAD  
tCBS  
6
V
= V  
S
CC  
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, AND MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, AND MAX5926 ONLY.  
4
2
4
6
8
10  
12  
14  
V
CC  
(V)  
Figure 6. Load-Probe Resistance vs. Supply Voltage  
Figure 7. Slow Comparator Response to an Overcurrent Fault  
Maxim Integrated  
13  
www.maximintegrated.com  
 
 
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
or autoretry modes. Figure 7 shows the slow comparator  
response to an overcurrent fault.  
Table 1. Selecting Fault Management  
Mode (MAX5926)  
Bilevel Fault Protection  
LATCH  
Low  
FAULT MANAGEMENT  
Autoretry mode  
Latched mode  
Bilevel Fault Protection in Startup Mode  
High  
Bilevel fault protection is disabled in startup mode, and is  
enabled when V  
exceeds V  
at the end  
GATE-VOUT  
CB,EN  
of the startup period.  
Slow Comparator  
The slow comparator is disabled during startup while the  
external MOSFET turns on.  
When no R  
is detected, neither slow nor fast  
SENSE  
comparator is active during startup because the high  
of the MOSFET when not fully enhanced would  
R
D(ON)  
If the slow comparator detects an overload condition  
while in normal operation (after startup is complete), it  
turns off the external MOSFET by discharging the gate  
signal an artificially-high V  
probing prior to startup insures that the output is not short-  
circuited.  
voltage. Load  
IN-VSENSE  
capacitance with I  
. The magnitude of I  
GATE,PD  
GATE,PD  
depends on the external MOSFET gate-to-source voltage  
When R  
is detected, the slow comparator is  
SENSE  
(V ). The discharge current is strongest immediately  
disabled during startup while the fast comparator remains  
active. The overcurrent trip level is higher than normal  
during the startup period because the ICB is temporarily  
doubled to ICB,SU at this time. This allows higher than  
normal startup current to allow for output capacitor  
charging current.  
GS  
following a fault and decreases as the MOSFET gate is  
discharged (Figure 8a).  
60  
V
CC  
= 13.2V  
50  
40  
30  
20  
10  
0
3
4
0
1
2
5
6
7
V
GS  
(V)  
Figure 8a. Gate Discharge Current vs. MOSFET Gate-to-Source  
Voltage  
Maxim Integrated  
14  
www.maximintegrated.com  
 
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
PGOOD/PGOOD asserts only if the part is in normal  
Fast Comparator  
mode and no faults are present.  
The fast comparator is used for serious current overloads  
or short circuits. If the load current reaches the fast com-  
parator threshold, the device quickly forces the MOSFET  
off. The fast comparator has a response time of 280ns,  
and discharges GATE with I  
comparator is disabled during startup when no R  
is detected  
Undervoltage Lockout (UVLO)  
UVLO circuitry prevents the devices from turning on the  
external MOSFET until V  
exceeds the UVLO thresh-  
CC  
(Figure 8a). The fast  
GATE,PD  
old, V , for t . UVLO protects the external  
UVLO D,UVLO  
SENSE  
MOSFET from insufficient gate-drive voltage, and t  
D,UVLO  
ensures that the board is fully plugged into the backplane  
and V is stable prior to powering the hot-swapped  
Latched and Autoretry Fault Management  
The MAX5924A, MAX5924B, MAX5925A, and MAX5925B  
latch the external MOSFET off when an overcurrent fault is  
detected. Following an overcurrent fault, the MAX5924C,  
MAX5924D, MAX5925C, and MAX5925D enter autoretry  
mode. The MAX5926 can be configured for either latched  
or autoretry mode (see Table 1).  
CC  
system. Any input voltage transient at V  
below the  
CC  
UVLO threshold for more than the UVLO deglitch period  
(t ) resets the device and initiates a startup sequence.  
DG  
Device operation is protected from momentary input-  
voltage steps extending below the UVLO threshold for a  
deglitch period, t . However, the power-good output(s)  
DG  
In autoretry, a fault turns the external MOSFET off then  
automatically restarts the device after the autoretry delay,  
may momentarily deassert if the magnitude of a negative  
step in V  
exceeds approximately 0.5V, and V  
drops  
CC  
CC  
t . During the autoretry delay, pull EN or EN1 low to  
RETRY  
below V . Operation is unaffected and the power-good  
UVLO  
restart the device. In latched mode, pull EN or EN1 low for  
at least 100μs to clear a latched fault and restart the device.  
output(s) assert(s) within 200μs, as shown in Figure 8b. This  
figure also shows that if the UVLO condition exceeds t  
=
DG  
900μs (typ), the power-good output(s) again deassert(s)  
and the load is disconnected.  
Power-Good Outputs  
The power-good output(s) are open-drain output(s) that  
deassert:  
Determining Inrush Current  
When V  
During t  
When V  
< V  
UVLO  
CC  
D,UVLO  
Determining a circuit’s inrush current is necessary to  
choose a proper MOSFET. The MAX5924/MAX5925/  
MAX5926 regulate the inrush current by controlling the  
output-voltage slew rate, but inrush current is also a function  
of load capacitance. Determine an anticipated inrush current  
using the following equation:  
< V  
GS  
THPGOOD  
During load probing  
When disabled (EN = GND (MAX5924/MAX5925),  
EN1 = GND or EN2 = high (MAX5926))  
During fault management  
dV  
OUT  
During t  
or when latched off (MAX5924A,  
RETRY  
I
(A) = C  
= C ×SR  
L
INRUSH  
L
dt ×1000  
MAX5924B, MAX5925A, MAX5925B, or MAX5926  
(LATCH = low)).  
V
S
= V = 13.2V  
CC  
C
= 1µF  
SLEW  
C = 10µF  
L
GATE  
2V/div  
MOSFET ONLY  
V
CC  
5V/div  
1V/div  
1V/div  
MOSFET AND  
= 20nF  
C
GATE  
0V  
0V  
PGOOD  
200µs/div  
10ms/div  
Figure 8b. PGOOD Behavior with Large Negative Input-Voltage  
Step when VS is Near V  
Figure 9. Impact of C  
on the V  
Waveform  
GATE  
GATE  
S(MIN)  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
where C is the load capacitance in μF and SR is the  
SLEW sets the maximum slew rate to the minimum value.  
L
selected device output slew rate in V/ms. For example,  
assuming a load capacitance of 100μF and using the  
value of SR = 10V/ms, the anticipated inrush current  
is 1A. If a 16V/ms output slew rate is used, the inrush  
current increases to 1.6A. Choose SR so the maximum  
anticipated inrush current does not trip the fast circuit-  
breaker comparator during startup.  
Calculate C  
using the following equation:  
SLEW  
-9  
C
= 330 10 / SR  
SLEW  
where, SR is the desired slew rate in V/ms and C  
is in nF.  
SLEW  
This equation is valid for C  
≥ 100nF. For higher SR,  
SLEW  
see the Typical Operating Characteristics.  
A 2μA (typ) pullup current clamped to 1.4V causes an  
initial jump in the gate voltage, V , if C is small  
and the slew rate is slow (Figure 3). Figure 9 illustrates  
how the addition of gate capacitance minimizes this initial  
Slew Rate  
GATE  
GATE  
The MAX5924/MAX5925/MAX5926 limit the slew rate of  
V
OUT  
. Connect an external capacitor, C  
, between  
SLEW  
SLEW and GND to adjust the slew-rate limit. Floating  
jump. C  
should not exceed 25nF.  
GATE  
EN (MAX5924/MAX5925), EN1/EN2 (MAX5926)  
V
S
The enable comparators control the on/off function of the  
MAX5924/MAX5925/MAX5926. Enable is also used to  
reset the fault latch in latch mode. Pull EN or EN1 low for  
100μs to reset the latch. A resistive divider between EN or  
R
CB  
R
1
V
GATE  
SENSE  
CB  
CC  
EN1, V , and GND sets the programmable turn-on voltage  
S
EN (EN1)  
OUT  
to a voltage greater than V  
(Figure 10).  
UVLO  
MAX5924_  
MAX5925_  
MAX5926  
R
2
Selecting a Circuit-Breaker Threshold  
R
SC  
The MAX5924/MAX5925/MAX5926 offer a circuit-breaker  
function to protect the external MOSFET and the load  
from the potentially damaging effects of excessive current.  
SC_DET  
(EN2)  
GND  
As load current flows through R  
(Figure 12) or  
DS(ON)  
R
V
(Figure 13), a voltage drop is generated. After  
SENSE  
GS  
(R + R ) V  
EN/UVLO  
2
1
( ) ARE FOR MAX5926 ONLY.  
V
=
S,TURN-ON  
exceeds V , the MAX5924/MAX5925/MAX5926  
CB,EN  
R
2
monitor this voltage to detect overcurrent conditions. If  
this voltage exceeds the circuit-breaker threshold, the  
Figure 10. Adjustable Turn-On Voltage  
15,000  
15,000  
TC = 0ppm/°C  
TC = 3300ppm/°C  
V
V
V
= 1.5V  
= 1.4V  
= 1.3V  
S
S
S
12,000  
12,000  
9000  
6000  
3000  
0
V
= 1.5V  
S
9000  
6000  
3000  
0
V
S
V
S
V
S
V
S
V
S
= 1.4V  
= 1.3V  
= 1.2V  
= 1.1V  
= 1.0V  
V
S
V
S
V
S
= 1.2V  
= 1.1V  
= 1.0V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Maximum Circuit-Breaker Programming Resistor vs. Temperature  
Maxim Integrated  
16  
www.maximintegrated.com  
 
 
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
external MOSFET turns off and the power-good output(s)  
deassert(s). To accommodate different MOSFETs, sense  
resistors, and load currents, the MAX5924/MAX5925/  
To determine the proper circuit-breaker resistor value use  
the following equation, which refers to Figure 12:  
I
(
xR  
(T) + V  
DS(ON)  
CB,OS  
)
TRIPSLOW  
MAX5926 voltage across R  
can be set between 10mV  
CB  
R
CB  
=
and 500mV. The value of the circuit-breaker voltage must  
be carefully selected based on V (Figure 11).  
I
CB  
S
where I  
current.  
is the desired slow-comparator trip  
TRIPSLOW  
No R  
Mode  
SENSE  
When operating without R  
, calculate the circuit-  
SENSE  
The fast-comparator trip current is determined by the  
breaker threshold using the MOSFET’s R  
at the  
DS(ON)  
selected R value and cannot be adjusted independently.  
CB  
worst possible operating condition, and add a 20% overcurrent  
margin to the maximum circuit current. For example, if a  
The fast-comparator trip current is given by:  
I
x R  
+R  
± V  
CB  
CB,OS  
(
)
MOSFET has an R  
normalized on-resistance factor of 1.75 at T = +105°C,  
of 0.06Ω at T = +25°C, and a  
CB  
CBF  
DS(ON)  
A
I
=
TRIPFAST  
A
R
(T)  
DS(ON)  
the R  
used for calculation is the product of these  
DS(ON)  
SC_DET must be connected to OUT through the selected  
two numbers, or (0.06Ω) x (1.75) = 0.105Ω. Then, if the  
maximum current is expected to be 2A, using a 20%  
margin, the current for calculation is (2A) x (1.2) = 2.4A.  
The resulting minimum circuit-breaker threshold is then a  
product of these two numbers, or (0.105Ω) x (2.4A) = 0.252V.  
Using this method to choose a circuit-breaker threshold  
allows the circuit to operate under worst-case conditions  
without causing a circuit-breaker fault, but the circuit-  
breaker function will still detect a short circuit or a gross  
overcurrent condition.  
R
when not using R  
.
SC  
SENSE  
R
Mode  
SENSE  
When operating with R  
, calculate the circuit-breaker  
SENSE  
threshold using the worst possible operating conditions,  
and add a 20% overcurrent margin to the maximum circuit  
current. For example, with a maximum expected current  
of 2A, using a 20% margin, the current for calculation  
is (2A) x (1.2) = 2.4A. The resulting minimum circuit-  
I
I
LOAD  
LOAD  
R
R
SENSE  
DS(ON)  
V
V
OUT  
S
V
V
OUT  
S
R
CB  
R
CB  
GATE  
OUT  
SLOW  
CB  
SENSE  
V
CB GATE  
SENSE OUT  
CB,TH  
COMPARATOR  
SLOW  
COMPARATOR  
V
CB,TH  
MAX5925  
MAX5926  
R
CBF  
V
CB,OS  
MAX5925  
MAX5926  
V
CB,OS  
R
CBF  
FAST  
COMPARATOR  
FAST  
COMPARATOR  
I
I
CB  
CB  
TC  
SELECT  
TC  
SELECT  
V
CB,OS  
V
CB,OS  
V
V
CBF,TH  
CBF,TH  
Figure 12. Circuit Breaker Using R  
Figure 13. Circuit Breaker Using R  
SENSE  
DS(ON)  
Maxim Integrated  
17  
www.maximintegrated.com  
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
breaker threshold is then a product of this current and  
= 0.06Ω, or (0.06Ω) x (2.4A) = 0.144V. Using  
Table 2. Programming the Temperature  
Coefficient (MAX5926)  
R
SENSE  
this method to choose a false circuit-breaker threshold  
allows the circuit to operate under worst-case conditions  
without causing a circuit-breaker fault, but the circuit-  
breaker function will still detect a short-circuit or a gross  
overcurrent condition.  
TC  
High  
Low  
TC  
(ppm/°C)  
ICB  
0
3300  
To determine the proper circuit-breaker resistor value, use  
the following equation, which refers to Figure 13:  
Table 3. Suggested External MOSFETs  
APPLICATION  
CURRENT (A)  
PART  
DESCRIPTION  
I
xR  
I
+ V  
OS  
CB,  
(
)
TRIPSLOW  
SENSE  
R
=
CB  
International Rectifier  
CB  
1
SO-8  
IRF7401  
where, I  
current.  
is the desired slow-comparator trip  
TRIPSLOW  
2
5
Siliconix Si4378DY  
SO-8  
Siliconix SUD40N02-06  
Siliconix SUB85N02-03  
DPAK  
D2PAK  
The fast-comparator trip current is determined by the  
selected R value and cannot be adjusted independently.  
10  
CB  
The fast-comparator trip current is given by:  
50  
45  
40  
35  
30  
25  
20  
I
x R  
+R  
± V  
CB,OS  
(
)
CB  
CB  
CBF  
R
V
R
= V = 13.2V, R = 672, I  
= 5A,  
TRIPSLOW  
S
CC  
CB  
I
=
TRIPFAST  
(25) = 6.5mΩ  
DS(ON)  
SENSE  
CIRCUIT-BREAKER TRIP REGION  
SC_DET should be connected to V  
when using  
(V  
V
)
SENSE CB  
CC  
R
.
SENSE  
Circuit-Breaker Temperature Coefficient  
In applications where the external MOSFET’s on-resistance  
is used as a sense resistor to determine overcurrent  
conditions, a 3300ppm/°C temperature coefficient is  
desirable to compensate for the R  
coefficient. Use the MAX5926’s TC input to select the  
V
= R  
(T) x I  
DS(ON) LOAD(MAX)  
SENSE  
(4500ppm/°C)  
= I (T) x R + V  
CB,OS  
V
CB CB  
CB  
temperature  
(3300ppm/°C)  
DS(ON)  
-40  
-15  
10  
35  
60  
85  
110  
circuit-breaker programming current’s temperature coefficient,  
TEMPERATURE (°C)  
TC  
(see Table 2). The MAX5924 temperature coefficient  
ICB  
is preset to 0ppm/°C, and the MAX5925’s is preset to  
3300ppm/°C.  
Figure 14. Circuit-Breaker Trip Point and Current-Sense  
Voltage vs. Temperature  
Setting TC  
to 3300ppm/°C allows the circuit-breaker  
ICB  
threshold to track and compensate for the increase in  
the MOSFET’s R with increasing temperature.  
Most MOSFETs have a temperature coefficient within a  
3000ppm/°C to 7000ppm/°C range. Refer to the MOSFET  
data sheet for a device-specific temperature coefficent.  
where V  
is the worst-case offset voltage. Figure 14  
CB,OS  
DS(ON)  
graphically portrays operating conditions for a MOSFET  
with a 4500ppm/°C temperature coefficient.  
Applications Information  
Component Selection  
nMOSFET  
Most circuit component values may be calculated with  
the aid of the devices. The “Design calculator for choosing  
component values” software can be downloaded from the  
MAX5924–MAX5926 Quickview on the Maxim website.  
R
and I  
are temperature dependent, and can  
DS(ON)  
CB  
therefore be expressed as functions of temperature. At a  
given temperature, the MAX5925/MAX5926 indicate an  
overcurrent condition when:  
I
x R  
(T) ≥ I (T) x R  
+ |V  
|
TRIPSLOW  
DS(ON)  
CB  
CB  
CB,OS  
Maxim Integrated  
18  
www.maximintegrated.com  
 
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Table 4. Component Manufacturers  
COMPONENT  
MANUFACTURER  
Dale-Vishay  
IRC  
PHONE  
WEBSITE  
402-564-3131  
828-264-8861  
888-522-5372  
310-233-3331  
www.vishay.com  
www.irctt.com  
Sense Resistors  
Fairchild  
www.fairchildsemi.com  
www.irf.com  
MOSFETs  
International Rectifier  
Select the external nMOSFET according to the  
application’s current and voltage level. Table 3 lists some  
recommended components. Choose the MOSFET’s on-  
charge to a voltage above V until the external MOSFET’s  
IN  
body diode conducts to clamp the capacitor voltage at V  
IN  
plus the body-diode V . When testing or operating with no  
F
resistance, R  
, low enough to have a minimum  
load, it is therefore recommended that the output capacitor  
be paralleled with a resistor of value:  
DS(ON)  
voltage drop at full load to limit the MOSFET power  
dissipation. High R can cause undesired power  
DS(ON)  
R = V /120μA  
X
loss and output ripple if the board has pulsing loads or  
triggers an external undervoltage reset monitor at full  
load. Determine the device power-rating requirement to  
accommodate a short circuit on the board at startup with  
the device configured in autoretry mode.  
where V is the maximum acceptable output voltage prior  
X
to hot-swap completion.  
Design Procedure  
Given:  
Using the devices in latched mode allows the consideration  
V  
= V = 5V  
S
CC  
of MOSFETs with higher R  
and lower power ratings.  
DS(ON)  
C = 150μF  
L
A MOSFET can typically withstand single-shot pulses with  
higher dissipation than the specified package rating. Low  
MOSFET gate capacitance is not necessary since the  
inrush current limiting is achieved by limiting the gate dv/  
dt. Table 4 lists some recommended manufacturers and  
components.  
Full-Load Current = 5A  
No R  
SENSE  
I  
= 500mA  
INRUSH  
Procedures:  
1) Calculate the required slew rate and corresponding C  
Be sure to select a MOSFET with an appropriate gate drive  
:
SLEW  
(see the Typical Operating Characteristics). Typically, for  
I
V
INRUSH  
V
CC  
less than 3V, select a 2.5V V  
MOSFET.  
SR =  
= 3.3  
GS  
1000× C  
ms  
L
Optional Sense Resistor  
Select the sense resistor in conjunction with R  
9  
9  
to  
CB  
330×10  
330×10  
C
=
=
= 0 . 1µ F  
SLEW  
set the slow and fast circuit-breaker thresholds (see  
the Selecting a Circuit-Breaker Threshold section). The  
sense-resistor power dissipation depends on the device  
V
ms  
SR  
3.3  
2) Select a MOSFET and determine the worst-case  
power dissipation.  
configuration. If latched mode is selected, P  
2
=
RSENSE  
(I  
)
x R  
; if autoretry is selected, then  
OVERLOAD  
SENSE  
3) Minimize power dissipation at full load current and  
at high temperature by selecting a MOSFET with an  
2
P
= (I  
)
x R  
x (t /t  
).  
RSENSE  
OVERLOAD  
SENSE  
ON RETRY  
Choose a sense-resistor power rating of twice the  
appropriate R  
. Assume a 20°C temperature  
DS(ON)  
P
for long-term reliable operation. In addition,  
2
RSENSE  
difference between the devices and the MOSFET.  
ensure that the sense resistor has an adequate I T rating  
to survive instantaneous short-circuit conditions.  
For example, at room temperature the IRF7822’s  
= 6.5mΩ. The temperature coefficient for this  
device is 4000ppm/°C. The maximum R  
R
DS(ON)  
No-Load Operation  
The internal circuitry is capable of sourcing a current at the  
for the  
DS(ON)  
MOSFET at T  
= +105°C is:  
J(MOSFET)  
OUT terminal of up to 120μA from a voltage V + V  
.
IN  
GS  
ppm  
If there is no load on the circuit, the output capacitor will  
R
= 6.5mΩ × 1+ (105°C 25°C)× 4000  
DS(ON)105  
°C  
= 8.58mΩ  
Maxim Integrated  
19  
www.maximintegrated.com  
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
The power dissipation in the MOSFET at full load is:  
Layout Considerations  
Keep all traces as short as possible and maximize the high-  
current trace dimensions to reduce the effect of undesir-  
able parasitic inductance. Place the MAX5924/MAX5925/  
MAX5926 close to the card’s connector. Use a ground  
plane to minimize impedance and inductance. Minimize the  
current-sense resistor trace length (<10mm), and ensure  
accurate current sensing with Kelvin connections.  
2
2
P
= I R = (5A) × 8.58mΩ = 215mW  
D
4) Select R  
.
CB  
Since the MOSFET’s temperature coefficient  
is 4000ppm/°C, which is greater than TC  
(3300ppm/°C), calculate the circuit-breaker threshold  
at high temperature so the circuit breaker is guaran-  
teed not to trip at lower temperature during normal  
operation (Figure 15).  
ICB  
When the output is short circuited, the voltage drop  
across the external MOSFET becomes large. Hence, the  
power dissipation across the switch increases, as does  
the die temperature. An efficient way to achieve good  
power dissipation on a surface-mount package is to lay  
out two copper pads directly under the MOSFET pack-  
age on both sides of the board. Connect the two pads to  
the ground plane through vias, and use enlarged copper  
mounting pads on the top side of the board.  
I
= I  
+ 20% = 5A + 20% = 6A  
TRIPSLOW  
R
FULL LOAD  
= 8.58mΩ (max), from step 2  
DS(ON)105  
I
= 58μA x (1 + (3300ppm/°C x (85 - 25)°C)  
= 69.5μA (min)  
CB85  
I
xR  
+ V  
(
TRIPSLOW  
)
DS(ON)105  
CB,OS  
R
=
CB  
It is important to maximize the thermal coupling between  
the MOSFET and the MAX5925/MAX5926 to balance the  
device junction temperatures. When the temperatures  
of the two devices are equal, the circuit-breaker trip  
threshold is most accurate. Keep the MOSFET and the  
MAX5925/MAX5926 as close to each other as possible  
to facilitate thermal coupling.  
I
CB85  
R
= ((6A x 8.58mΩ) + 4.7mV)/69.5μA = 808Ω  
CB  
HIGH-CURRENT PATH  
SENSE RESISTOR  
R
CB  
MAX5924  
MAX5925  
MAX5926  
Figure 15. Kelvin Connection for the Current-Sense Resistor  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Selector Guide  
POWER-GOOD OUTPUT  
CIRCUIT-BREAKER  
PART  
TEMPCO  
(ppm/°C)  
FAULT MANAGEMENT  
PGOOD  
PGOOD  
(OPEN-DRAIN)  
(OPEN-DRAIN)  
MAX5924A  
0
Latched  
Latched  
ü
ü
ü
MAX5924B  
MAX5924C  
MAX5924D  
MAX5925A  
MAX5925B  
MAX5925C  
MAX5925D  
MAX5926  
0
0
Autoretry  
ü
0
Autoretry  
ü
3300  
Latched  
ü
3300  
3300  
Latched  
ü
Autoretry  
ü
3300  
Autoretry  
ü
0 or 3300 (Selectable)  
Latched or Autoretry (Selectable)  
ü
Ordering Information  
Chip Information  
TRANSISTOR COUNT: 3751  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
PROCESS: BiCMOS  
MAX5924AEUB  
MAX5924BEUB  
MAX5924CEUB*  
MAX5924DEUB*  
MAX5925AEUB  
MAX5925BEUB*  
MAX5925CEUB*  
MAX5925DEUB*  
MAX5926EEE  
10 µMAX  
10 µMAX  
Package Information  
10 µMAX  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
16 QSOP–EP**  
PACKAGE TYPE  
10 µMAX  
PACKAGE CODE DOCUMENT NO.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
U10CN+1  
21-0061  
21-0112  
10 QSOP-EP  
E16E-1  
Maxim Integrated  
21  
www.maximintegrated.com  
 
 
MAX5924/MAX5925/  
MAX5926  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
8/05  
Initial release  
Revised data sheet title, General Description, Features, EC table, Typical  
Operating Circuit, and added No-Load Operation section.  
1
6/06  
1–13, 15–18  
2
3
10/06  
4/10  
Initial release of MAX5924BEUB and revised EC table.  
1–4, 10–12  
2–4  
Revised EC table.  
Updated Circuit-Breaker Programming Current, Circuit-Breaker Trip Gate  
Pulldown Current, External Gate Drive and EN, EN1 Reference Threshold  
specifications of the Electrical Characteristics table.  
4
1/16  
2–3  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
22  

相关型号:

MAX5924DEUB-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5924_06

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5924_10

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925A

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925AEUB

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925AEUB+

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5925AEUB-T

暂无描述
MAXIM

MAX5925B

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925BEUB

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925BEUB+

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5925BEUB+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM