MAX5925A [MAXIM]

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor; 1V至13.2V , n沟道热插拔控制器,无需检测电阻
MAX5925A
型号: MAX5925A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
1V至13.2V , n沟道热插拔控制器,无需检测电阻

控制器
文件: 总22页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3443; Rev 2; 10/06  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
General Description  
Features  
Hot Swap 1V to 13.2V with V  
Drive High-Side n-Channel MOSFET  
Operation With or Without R  
2.25V  
The MAX5924/MAX5925/MAX5926 1V to 13.2V hot-swap  
controllers allow the safe insertion and removal of circuit  
cards into live backplanes. These devices hot swap sup-  
plies ranging from 1V to 13.2V provided that the device  
CC  
SENSE  
Temperature-Compensated RDS(ON) Sensing  
Protected During Turn-On into Shorted Load  
Adjustable Circuit-Breaker Threshold  
Programmable Slew-Rate Control  
supply voltage, V , is at or above 2.25V and the hot-  
CC  
S
swapped supply, V , does not exceed V  
.
CC  
The MAX5924/MAX5925/MAX5926 hot-swap controllers  
limit the inrush current to the load and provide a circuit-  
breaker function for overcurrent protection. The devices  
operate with or without a sense resistor. When operat-  
ing without a sense resistor, load-probing circuitry  
ensures a short circuit is not present during startup,  
then gradually turns on the external MOSFET. After the  
load probing is complete, on-chip comparators provide  
overcurrent protection by monitoring the voltage drop  
across the external MOSFET on-resistance. In the event  
of a fault condition, the load is disconnected.  
Programmable Turn-On Voltage  
Autoretry or Latched Fault Management  
10-Pin µMAX or 16-Pin QSOP Packages  
®
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
MAX5924AEUB  
MAX5924BEUB  
MAX5924CEUB*  
MAX5924DEUB*  
MAX5925AEUB  
MAX5925BEUB*  
MAX5925CEUB*  
MAX5925DEUB*  
MAX5926EEE  
The MAX5924/MAX5925/MAX5926 include many inte-  
grated features that reduce component count and  
design time, including configurable turn-on voltage,  
slew rate, and circuit-breaker threshold. An on-board  
charge pump provides the gate drive for a low-cost,  
external n-channel MOSFET.  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
The MAX5924/MAX5925/MAX5926 are available with  
open-drain PGOOD and/or PGOOD outputs. The  
MAX5925/MAX5926 also feature a circuit breaker with  
10 µMAX  
10 µMAX  
16 QSOP–EP**  
temperature-compensated R  
sensing. The  
DS(ON)  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
MAX5926 features a selectable 0ppm/°C or 3300ppm/°C  
temperature coefficient. The MAX5924 temperature coef-  
ficient is 0ppm/°C and the MAX5925 temperature coeffi-  
cient is 3300ppm/°C. Autoretry and latched fault-  
management configurations are available (see the  
Selector Guide).  
Typical Operating Circuits  
TYPICAL OPERATION WITHOUT R  
SENSE  
BACKPLANE  
REMOVABLE CARD  
N
Applications  
V
1V TO V  
CC  
OUT  
Base Stations  
V
S
2.25V TO 13.2V  
V
RAID  
CC  
R
CB  
R
SC  
Remote-Access Servers  
Network Routers and Switches  
Servers  
OUT  
CB  
GATE SENSE  
SC_DET  
V
CC  
Portable Device Bays  
MAX5925  
MAX5926  
GND  
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
SEE FIGURE 1 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITHOUT R  
.
SENSE  
Selector Guide appears at end of data sheet.  
Pin Configurations appear at end of data sheet.  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted).  
Continuous Power Dissipation (T = +70°C)  
A
V
.........................................................................-0.3V to +14V  
10-Pin µMAX (derate 6.9mW/°C above +70°C)...........556mW  
16-Pin QSOP (derate 18.9mW/°C above +70°C).......1509mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
GATE*.....................................................................-0.3V to +20V  
All Other Pins ............-0.3V to the lower of (V + 0.3V) or +14V  
SC_DET Current (200ms pulse width, 15% duty cycle) ...140mA  
CC  
Continuous Current (all other pins).....................................20mA  
*GATE is internally driven and clamped. Do not drive GATE with external source.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
CC  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
A
S
CC  
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= +25°C, unless otherwise noted.) (Note 1)  
= 5V, R = 500from OUT to GND, C = 1µF, SLEW = open, T  
CC  
A
L
L
PARAMETER  
POWER SUPPLIES  
Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
2.25  
1.05  
13.2  
V
V
CC  
CC  
V Operating Range  
S
V
V as defined in Figure 1  
V
CC  
S
S
Supply Current  
I
FET is fully enhanced, SC_DET = V  
1.5  
2.5  
2.47  
350  
mA  
CC  
CC  
UNDERVOLTAGE LOCKOUT (UVLO)  
UVLO Threshold  
V
Default value, V and V increasing, Figure 1  
1.73  
123  
2.06  
900  
200  
V
UVLO  
S
CC  
V
V
UVLO Deglitch Time  
UVLO Startup Delay  
t
(Note 2)  
µs  
ms  
CC  
CC  
DG  
D,UVLO  
t
LOAD-PROBE  
2.25V < V  
< 5V  
4
3
30  
10  
65  
20  
CC  
Load-Probe Resistance (Note 3)  
R
LP  
5V < V  
< 13.2V  
CC  
Load-Probe Timeout  
t
43  
172  
102  
200  
205  
235  
ms  
mV  
LP  
Load-Probe Threshold Voltage  
CIRCUIT BREAKER  
V
(Note 4)  
LP,TH  
I
TC = high (MAX5926), MAX5924  
= 2.25V,  
34  
44  
37  
51  
42  
58  
CB  
V
CC  
T
= +25°C  
A
TC = low (MAX5926),  
MAX5925 (Note 5)  
I
I
CB25  
5V V  
13.2V,  
CC  
49  
47  
58  
54  
52  
63  
58  
60  
70  
Circuit-Breaker Programming  
Current  
T
= +25°C  
A
µA  
V
= 2.25V,  
CC  
T
= +85°C  
A
TC = low (MAX5926),  
MAX5925 (Note 5)  
CB85  
5V V  
13.2V,  
CC  
T
= +85°C  
A
2
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ELECTRICAL CHARACTERISTICS (continued)  
CC  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
A
S
CC  
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= +25°C, unless otherwise noted.) (Note 1)  
= 5V, R = 500from OUT to GND, C = 1µF, SLEW = open, T  
CC  
A
L
L
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
Circuit-Breaker Programming  
Current During Startup  
I
2 x I  
CB  
CB,SU  
Circuit-Breaker Enable Threshold  
V
V
- V , rising gate voltage (Note 6)  
OUT  
2.3  
3.6  
0.3  
4.65  
4.7  
V
CB,EN  
CB_OS  
GATE  
Circuit-Breaker Comparator  
Offset Voltage  
V
mV  
Fast Circuit-Breaker Offset  
Resistor  
R
CBF  
Figure 3  
1.2  
1.9  
2.7  
kΩ  
Slow Circuit-Breaker Delay  
Fast Circuit-Breaker Delay  
t
V
V
- V  
- V  
= 10mV  
0.95  
1.6  
2.95  
ms  
ns  
CBS  
CB  
CB  
SENSE  
t
= 500mV  
280  
CBF  
SENSE  
Circuit-Breaker Trip Gate  
Pulldown Current  
I
V
= 2.5V, V  
= 13.2V  
13.5  
27  
mA  
GATE,PD  
GATE  
CC  
MAX5924, TC = high (MAX5926)  
MAX5925, TC = low (MAX5926)  
0
Circuit-Breaker Temperature  
Coefficient  
TC  
ppm/°C  
µA  
ICB  
3300  
OUT Current  
I
120  
OUT  
MOSFET DRIVER  
External Gate Drive  
V
V
- V  
2.25V V 13.2V  
CC  
3.0  
4.91  
9.5  
6.70  
V
GS  
GATE  
OUT  
SLEW = open, C  
= 10nF  
2.19  
GATE  
Load Voltage Slew Rate  
SR  
V/ms  
µA  
C
= 300nF, C  
= 10nF (Note 8)  
GATE  
0.84  
SLEW  
GATE  
Gate Pullup Current Capacity  
I
V
= 0V  
239  
GATE  
ENABLE COMPARATOR  
V
V
(MAX5924/MAX5925) or  
EN  
EN, EN1 Reference Threshold  
EN, EN1 Hysteresis  
V
0.747  
0.795  
30  
0.850  
50  
V
EN/UVLO  
(MAX5926) rising  
EN1  
V
mV  
nA  
EN,HYS  
EN (MAX5924/MAX5925) = V  
EN1 (MAX5926) = V  
,
CC  
EN, EN1 Input Bias Current  
I
8
EN  
CC  
DIGITAL OUTPUTS (PGOOD, PGOOD)  
Power-Good Output Low Voltage  
V
I
= 1mA  
0.3  
0.2  
0.4  
1
V
OL  
OL  
Power-Good Output Open-Drain  
Leakage Current  
I
PGOOD/PGOOD = 13.2V  
- V , rising gate voltage  
µA  
OH  
Power-Good Trip Point  
Power-Good Hysteresis  
V
V
V
3.6  
4.7  
V
V
THPGOOD  
GATE  
OUT  
CB_EN  
V
0.36  
PG,HYS  
_______________________________________________________________________________________  
3
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ELECTRICAL CHARACTERISTICS (continued)  
CC  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
S
CC  
A
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= +25°C, unless otherwise noted.) (Note 1)  
= 5V, R = 500from OUT to GND, C = 1µF, SLEW = open, T  
A
L L  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
3.3  
UNITS  
LOGIC AND TIMING (TC, LATCH (MAX5926), EN2 (MAX5926)  
Autoretry Delay  
Input Voltage  
t
Autoretry mode  
0.6  
2.0  
1.6  
s
V
RETRY  
V
IH  
V
0.4  
IL  
Input Bias Current  
I
Logic high at 13.2V  
3
µA  
BIAS  
MAX5924A/ MAX5924B  
MAX5925A/ MAX5925B  
MAX5926 in latched mode  
Time to Clear a Latched Fault  
T
200  
µS  
CLR  
Note 1: All devices are 100% tested at T = +25°C and +85°C. All temperature limits at -40°C are guaranteed by design.  
A
Note 2: V  
drops 30% below the undervoltage lockout voltage during t  
are ignored.  
CC  
DG  
Note 3: R is the resistance measured between V  
and SC_DET during the load-probing phase, t .  
LP  
CC  
LP  
Note 4: Tested at +25°C & +85°C. Guaranteed by design at -40°C.  
Note 5: The circuit-breaker programming current increases linearly from V  
Supply Voltage graph in the Typical Operating Characteristics.  
Note 6: See the Startup Mode section for more information.  
= 2.25V to 5V. See the Circuit-Breaker Current vs.  
CC  
Note 7: V  
is clamped to 17V (typ) above ground.  
GATE  
-9  
Note 8: dv/dt = 330 x 10 /C  
(V/ms), nMOS device used for measurement was IRF9530N. Slew rate is measured at the load.  
SLEW  
Typical Operating Characteristics  
(V  
= 5V, C = 1µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE  
L
A
MAX5926 SUPPLY CURRENT  
vs. TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. SUPPLY VOLTAGE  
MAX5926 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
7
6
5
4
3
2
2.0  
V
= V  
V
= V  
CC S  
CC  
S
ENABLED  
DISABLED  
1.6  
1.2  
0.8  
0.4  
0
V
= 13.2V  
CC  
V
= 1V  
S
V
= 5.0V  
CC  
V
= V  
CC  
S
V
= 3V  
S
V
= 3.0V  
V
= 5V  
CC  
S
V
= 2.25V  
CC  
-40  
-15  
10  
35  
60  
85  
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
V (V)  
CC  
V
(V)  
CC  
4
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE  
L
A
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 3300ppm/°C)  
GATE DRIVE VOLTAGE  
vs. TEMPERATURE  
CIRCUIT-BREAKER CURRENT  
vs. HOT-SWAP VOLTAGE  
55  
53  
51  
49  
47  
6.0  
56  
52  
48  
44  
40  
36  
V
= V  
S
CC  
V
= V  
S
CC  
TC = 3300ppm/°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
V
= 5.0V  
CC  
V
= 3.0V  
CC  
V
= 13.2V  
CC  
TC = 0ppm/°C  
V
= 13.2V  
CC  
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
12  
14  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
CC  
S
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 0ppm/°C)  
CIRCUIT-BREAKER PROGRAMMING  
CURRENT vs. TEMPERATURE  
SLEW RATE vs. C  
SLEW  
39.4  
39.2  
39.0  
38.8  
38.6  
38.4  
38.2  
80  
70  
60  
50  
40  
30  
20  
100  
10  
1
V
= V  
S
V
= V = 5V  
S
CC  
CC  
TC = 3300ppm/°C  
TC = 0ppm/°C  
0.1  
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
0
500  
1000  
C (nF)  
SLEW  
2000  
1500  
V
(V)  
TEMPERATURE (°C)  
CC  
_______________________________________________________________________________________  
5
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1µF, C  
L
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
SLEW  
GATE  
L
A
TURN-ON WAVEFORM  
(C = OPEN)  
TURN-ON WAVEFORM  
(C = 330nF)  
SLEW  
SLEW  
MAX5924 toc10  
MAX5924 toc11  
GATE  
5V/div  
0V  
GATE  
5V/div  
0V  
OUT  
5V/div  
0V  
OUT  
5V/div  
0V  
PGOOD  
5V/div  
0V  
PGOOD  
5V/div  
0V  
200µs/div  
2ms/div  
TURN-OFF WAVEFORM  
OVERCURRENT CIRCUIT-BREAKER EVENT  
MAX5924 toc13  
MAX5924 toc12  
1A/div  
0A  
EN1  
5V/div  
0V  
I
FET  
t
CBS  
10V/div  
GATE  
5V/div  
0V  
GATE  
OUT  
0V  
10V/div  
0V  
PGOOD  
5V/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400µs/div  
SHORT-CIRCUIT CIRCUIT-BREAKER EVENT  
AUTORETRY DELAY  
MAX5924 toc14  
MAX5924 toc15  
I
FET  
1A/div  
EN1  
5V/div  
0V  
t
D,UVLO  
0A  
t
RETRY  
GATE  
OUT  
5V/div  
5V/div  
0V  
SC_DET  
OUT  
0V  
5V/div  
0V  
100mV/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400ms/div  
6
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 1µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE L A  
OVERCURRENT FAULT AND  
AUTORETRY DELAY  
UVLO DELAY AND LOAD PROBING  
MAX5924 toc16  
MAX5924 toc17  
EN1  
EN1  
5V/div  
0V  
5V/div  
0V  
GATE  
5V/div  
0V  
t
t
LP  
D,UVLO  
5V/div  
0V  
5V/div  
0V  
SC_DET  
OUT  
SC_DET  
OUT  
200mV/div  
0V  
100mV/div  
0V  
400ms/div  
40ms/div  
UVLO RESPONSE  
UVLO DEGLITCH RESPONSE  
MAX5924 toc19  
MAX5924 toc18  
>t  
DG  
2V/div  
GATE  
GATE  
2V/div  
0V  
<t  
DG  
0V  
1V/div  
1V/div  
0V  
V
CC  
V
CC  
0V  
200µs/div  
200µs/div  
_______________________________________________________________________________________  
7
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Pin Description  
PIN  
MAX5924A/ MAX5924B/  
MAX5924C/ MAX5924D/  
MAX5925A/ MAX5925B/  
MAX5925C MAX5925D  
NAME  
FUNCTION  
MAX5926  
Power-Supply Input. Connect V  
to a voltage between 2.47V and 13.2V.  
CC  
1
1
1
V
CC  
V
CC  
must always be equal to or greater than V (see Figure 1).  
S
Short-Circuit Detection Output. Connect SC_DET to V  
through a series  
OUT  
resistor, R , when not using R  
. SC_DET forces current (limited to  
SENSE  
SC  
200mA) into the external load through R at startup to determine whether  
SC  
2
2
2
SC_DET  
EN  
there is a short circuit (load probing). Connect SC_DET directly to V when  
CC  
using R , Do not connect SC_DET to V  
SENSE  
when not using R  
in an  
SENSE  
CC  
attempt to disable load probing.  
ON/OFF Control Input. Drive EN high to enable the device. Drive EN low to  
disable the device. An optional external resistive-divider connected between  
3
3
V
, EN, and GND sets the programmable turn-on voltage.  
CC  
4
5
4
4
7
5
PGOOD Open-Drain Active-Low Power-Good Output  
PGOOD Open-Drain Active-High Power-Good Output  
5
GND  
Ground  
Slew-Rate Adjustment Input. Connect an external capacitor between SLEW and  
GND to adjust the gate slew rate. Leave SLEW unconnected for the default  
slew rate.  
6
6
12  
SLEW  
Gate-Drive Output. Connect GATE to the gate of the external n-channel  
MOSFET.  
7
8
7
8
13  
14  
GATE  
OUT  
Output Voltage. Connect OUT to the source of the external MOSFET.  
Circuit-Breaker Sense Input. Connect SENSE to OUT when not using an  
external R  
MOSFET when using an external R  
(Figure 1). Connect SENSE to the drain of the external  
9
9
15  
16  
SENSE  
CB  
SENSE  
(Figure 2).  
SENSE  
Circuit-Breaker Threshold Programming Input. Connect an external resistor,  
, from CB to V to set the circuit-breaker threshold voltage.  
10  
10  
R
CB  
S
Active-High ON/OFF Control Input. Drive EN1 high to enable the device when  
EN2 is low. Drive EN1 low to disable the device, regardless of the state of EN2.  
An optional external resistive-divider between V , EN1, and GND sets the  
CC  
3
EN1  
programmable turn-on voltage while EN2 is low.  
Active-Low ON/OFF Control Input. Drive EN2 low to enable the device when  
EN1 is high. Drive EN2 high to disable the device, regardless of the state of  
EN1.  
6
8
9
EN2  
LATCH  
TC  
Latch Mode Input. Drive LATCH low for autoretry mode. Drive LATCH high for  
latched mode.  
Circuit-Breaker Temperature Coefficient Selection Input. Drive TC low to select  
a 3300ppm/°C temperature coefficient. Drive TC high to select a 0ppm/°C  
temperature coefficient.  
10, 11  
EP  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect EP to GND.  
8
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
BACKPLANE  
REMOVABLE CARD  
1V TO V  
CC  
V
S
2.25V TO 13.2V  
V
CC  
R
SC  
20kΩ  
R
CB  
10Ω  
CB  
GATE SENSE OUT  
SC_DET  
V+  
ON (ON*)  
V
CC  
1µF  
GND  
C
L
MAX5925  
MAX5926  
PGOOD**  
EN (EN1**)  
EN2**  
EN  
PGOOD (PGOOD*)  
EN2  
GND  
SLEW  
GND  
TC** LATCH**  
C
SLEW  
*MAX5925A AND MAX5925C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 1. Typical Operating Circuit (Without R  
)
SENSE  
BACKPLANE  
REMOVABLE CARD  
1V TO V  
R
SENSE  
CC  
V
S
2.25V TO 13.2V  
V
CC  
20kΩ  
R
CB  
10Ω  
10Ω  
CB  
SENSE GATE  
OUT  
V+  
ON (ON*)  
V
CC  
SC_DET  
1µF  
GND  
C
L
MAX5924  
MAX5926  
PGOOD**  
EN (EN1**)  
EN2**  
EN  
PGOOD (PGOOD*)  
EN2  
GND  
SLEW  
GND  
TC**  
LATCH**  
C
SLEW  
V
CC  
*MAX5924A AND MAX5924C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 2. Typical Operating Circuit (With R  
)
SENSE  
_______________________________________________________________________________________  
9
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
GATE  
50kΩ  
V
CC  
CHARGE PUMP  
V = 9V  
Z
MAX5924  
MAX5925  
MAX5926  
2µA  
N
SLEW  
A
V
CC  
R
LP  
N
SC_DET  
OUT  
V
CB,TH  
CB  
SLOW  
COMPARATOR  
V
S
75kΩ  
75kΩ  
TIMER  
R
CBF  
0.2V  
V
OSCILLATOR  
CBF,TH  
FAST  
COMPARATOR  
I
TC***  
CB  
PGOOD*  
PGOOD**  
LOGIC  
CONTROL  
SENSE  
LATCH***  
V
V
CC  
EN/(EN1***)  
V
CC  
0.8V  
CC  
GND  
1.24V  
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, MAX5926 ONLY.  
***MAX5926 ONLY.  
EN2***  
Figure 3. Functional Diagram  
10 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Detailed Description  
V
RISES ABOVE V  
CC  
UVLO  
The MAX5924/MAX5925/MAX5926 are hot-swap con-  
troller ICs designed for applications where a line card is  
inserted into a live backplane. Normally, when a line card  
is plugged into a live backplane, the card’s discharged  
filter capacitors provide a low impedance that can  
momentarily cause the main power supply to collapse.  
The MAX5924/MAX5925/MAX5926 are designed to  
reside either in the backplane or in the removable card  
to provide inrush current limiting and short-circuit pro-  
tection. This is achieved using an external n-channel  
MOSFET and an optional external current-sense resistor.  
NO  
ENABLE TRUE?  
YES  
FAULT MANAGEMENT  
UVLO 200ms DELAY  
NO  
DISABLE FAULT PROTECTION,  
ENABLE LOAD PROBE  
R
YES  
SENSE  
Several critical parameters can be configured:  
Slew rate (inrush current)  
PRESENT?  
Circuit-breaker threshold  
Turn-on voltage  
I
= 2 x I  
CB  
CB,SU  
NO  
LOAD PROBE  
SUCCESSFUL?  
DISABLE SLOW  
COMPARATOR  
Fault-management mode (MAX5926)  
Circuit-breaker temperature coefficient (MAX5926)  
See the Selector Guide for a device-specific list of fac-  
tory-preset features and parameters.  
YES  
SLEW-RATE-LIMITED  
STARTUP  
Startup Mode  
ENABLE STANDARD BILEVEL  
FAULT PROTECTION  
BEGIN NORMAL OPERATION  
It is important that both V  
and V rise at a minimum  
S
YES  
CC  
V
GS  
V  
CB,EN  
GS  
V  
NO  
V
THPGOOD  
rate of 100mV/ms during the critical time when power  
voltages are below those values required for proper  
logic control of internal circuitry. This applies for 0.5V ≤  
PGOOD  
V
2.5V and 0.5V V 0.8V. This is particularly  
S
CC  
Figure 4. Startup Flow Chart  
true when LATCH is tied high.  
The MAX5924/MAX5925/MAX5926 control an external  
MOSFET placed in the positive power-supply pathway.  
When power is first applied, the MAX5924/MAX5925/  
MAX5926 hold the MOSFET off indefinitely if the supply  
voltage is below the undervoltage lockout level or if the  
device is disabled (see the EN (MAX5924/MAX5925),  
EN1/EN2 (MAX5926) section). If neither of these condi-  
tions exist, the device enters a UVLO startup delay  
period for 200ms. Next, the MAX5924/MAX5925/  
MAX5926 detect whether an external sense resistor is  
present; and then autoconfigure accordingly (see  
Figure 4).  
• If the device detects an external R  
, circuit-  
SENSE  
breaker threshold is set at 2xI , the slow compara-  
CB  
tor is disabled, the startup phase begins without  
delay for load probing, and slew-rate limiting is  
employed to gradually turn on the MOSFET.  
During the startup phase, the voltage at the load, V  
rises at a rate determined by the selected slew rate (see  
the Slew Rate section). The inrush current, I , to  
,
OUT  
INRUSH  
the load is limited to a level proportional to the load  
capacitance, C , and the slew rate:  
L
C × SR  
1000  
L
I
=
INRUSH  
• If no sense resistor is present, bilevel fault protection  
is disabled and load-probing circuitry is enabled  
(see the Load Probing section).  
where SR is the slew rate in V/ms and C is load capac-  
L
itance in µF.  
If load probing is not successful, the fault is man-  
aged according to the selected fault management  
mode (see the Latched and Auto-Retry Fault  
Management section).  
For operation with and without R  
, once V  
-
GATE  
SENSE  
V
exceeds V  
, PGOOD and/or PGOOD  
CB,EN  
OUT  
assert. When V  
MAX5925/MAX5926 enable standard bilevel fault pro-  
- V  
= V  
, the MAX5924/  
CB,EN  
GATE  
OUT  
If load probing (see the Load Probing section) is suc-  
cessful, slew-rate limiting is employed to gradually  
turn on the MOSFET.  
tection with normal I  
section).  
(see the Bilevel Fault Protection  
CB  
______________________________________________________________________________________ 11  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Load Probing  
The MAX5924/MAX5925/MAX5926 load-probing circuit-  
ry detects short-circuit conditions during startup. Load  
Normal Operation  
In normal operation, after startup is complete, protec-  
tion is provided by turning off the external MOSFET  
when a fault condition is encountered. Dual-speed/  
bilevel fault protection incorporates two comparators  
with different thresholds and response times to monitor  
the current:  
probing is active only when no external R  
is  
SENSE  
detected. As the device begins load probing, SC_DET  
is connected to V through an internal switch with an  
CC  
on-resistance of R (Figure 6). V  
then charges the  
CC  
LP  
load with a probe current limited at 200mA.  
= (V - V )/(R + R (Figure 1)  
(0.2V typ)  
1) Slow comparator. This comparator has a 1.6ms  
(typ) response time. The slow comparator ignores  
low-amplitude momentary current glitches. After an  
extended overcurrent condition, a fault is acknowl-  
edged and the MOSFET gate is discharged.  
I
)
SC  
PROBE  
CC  
OUT  
LP  
If the load voltage does not reach V  
within t , a short-circuit fault is detected and the start-  
LP,TH  
LP  
up mode is terminated according to the selected fault-  
management mode (see the Fault Management section  
and Figure 5). If no fault condition is present,  
PGOOD/PGOOD asserts at the end of the startup peri-  
od (see the Turn-On Waveforms in the Typical  
Operating Characteristics).  
2) Fast comparator. This comparator has a quick  
response time and a higher threshold voltage. The  
fast comparator turns off the MOSFET immediately  
when it detects a large high-current event such as a  
short circuit.  
Load probing can only be, and must be, employed  
In each case, when a fault is encountered, the power-  
good output deasserts and the device drives GATE low.  
After a fault, the MAX5924A, MAX5924B, MAX5925A,  
and MAX5925B latch GATE low and the MAX5924C,  
MAX5924D, MAX5925C, and MAX5925D enter the  
autoretry mode. The MAX5926 has selectable latched or  
autoretry modes. Figure 7 shows the slow comparator  
response to an overcurrent fault.  
when not using an external R  
.
SENSE  
V
OUT  
SR = dV  
dt  
SR = dV  
dt  
C
L
= SMALL  
V
LP,TH  
(0.2V typ)  
PGOOD*  
V
OUT  
C
L
= LARGE  
I
INRUSH  
C
L
= SMALL  
PGOOD**  
I
PROBE  
I
LOAD  
I
LOAD  
t
< t  
V
GATE  
PROBE LP  
V
THPGOOD  
Figure 5. Startup Waveform  
3.0V TO 6.7V  
14  
12  
10  
8
V
OUT  
I
LIM  
I
LOAD  
tCBS  
6
V
= V  
S
CC  
4
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, AND MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, AND MAX5926 ONLY.  
2
4
6
8
10  
12  
14  
V
(V)  
CC  
Figure 7. Slow Comparator Response to an Overcurrent Fault  
Figure 6. Load-Probe Resistance vs. Supply Voltage  
12 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Bilevel Fault Protection  
Bilevel Fault Protection in Startup Mode  
Table 1. Selecting Fault Management  
Mode (MAX5926)  
Bilevel fault protection is disabled in startup mode, and  
LATCH  
Low  
FAULT MANAGEMENT  
Autoretry mode  
Latched mode  
is enabled when V  
exceeds V  
at the  
CB,EN  
GATE-VOUT  
end of the startup period.  
High  
When no R is detected, neither slow nor fast com-  
SENSE  
parator is active during startup because the high  
RD(ON) of the MOSFET when not fully enhanced would  
Fast Comparator  
signal an artificially-high V -V  
voltage. Load prob-  
IN SENSE  
The fast comparator is used for serious current overloads  
or short circuits. If the load current reaches the fast com-  
parator threshold, the device quickly forces the MOSFET  
off. The fast comparator has a response time of 280ns,  
ing prior to startup insures that the output is not short cir-  
cuited.  
When R  
is detected, the slow comparator is dis-  
SENSE  
and discharges GATE with I  
(Figure 8a). The fast  
abled during startup while the fast comparator remains  
active. The overcurrent trip level is higher than normal  
during the startup period because the ICB is temporarily  
doubled to ICB,SU at this time. This allows higher than  
normal startup current to allow for output capacitor  
charging current.  
GATE,PD  
comparator is disabled during startup when no R  
is detected  
SENSE  
Latched and Autoretry Fault Management  
The MAX5924A, MAX5924B, MAX5925A, and MAX5925B  
latch the external MOSFET off when an overcurrent fault  
is detected. Following an overcurrent fault, the  
MAX5924C, MAX5924D, MAX5925C, and MAX5925D  
enter autoretry mode. The MAX5926 can be configured  
for either latched or autoretry mode (see Table 1).  
Slow Comparator  
The slow comparator is disabled during startup while  
the external MOSFET turns on.  
If the slow comparator detects an overload condition while  
in normal operation (after startup is complete), it turns off  
the external MOSFET by discharging the gate capaci-  
In autoretry, a fault turns the external MOSFET off then  
automatically restarts the device after the autoretry  
delay, t  
. During the autoretry delay, pull EN or  
tance with I  
. The magnitude of I  
GATE,PD  
RETRY  
GATE,PD  
EN1 low to restart the device. In latched mode, pull EN  
or EN1 low for at least 100µs to clear a latched fault  
and restart the device.  
depends on the external MOSFET gate-to-source volt-  
age, V . The discharge current is strongest immedi-  
GS  
ately following a fault and decreases as the MOSFET  
gate is discharged (Figure 8a).  
Power-Good Outputs  
The power-good output(s) are open-drain output(s) that  
deassert:  
60  
When V  
< V  
CC  
UVLO  
V
CC  
= 13.2V  
50  
40  
30  
20  
10  
0
During t  
When V < V  
During load probing  
When disabled (EN = GND (MAX5924/MAX5925),  
EN1 = GND or EN2 = high (MAX5926))  
D,UVLO  
GS  
THPGOOD  
During fault management  
During t  
or when latched off (MAX5924A,  
RETRY  
MAX5924B, MAX5925A, MAX5925B, or MAX5926  
(LATCH = low)).  
3
4
0
1
2
5
6
7
PGOOD/PGOOD asserts only if the part is in normal  
mode and no faults are present.  
V
(V)  
GS  
Figure 8a. Gate Discharge Current vs. MOSFET Gate-to-Source  
Voltage  
______________________________________________________________________________________ 13  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Undervoltage Lockout (UVLO)  
dV  
dt × 1000  
OUT  
I
(A) = C  
= C × SR  
L
UVLO circuitry prevents the MAX5924/MAX5925/  
INRUSH  
L
MAX5926 from turning on the external MOSFET until V  
CC  
. UVLO  
exceeds the UVLO threshold, V  
, for t  
UVLO  
D,UVLO  
where C is the load capacitance in µF and SR is the  
L
protects the external MOSFET from insufficient gate-drive  
voltage, and t ensures that the board is fully  
selected MAX5924/MAX5925/MAX5926 output slew rate  
in V/ms. For example, assuming a load capacitance of  
100µF and using the value of SR = 10V/ms, the anticipat-  
ed inrush current is 1A. If a 16V/ms output slew rate is  
used, the inrush current increases to 1.6A. Choose SR  
so the maximum anticipated inrush current does not trip  
the fast circuit-breaker comparator during startup.  
D,UVLO  
plugged into the backplane and V  
is stable prior to  
CC  
powering the hot-swapped system. Any input voltage  
transient at V  
below the UVLO threshold for more than  
CC  
the UVLO deglitch period, t , resets the device and ini-  
DG  
tiates a startup sequence. Device operation is protected  
from momentary input-voltage steps extending below the  
UVLO threshold for a deglitch period, t  
However, the  
DG.  
Slew Rate  
power-good output(s) may momentarily deassert if the  
magnitude of a negative step in V exceeds approxi-  
The MAX5924/MAX5925/MAX5926 limit the slew rate of  
CC  
V
OUT  
. Connect an external capacitor, C  
, between  
SLEW  
mately 0.5V, and V  
drops below V  
. Operation is  
CC  
UVLO  
SLEW and GND to adjust the slew-rate limit. Floating  
SLEW sets the maximum slew rate to the minimum value.  
unaffected and the power-good output(s) assert(s) within  
200µs as shown in Figure 8b. This figure also shows that  
Calculate C  
using the following equation:  
SLEW  
if the UVLO condition exceeds t  
= 900µs (typ), the  
DG  
C
SLEW  
= 330 10-9 / SR  
power-good output(s) again deassert(s) and the load is  
disconnected.  
where, SR is the desired slew rate in V/ms and C  
is in nF.  
SLEW  
Determining Inrush Current  
Determining a circuit’s inrush current is necessary to  
choose a proper MOSFET. The MAX5924/MAX5925/  
MAX5926 regulate the inrush current by controlling the  
output-voltage slew rate, but inrush current is also a  
function of load capacitance. Determine an anticipated  
inrush current using the following equation:  
This equation is valid for C  
100nF. For higher  
SLEW  
SR, see the Typical Operating Characteristics.  
A 2µA (typ) pullup current clamped to 1.4V causes an  
initial jump in the gate voltage, V  
, if C  
is small  
GATE  
GATE  
and the slew rate is slow (Figure 3). Figure 9 illustrates  
how the addition of gate capacitance minimizes this ini-  
tial jump. C  
should not exceed 25nF.  
GATE  
V = V = 13.2V  
S
CC  
C
= 1µF  
SLEW  
C = 10µF  
L
GATE  
2V/div  
MOSFET ONLY  
V
CC  
5V/div  
1V/div  
MOSFET AND  
= 20nF  
C
GATE  
0V  
0V  
1V/div  
PGOOD  
200µs/div  
10ms/div  
on the V  
Figure 8b. PGOOD Behavior with Large Negative Input-Voltage  
Step when V is Near V  
Figure 9. Impact of C  
Waveform  
GATE  
GATE  
S
S(MIN)  
14 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
rent. As load current flows through R  
(Figure 12)  
EN (MAX5924/MAX5925),  
EN1/EN2 (MAX5926)  
DS(ON)  
or R  
(Figure 13), a voltage drop is generated.  
SENSE  
After V  
exceeds V  
, the MAX5924/MAX5925/  
CB,EN  
The enable comparators control the on/off function of  
the MAX5924/MAX5925/MAX5926. Enable is also used  
to reset the fault latch in latch mode. Pull EN or EN1 low  
for 100µs to reset the latch. A resistive divider between  
GS  
MAX5926 monitor this voltage to detect overcurrent  
conditions. If this voltage exceeds the circuit-breaker  
threshold, the external MOSFET turns off and the  
power-good output(s) deassert(s). To accommodate  
different MOSFETs, sense resistors, and load currents,  
EN or EN1, V , and GND sets the programmable turn-  
S
on voltage to a voltage greater than V  
(Figure 10).  
UVLO  
the MAX5924/MAX5925/MAX5926 voltage across R  
CB  
Selecting a Circuit-Breaker Threshold  
The MAX5924/MAX5925/MAX5926 offer a circuit-break-  
er function to protect the external MOSFET and the load  
from the potentially damaging effects of excessive cur-  
can be set between 10mV and 500mV. The value of the  
circuit-breaker voltage must be carefully selected  
based on V (Figure 11).  
S
No R  
Mode  
SENSE  
When operating without R  
, calculate the circuit-  
SENSE  
breaker threshold using the MOSFET’s R  
at the  
DS(ON)  
V
S
worst possible operating condition, and add a 20% over-  
current margin to the maximum circuit current. For exam-  
R
CB  
ple, if a MOSFET has an R  
of 0.06at T  
=
A
DS(ON)  
R
1
+25°C, and a normalized on-resistance factor of 1.75 at  
= +105°C, the R used for calculation is the  
V
GATE  
CB  
EN (EN1)  
CC  
T
A
DS(ON)  
SENSE  
OUT  
product of these two numbers, or (0.06) x (1.75) =  
0.105. Then, if the maximum current is expected to be  
2A, using a 20% margin, the current for calculation is  
(2A) x (1.2) = 2.4A. The resulting minimum circuit-break-  
er threshold is then a product of these two numbers, or  
(0.105) x (2.4A) = 0.252V. Using this method to choose  
a circuit-breaker threshold allows the circuit to operate  
under worst-case conditions without causing a circuit-  
breaker fault, but the circuit-breaker function will still  
detect a short circuit or a gross overcurrent condition.  
R
2
MAX5924_  
MAX5925_  
MAX5926  
R
SC  
SC_DET  
(EN2)  
GND  
(R + R ) V  
EN/UVLO  
2
1
( ) ARE FOR MAX5926 ONLY.  
V
=
S,TURN-ON  
R
2
Figure 10. Adjustable Turn-On Voltage  
15,000  
15,000  
TC = 0ppm/°C  
TC = 3300ppm/°C  
V
V
V
= 1.5V  
= 1.4V  
= 1.3V  
S
S
S
12,000  
12,000  
9000  
6000  
3000  
0
V
= 1.5V  
S
9000  
6000  
3000  
0
V
V
V
V
V
= 1.4V  
= 1.3V  
= 1.2V  
= 1.1V  
= 1.0V  
S
S
S
S
S
V
V
V
= 1.2V  
= 1.1V  
= 1.0V  
S
S
S
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Maximum Circuit-Breaker Programming Resistor vs. Temperature  
______________________________________________________________________________________ 15  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
To determine the proper circuit-breaker resistor value  
use the following equation, which refers to Figure 12:  
minimum circuit-breaker threshold is then a product of  
this current and R = 0.06, or (0.06) x (2.4A) =  
0.144V. Using this method to choose a false circuit-  
breaker threshold allows the circuit to operate under  
worst-case conditions without causing a circuit-breaker  
fault, but the circuit-breaker function will still detect a  
short-circuit or a gross overcurrent condition.  
SENSE  
I
x R  
(T) + V  
(
)
TRIPSLOW  
DS(ON)  
CB,OS  
R
=
CB  
I
CB  
where I  
current.  
is the desired slow-comparator trip  
TRIPSLOW  
To determine the proper circuit-breaker resistor value,  
use the following equation, which refers to Figure 13:  
The fast-comparator trip current is determined by the  
selected R value and cannot be adjusted indepen-  
CB  
I
x R  
+ V  
(
)
TRIPSLOW  
SENSE  
OS  
CB,  
dently. The fast-comparator trip current is given by:  
R
=
CB  
I
CB  
I
x R  
(
+ R  
V
CB,OS  
)
CB  
CB  
CBF  
I
=
TRIPFAST  
where, I  
current.  
is the desired slow-comparator trip  
TRIPSLOW  
R
(T)  
DS(ON)  
SC_DET must be connected to OUT through the select-  
The fast-comparator trip current is determined by the  
selected R value and cannot be adjusted indepen-  
ed R when not using R  
SC  
.
SENSE  
CB  
dently. The fast-comparator trip current is given by:  
R
Mode  
SENSE  
, calculate the circuit-  
When operating with R  
SENSE  
I
x R  
(
+ R  
V
CB,OS  
)
CB  
CB  
CBF  
breaker threshold using the worst possible operating  
conditions, and add a 20% overcurrent margin to the  
maximum circuit current. For example, with a maximum  
expected current of 2A, using a 20% margin, the cur-  
rent for calculation is (2A) x (1.2) = 2.4A. The resulting  
I
=
TRIPFAST  
R
SENSE  
SC_DET should be connected to V  
SENSE  
when using  
CC  
R
.
I
LOAD  
I
LOAD  
R
DS(ON)  
R
SENSE  
V
S
V
OUT  
V
V
S
OUT  
R
CB  
R
CB  
SENSE  
GATE  
OUT  
CB  
CB GATE  
SENSE OUT  
SLOW  
COMPARATOR  
V
CB,TH  
SLOW  
COMPARATOR  
V
CB,TH  
MAX5925  
MAX5926  
R
V
CBF  
CB,OS  
MAX5925  
MAX5926  
V
CB,OS  
R
CBF  
FAST  
COMPARATOR  
FAST  
COMPARATOR  
I
CB  
I
CB  
TC  
TC  
SELECT  
V
CB,OS  
V
SELECT  
CB,OS  
V
CBF,TH  
V
CBF,TH  
Figure 12. Circuit Breaker Using R  
Figure 13. Circuit Breaker Using R  
DS(ON)  
SENSE  
16 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Circuit-Breaker Temperature Coefficient  
Table 2. Programming the Temperature  
Coefficient (MAX5926)  
In applications where the external MOSFET’s on-resis-  
tance is used as a sense resistor to determine overcur-  
rent conditions, a 3300ppm/°C temperature coefficient  
TC  
TC  
(ppm/°C)  
ICB  
is desirable to compensate for the R  
tempera-  
DS(ON)  
High  
Low  
0
ture coefficient. Use the MAX5926’s TC input to select  
the circuit-breaker programming current’s temperature  
3300  
coefficient, TC  
(see Table 2). The MAX5924 temper-  
ICB  
ature coefficient is preset to 0ppm/°C, and the  
MAX5925’s is preset to 3300ppm/°C.  
Table 3. Suggested External MOSFETs  
APPLICATION  
CURRENT (A)  
Setting TC  
to 3300ppm/°C allows the circuit-breaker  
ICB  
PART  
DESCRIPTION  
threshold to track and compensate for the increase in the  
MOSFET’s R with increasing temperature. Most  
DS(ON)  
International Rectifier  
IRF7401  
1
SO-8  
MOSFETs have a temperature coefficient within a  
3000ppm/°C to 7000ppm/°C range. Refer to the MOSFET  
data sheet for a device-specific temperature coefficent.  
2
5
Siliconix Si4378DY  
SO-8  
Siliconix SUD40N02-06  
Siliconix SUB85N02-03  
DPAK  
D2PAK  
R
and I  
are temperature dependent, and can  
CB  
DS(ON)  
10  
therefore be expressed as functions of temperature. At  
a given temperature, the MAX5925/MAX5926 indicate  
an overcurrent condition when:  
50  
45  
40  
35  
30  
25  
20  
I
x R  
(T) I (T) x R + |V  
|
V = V = 13.2V, R = 672Ω, I = 5A,  
TRIPSLOW  
DS(ON)  
TRIPSLOW  
DS(ON)  
CB  
CB  
CB,OS  
S
CC  
CB  
R
(25) = 6.5mΩ  
where V  
is the worst-case offset voltage. Figure 14  
CB,OS  
CIRCUIT-BREAKER TRIP REGION  
graphically portrays operating conditions for a MOSFET  
with a 4500ppm/°C temperature coefficient.  
(V  
SENSE  
V  
CB  
)
Applications Information  
Component Selection  
V
= R  
(T) x I  
CB,OS  
SENSE  
DS(ON)  
LOAD(MAX)  
n-Channel MOSFET  
Most circuit component values may be calculated with  
the aid of the MAX5924–MAX5926. The "Design calcula-  
tor for choosing component values" software can be  
downloaded from the MAX5924–MAX5926 Quickview on  
the Maxim website.  
(4500ppm/°C)  
V
= I (T) x R + V  
CB CB  
CB  
(3300ppm/°C)  
-40  
-15  
10  
35  
60  
85  
110  
TEMPERATURE (°C)  
Select the external n-channel MOSFET according to the  
application’s current and voltage level. Table 3 lists some  
recommended components. Choose the MOSFET’s  
Figure 14. Circuit-Breaker Trip Point and Current-Sense  
Voltage vs. Temperature  
on-resistance, R  
, low enough to have a minimum  
DS(ON)  
voltage drop at full load to limit the MOSFET power dis-  
sipation. High R can cause undesired power  
loss and output ripple if the board has pulsing loads or  
triggers an external undervoltage reset monitor at full  
load. Determine the device power-rating requirement to  
accommodate a short circuit on the board at startup  
with the device configured in autoretry mode.  
stand single-shot pulses with higher dissipation than the  
specified package rating. Low MOSFET gate capaci-  
tance is not necessary since the inrush current limiting is  
achieved by limiting the gate dv/dt. Table 4 lists some  
recommended manufacturers and components.  
DS(ON)  
Be sure to select a MOSFET with an appropriate gate  
drive (see the Typical Operating Characteristics).  
Using the MAX5924/MAX5925/MAX5926 in latched mode  
Typically, for V  
MOSFET.  
less than 3V, select a 2.5V V  
GS  
CC  
allows the consideration of MOSFETs with higher R  
DS(ON)  
and lower power ratings. A MOSFET can typically with-  
______________________________________________________________________________________ 17  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Table 4. Component Manufacturers  
COMPONENT  
MANUFACTURER  
Dale-Vishay  
IRC  
PHONE  
WEBSITE  
402-564-3131  
828-264-8861  
888-522-5372  
310-233-3331  
www.vishay.com  
www.irctt.com  
Sense Resistors  
Fairchild  
www.fairchildsemi.com  
www.irf.com  
MOSFETs  
International Rectifier  
Optional Sense Resistor  
9  
9  
330 × 10  
330 × 10  
Select the sense resistor in conjunction with R  
to set  
CB  
C
=
=
= 0.1µF  
SLEW  
V
SR  
the slow and fast circuit-breaker thresholds (see the  
Selecting a Circuit-Breaker Threshold section). The  
sense-resistor power dissipation depends on the device  
3.3  
ms  
2) Select a MOSFET and determine the worst-case  
power dissipation.  
configuration. If latched mode is selected, P  
=
RSENSE  
(I  
P
)2 x R  
OVERLOAD  
; if autoretry is selected, then  
OVERLOAD  
SENSE  
3) Minimize power dissipation at full load current and  
at high temperature by selecting a MOSFET with an  
= (I  
)2 x R  
x (t /t  
).  
RSENSE  
SENSE  
ON RETRY  
Choose a sense-resistor power rating of twice the  
appropriate R  
. Assume a 20°C temperature  
DS(ON)  
P
for long-term reliable operation. In addition,  
RSENSE  
difference between the MAX5924/MAX5925/  
MAX5926 and the MOSFET.  
ensure that the sense resistor has an adequate I2T rating  
to survive instantaneous short-circuit conditions.  
For example, at room temperature the IRF7822’s  
No-Load Operation  
The internal circuitry is capable of sourcing a current at  
R
= 6.5m. The temperature coefficient for  
DS(ON)  
this device is 4000ppm/°C. The maximum R  
DS(ON)  
the OUT terminal of up to 120µA from a voltage V  
+
for the MOSFET at T  
= +105°C is:  
IN  
J(MOSFET)  
V
GS  
. If there is no load on the circuit, the output capacitor  
ppm  
°C  
will charge to a voltage above V until the external MOS-  
IN  
R
= 6.5mΩ × 1+ (105°C 25°C) × 4000  
DS(ON)105  
FET’s body diode conducts to clamp the capacitor volt-  
age at VIN plus the body-diode V . When testing or  
F
= 8.58mΩ  
operating with no load, it is therefore recommended that  
the output capacitor be paralleled with a resistor of value:  
The power dissipation in the MOSFET at full load is:  
2
2
P
= I R = (5A) × 8.58mΩ = 215mW  
R = V / 120µA  
X
D
where V is the maximum acceptable output voltage  
X
prior to hot-swap completion.  
4) Select R  
.
CB  
Since the MOSFET’s temperature coefficient is  
4000ppm/°C, which is greater than TC  
(3300ppm/°C), calculate the circuit-breaker thresh-  
old at high temperature so the circuit breaker is  
guaranteed not to trip at lower temperature during  
normal operation (Figure 15).  
Design Procedure  
ICB  
Given:  
V  
= V = 5V  
S
CC  
C = 150µF  
L
Full-Load Current = 5A  
No R  
I
= I  
+ 20% = 5A + 20% = 6A  
TRIPSLOW  
FULL LOAD  
SENSE  
R
= 8.58m(max), from step 2  
DS(ON)105  
I  
= 500mA  
INRUSH  
I
= 58µA x (1 + (3300ppm/°C x (85 - 25)°C)  
= 69.5µA (min)  
CB85  
Procedures:  
1) Calculate the required slew rate and corresponding  
C
SLEW  
:
I
x R  
+ V  
CB,OS  
(
TRIPSLOW  
)
DS(ON)105  
R
CB  
=
I
V
ms  
INRUSH  
I
CB85  
SR =  
= 3.3  
1000 × C  
L
R
= ((6A x 8.58m) + 4.7mV)/69.5µA = 808Ω  
CB  
18 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
the two devices are equal, the circuit-breaker trip  
threshold is most accurate. Keep the MOSFET and the  
MAX5925/MAX5926 as close to each other as possible  
to facilitate thermal coupling.  
Layout Considerations  
Keep all traces as short as possible and maximize the  
high-current trace dimensions to reduce the effect of  
undesirable parasitic inductance. Place the MAX5924/  
MAX5925/MAX5926 close to the card’s connector. Use  
a ground plane to minimize impedance and induc-  
tance. Minimize the current-sense resistor trace length  
(<10mm), and ensure accurate current sensing with  
Kelvin connections.  
HIGH-CURRENT PATH  
When the output is short circuited, the voltage drop  
across the external MOSFET becomes large. Hence, the  
power dissipation across the switch increases, as does  
the die temperature. An efficient way to achieve good  
power dissipation on a surface-mount package is to lay  
out two copper pads directly under the MOSFET pack-  
age on both sides of the board. Connect the two pads  
to the ground plane through vias, and use enlarged  
copper mounting pads on the top side of the board.  
SENSE RESISTOR  
R
CB  
MAX5924  
MAX5925  
MAX5926  
It is important to maximize the thermal coupling between  
the MOSFET and the MAX5925/MAX5926 to balance the  
device junction temperatures. When the temperatures of  
Figure 15. Kelvin Connection for the Current-Sense Resistor  
Selector Guide  
POWER-GOOD OUTPUT  
CIRCUIT-BREAKER  
PART  
TEMPCO  
(ppm/°C)  
FAULT MANAGEMENT  
PGOOD  
(OPEN-DRAIN)  
PGOOD  
(OPEN-DRAIN)  
MAX5924A  
0
Latched  
Latched  
MAX5924B  
MAX5924C  
MAX5924D  
MAX5925A  
MAX5925B  
MAX5925C  
MAX5925D  
MAX5926  
0
0
Autoretry  
0
Autoretry  
3300  
Latched  
3300  
3300  
Latched  
Autoretry  
3300  
Autoretry  
0 or 3300 (Selectable)  
Latched or Autoretry (Selectable)  
______________________________________________________________________________________ 19  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Pin Configurations  
TOP VIEW  
V
CC  
1
2
3
4
5
6
7
8
16 CB  
SC_DET  
EN1  
15 SENSE  
14 OUT  
13 GATE  
12 SLEW  
11 N.C.  
10 N.C.  
V
1
2
3
4
5
10 CB  
CC  
SC_DET  
9
8
7
6
SENSE  
PGOOD  
GND  
MAX5924  
MAX5925  
EN  
PGOOD (PGOOD)  
GND  
OUT  
MAX5926  
GATE  
SLEW  
EN2  
PGOOD  
LATCH  
µMAX  
9
TC  
( ) FOR THE MAX5924A, MAX5924C, MAX5925A, AND MAX5925C.  
QSOP-EP  
Typical Operating Circuits  
(continued)  
Chip Information  
TRANSISTOR COUNT: 3751  
PROCESS: BiCMOS  
TYPICAL OPERATION WITH R  
SENSE  
BACKPLANE  
REMOVABLE CARD  
R
SENSE  
N
V
OUT  
1V TO V  
CC  
V
S
2.25V TO 13.2V  
V
CC  
R
CB  
CB  
OUT  
SENSE GATE  
V
CC  
MAX5924  
MAX5926  
GND  
GND  
SEE FIGURE 2 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITH R  
.
SENSE  
20 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
1
______________________________________________________________________________________ 21  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
16L QSOP, .150" EXPOSED PAD  
1
21-0112  
C
1
Revision History  
Pages changed at Rev 1: 1–13, 15–18,  
Title change—all pages.  
Pages changed at Rev 2: 1–4, 10–12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY