MAX5987AETE [MAXIM]

IEEE 802.3af-Compliant, High-Efficiency, Class 1,Powered Devices with Integrated DC-DC Converter; 符合IEEE 802.3af标准,高效率, 1级,具有集成DC -DC转换器供电设备
MAX5987AETE
型号: MAX5987AETE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IEEE 802.3af-Compliant, High-Efficiency, Class 1,Powered Devices with Integrated DC-DC Converter
符合IEEE 802.3af标准,高效率, 1级,具有集成DC -DC转换器供电设备

转换器
文件: 总20页 (文件大小:1817K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6261; Rev 0; 4/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Benefits and Features  
The MAX5986A/MAX5987A provide a complete power-  
supply solution as IEEE 802.3af-compliant Class 1  
S IEEE 802.3af Compliant  
®
S PoE Class 1 Classification  
Powered Devices (PDs) in a Power-over-Ethernet (PoE)  
system. The MAX5986A/MAX5987A integrate the PD  
interface with an efficient DC-DC converter, offering a low  
external part count PD solution. The MAX5987A includes  
a low-dropout regulator and the MAX5986A includes  
sleep and ultra-low power modes.  
S Simplified Wall Adapter Interface  
S Efficient, Integrated DC-DC Converter (with  
Integrated Switches)  
S 8.7V to 60V Wide Input Voltage Range  
S 3.0V to 5.6V Programmable Output Voltage Range  
S Internal Compensation  
The PD interface provides a detection signature and a  
Class 1 classification signature with a single external  
resistor. The PD interface also provides an isolation  
power MOSFET, a 60mA (max) inrush current limit, and a  
201mA (typ) operating current limit.  
S Fixed 275kHz Switching Frequency  
S Frequency Foldback for High-Efficiency Light-  
Load Operation  
The integrated step-down DC-DC converter uses a peak  
current-mode control scheme and provides an easy-to-  
implement architecture with a fast transient response.  
The step-down converter operates in a wide input volt-  
age range from 8.7V to 60V and supports up to 3.84W  
of input power at 1.15A load. The DC-DC converter  
operates at a fixed 275kHz switching frequency, with an  
efficiency-boosting frequency foldback that reduces the  
switching frequency by half at light loads.  
S Built-In Output-Voltage Monitoring  
S Open-Drain RESET Output (MAX5987A)  
S Protects Against Overload, Output Short Circuit,  
Output Overvoltage, and Overtemperature  
S Hiccup-Mode Runaway Current Limit  
S Back-Bias Capability to Optimize the Efficiency  
S Integrated TVS Diode Withstands Cable Discharge  
Event (CDE)  
The devices feature an input undervoltage-lockout  
(UVLO) with wide hysteresis and long deglitch time to  
compensate for twisted-pair cable resistive drop and to  
assure glitch-free transition during power-on/-off condi-  
tions. The devices also feature overtemperature shut-  
down, short-circuit protection, output overvoltage protec-  
tion, and hiccup current limit for enhanced performance  
and reliability.  
S Internal LDO Regulator with Up to 100mA Load  
(MAX5987A)  
S Fixed 3.3V or Adjustable Output Voltage Through  
an External Resistive Divider  
S 49mA (typ) Inrush Current Limit  
S Pass 2kV, 200m CAT-6 Cable Discharge Event  
The MAX5986A/MAX5987A are available in a 16-pin,  
5mm x 5mm, TQFN power package and operate over the  
-40°C to +85°C temperature range.  
Applications  
IEEE 802.3af-Powered Devices  
IP Phones  
Wireless Access Nodes  
IP Security Cameras  
Ordering Information appears at end of data sheet.  
®
WiMAX Base Stations  
IEEE is a registered service mark of the Institute of Electrical  
and Electronics Engineers, Inc.  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX5986A/MAX5987A.related.  
WiMAX is a registered certification mark and registered service  
mark of WiMAX Forum.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
PGND to GND ......................................................-0.3V to +0.3V  
LX Total RMS Current...........................................................1.6A  
V
to GND...........................................................-0.3V to +70V  
DD  
Continuous Power Dissipation (T = + 70NC)  
(100V, 100ms, R  
= 3.3kω) (Note 1)  
A
TEST  
TQFN (derate 28.6mW/NC above +70NC)..............2285.7mW  
Operating Temperature Range.......................... -40NC to +85NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
V
, WAD, RREF to GND ........................ -0.3V to (V  
+ 0.3V)  
CC  
DD  
AUX, LDO_IN, LED to GND .................................... -0.3V to 16V  
LDO_OUT to GND.............................. -0.3V to (LDO_IN + 0.3V)  
LDO_FB to GND......................................................-0.3V to +6V  
LX to GND ................................................ -0.3V to (V  
LDO_OUT, VDRV, FB, RESET, WK, SL, ULP,  
+ 0.3V)  
CC  
to GND..............................................................-0.3V to +6V  
VDRV to V ............................................ -0.3V to (V  
+ 0.3V)  
DD  
DD  
Note 1: See Figure 1, Test Circuit.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 2)  
Junction-to-Ambient Thermal Resistance (q )..............35°C/W  
JA  
Junction-to-Case Thermal Resistance (q )..................2.7°C/W  
JC  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 48V, R  
= 24.9kω, LED, V , SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND,  
DD  
SIG CC  
C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), V = V  
= 0V, LX unconnected. All voltages are referenced to GND, unless  
FB  
AUX  
otherwise noted. T = T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
J
A
PARAMETER  
POWER DEVICE (PD) INTERFACE  
DETECTION MODE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset Current  
I
V
V
= 1.4V to 10.1V (Note 4)  
10  
FA  
kI  
OFFSET  
dR  
VDD  
Effective Differential Input  
Resistance  
= 1.4V to 10.1V with 1V step,  
VDD  
23.95  
25.5  
(Note 5)  
CLASSIFICATION MODE  
Classification Enable Threshold  
Classification Disable Threshold  
Classification Stability Time  
Classification Current  
V
V
V
rising  
rising  
10.2  
22  
11.42  
23  
12.5  
23.8  
V
V
TH,CLS,EN  
DD  
V
TH,CLS,DIS  
DD  
2
ms  
mA  
I
V
= 12.6V to 20V  
9.12  
11.88  
CLASS  
DD  
POWER MODE  
V
V
Supply Voltage Range  
Supply Current  
V
60  
4.5  
V
DD  
DD  
I
V
V
V
= 60V  
rising  
falling  
3.6  
mA  
DD  
DD  
DD  
DD  
DD  
MAX5986A  
MAX5987A  
34.3  
30  
35.7  
38.7  
31.4  
37.6  
V
Turn-On Voltage  
Turn-Off Voltage  
V
V
V
DD  
DD  
ON  
V
V
OFF  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 48V, R  
= 24.9kω, LED, V , SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND,  
DD  
SIG CC  
C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), V = V  
= 0V, LX unconnected. All voltages are referenced to GND, unless  
FB  
AUX  
otherwise noted. T = T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
J
A
PARAMETER  
Turn-On/Off Hysteresis  
Deglitch Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
4.2  
MAX  
UNITS  
V
MAX5986A  
MAX5987A  
3.4  
V
V
V
(Note 6)  
DD  
HYST_UVLO  
7.2  
t
V
falling from 40V to 20V (Note 5)  
100  
Fs  
DD  
OFF_DLY  
DD  
t
= time from a (V  
- V ) 1.5V  
DELAY  
DD CC  
Inrush to Operating Mode Delay  
t
75  
90  
110  
2.2  
60  
ms  
DELAY  
to 0V step to DC-DC converter turn-on  
T = +25NC  
1.2  
1.5  
Isolation Power MOSFET  
On-Resistance  
J
I
R
I
= 100mA  
VCC  
ON_ISO  
T = +85NC  
J
CURRENT LIMIT  
During initial turn-on period,  
- V = 4V, measured at V  
CC  
Inrush Current Limit  
I
39  
49  
mA  
INRUSH  
V
DD  
CC  
Current Limit During Normal  
Operation  
After inrush completed,  
I
175  
201  
226  
8.8  
mA  
V
LIM  
V
= V  
- 1.5V, measured at V  
CC  
DD CC  
WAD Detection Rising Threshold  
V
WAD_RISE  
WAD_FALL  
WAD Detection Falling  
Threshold  
V
5.8  
V
WAD Detection Hysteresis  
WAD Input Current  
0.6  
V
I
V
= 24V  
125  
FA  
WAD  
WAD  
INTERNAL REGULATOR WITH BACK BIAS  
V
V
V
Input Voltage Range  
Input Current  
V
Inferred from V input current  
AUX  
4.75  
0.65  
4.2  
14  
3.1  
5.5  
V
mA  
V
AUX  
AUX  
DRV  
AUX  
V
from 4.75V to 14V  
AUX  
Output Voltage  
SLEEP MODE (MAX5986A)  
WK and ULP Logic Threshold  
SL Logic Threshold  
V
V
falling and V rising and falling  
ULP  
1.6  
2.9  
0.8  
V
V
TH  
WK  
Falling  
0.55  
SL Current  
V
R
R
R
= 0V  
62.5  
10.6  
21.2  
21.2  
FA  
SL  
SL  
SL  
SL  
= 60.4kI, V  
= 30.2kI, V  
= 30.2kI, V  
= 6.5V  
= 6.5V  
= 3.5V  
9.2  
12  
LED  
LED  
LED  
LED Current Amplitude  
I
19.2  
23.5  
mA  
LED  
LED Current Programmable  
Range  
10  
20  
mA  
LED Current with Grounded SL  
LED Current Frequency  
V
= 0V  
20.6  
26.4  
250  
25  
31.4  
mA  
Hz  
%
SL  
f
Sleep and ultra-low power modes  
Sleep and ultra-low power modes  
ILED  
LED Current Duty Cycle  
D
ILED  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 48V, R  
= 24.9kω, LED, V , SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND,  
DD  
SIG CC  
C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), V = V  
= 0V, LX unconnected. All voltages are referenced to GND, unless  
FB  
AUX  
otherwise noted. T = T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
Sleep mode, V = 6.5V  
MIN  
TYP  
12  
MAX  
UNITS  
mA  
%
V
Current Amplitude  
I
10  
14.5  
DD  
VDD  
LED  
Internal Current Duty Cycle  
Internal Current Enable Time  
Internal Current Disable Time  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
LDO (MAX5987A)  
D
Sleep and ultra-low power modes  
Ultra-low power mode  
75  
IVDD  
MPS  
t
76  
87  
98  
ms  
t
Ultra-low power mode  
205  
235  
265  
ms  
MPDO  
T
T rising  
J
143  
16  
NC  
NC  
SD  
T
SD,HYS  
Input Voltage Range  
Inferred from line regulation  
4.5  
14  
V
V
Output Voltage  
LDO_FB = V  
3.3  
DRV  
Max Output Voltage Setting  
LDO FB Regulation Voltage  
LDO FB Leakage Current  
With external divider to LDO_FB  
5.5  
V
1.224  
1
V
FA  
V
= 5V, V  
= 80mA  
= V  
,
LDO_IN  
LDO_FB  
DRV  
Dropout  
500  
mV  
I
LOAD  
Load Regulation  
Line Regulation  
I
from 1mA to 80mA  
0.4  
3
mV/mA  
mV/V  
LOAD  
VLDO_IN from 4.5V to 14V  
Overcurrent Protection  
Threshold  
I
100  
mA  
OVC  
LDO_FB Rising Threshold  
LDO_FB Hysteresis  
2
1
V
V
DC-DC CONVERTER INPUT SUPPLY  
V
V
V
= V  
= V  
= V  
= V  
+ 0.3V, rising  
+ 0.3V, falling  
8.7  
7.6  
60  
60  
DD,RISING  
CC  
DD  
WAD  
V
Voltage Range  
V
DD  
V
DD,FALLING  
CC  
DD  
WAD  
WAD Detection Rising Threshold  
V
(Note 9)  
(Note 9)  
8.8  
V
V
V
WAD,RISE  
WAD Detection Falling  
Threshold  
V
5.8  
WAD,FALL  
WAD Detection Hysteresis  
POWER MOSFETs  
0.6  
I
I
High-Side pMOS On-Resistance  
Low-Side nMOS On-Resistance  
R
I
I
= 0.5A (sourcing)  
= 0.5A (sinking)  
0.65  
0.16  
1.01  
0.33  
DSON-H  
LX  
LX  
R
DSON-L  
V
V
= V  
= (V  
= 28V,  
DD  
LX  
CC  
LX Leakage Current  
I
-5  
+5  
FA  
LX-LKG  
+ 1V) to (V  
- 1V)  
PGND  
CC  
SOFT-START (SS)  
Soft-Start Time  
t
7.45  
ms  
SS-TH  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 48V, R  
= 24.9kω, LED, V , SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND,  
DD  
SIG CC  
C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), V = V  
= 0V, LX unconnected. All voltages are referenced to GND, unless  
FB  
AUX  
otherwise noted. T = T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
J
A
PARAMETER  
FEEDBACK (FB)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FB Regulation Voltage  
FB Input Bias Current  
OUTPUT VOLTAGE  
Output Voltage Range  
V
1.203  
1.225  
10  
1.252  
200  
V
FB-RG  
I
V
= 1.224V  
nA  
FB  
FB  
V
3.0  
101.5  
98.2  
5.6  
107.8  
104  
V
OUT  
Rising (Note 7)  
Falling (Note 7)  
105  
Cycle by Cycle Overvoltage  
Protection  
V
%
OUT-OV  
101.1  
INTERNAL COMPENSATION NETWORK  
Compensation Network Zero-  
Resistance  
R
200  
150  
kI  
ZERO  
ZERO  
Compensation Network Zero-  
Capacitance  
C
pF  
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
1.45  
A
A
PEAK-LIMIT  
Runaway Current-Limit  
Threshold  
I
RUNAWAY-  
LIMIT  
1.9  
I
VALLEY-  
LIMIT  
Valley Current-Limit Threshold  
1.5  
25  
A
ZX Threshold  
I
mA  
ZX  
TIMINGS  
Switching Frequency  
Frequency Foldback  
f
245  
275  
305  
kHz  
kHz  
SW  
f
122.5  
137.5  
152.5  
SW-FOLD  
Consecutive ZX Events for  
Entering Foldback  
8
8
Events  
Events  
%
Consecutive ZX Events for  
Exiting Foldback  
V
Undervoltage Trip Level to  
OUT  
V
After soft-start completed (Note 7)  
55  
60  
65  
OUT-HICF  
Cause HICCUP  
HICCUP Timeout  
Minimum On-Time  
LX Dead Time  
120  
97  
ms  
ns  
ns  
t
126  
ON-MIN  
14  
RESET (MAX5987A)  
V
Threshold for RESET  
FB  
V
V
V
falling (Note 7)  
rising (Note 7)  
90  
95  
%
%
FB-OKF  
FB  
FB  
Assertion  
V
Threshold for RESET  
FB  
V
FB-OKR  
Deassertion  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 48V, R  
= 24.9kω, LED, V , SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND,  
DD  
SIG CC  
C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), V = V  
= 0V, LX unconnected. All voltages are referenced to GND, unless  
FB  
AUX  
otherwise noted. T = T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Threshold for RESET  
V
falling, LDO_FB = V  
DRV  
LDO_FB  
LDO_FB  
V
90  
%
LDO_FB-OKF  
Assertion  
(Note 8)  
RESET Deassertion Delay After  
FB Reaches 95% Regulation  
3.72  
ms  
RESET Output Voltage Low  
RESET Leakage Current  
I
= 1mA  
0.1  
10  
V
SINK  
FA  
Note 3: All devices are 100% production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 4: The input offset current is illustrated in Figure 2.  
Note 5: Effective differential input resistance is defined as the differential resistance between V  
and GND, see Figure 2.  
DD  
Note 6: A 20V glitch on input voltage, which takes V  
exit power-on mode.  
below V  
shorter than or equal to t  
does not cause the device to  
DD  
ON  
OFF_DLY  
Note 7 Referred to feedback regulation voltage.  
Note 8: Referred to LDO feedback regulation voltage.  
Note 9: The WAD Detection Rising and Falling Thresholds control the isolation power MOS transistor. To turn the DC-DC on in  
WAD mode, the WAD must be detected and the V  
must be within the V  
voltage range.  
DD  
DD  
I
IN  
(V  
(I  
- V  
)
1V  
R
INi + 1  
INi  
TEST  
dR =  
i
=
- I  
)
(I  
- I  
)
INi + 1 INi  
INi + 1 INi  
V
INi  
I
= I  
-
OFFSET INi  
dR  
i
1ms/10ms/100ms  
MAX5986A  
I
INi + 1  
100V  
EVALUATION  
BOARD  
dR  
i
I
INi  
I
OFFSET  
V
IN  
V
INi  
1V  
V
INi + 1  
Figure 1. MAX5986A/MAX5987A Internal TVS Test Setup  
Figure 2. Effective Differential Resistance and Offset Current  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Device with Integrated DC-DC Converter  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
QUIESCENT CURRENT vs. SUPPLY  
VOLTAGE (ULTRA-LOW POWER MODE)  
SIGNATURE RESISTANCE  
vs. SUPPLY VOLTAGE  
DETECTION CURRENT vs. INPUT VOLTAGE  
0.50  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
28  
27  
26  
25  
24  
23  
22  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.4  
2.9  
4.4  
5.9  
7.4  
8.9 10.1  
35  
40  
45  
50  
55  
60  
1.4  
2.9  
4.4  
5.9  
7.4  
8.9 10.1  
INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
INPUT OFFSET CURRENT  
vs. INPUT VOLTAGE  
CLASSIFICATION CURRENT  
vs. INPUT VOLTAGE  
3
2
10.60  
10.58  
10.56  
10.54  
10.52  
10.50  
10.48  
10.46  
10.44  
10.42  
10.40  
1
0
-1  
-2  
-3  
1.4  
2.9  
4.4  
5.9  
7.4  
8.9 10.1  
12.6  
14.1  
15.6  
17.1  
18.6  
20.0  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
INRUSH CURRENT LIMIT vs. V VOLTAGE  
CC  
CLASSIFICATION SETTLING TIME  
60  
56  
52  
48  
44  
40  
MAX5986A toc06  
V
DD  
10V/div  
GND  
I
DD  
10mA/div  
0mA  
0
6
12 18 24 30 36 42 48  
(V)  
400µs/div  
V
CC  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Device with Integrated DC-DC Converter  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. LOAD CURRENT  
(V = 5V)  
LED CURRENT vs. R  
SL  
LED CURRENT vs. LED VOLTAGE  
OUT  
28  
24  
20  
18  
12  
8
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
25  
20  
15  
10  
5
V
DD  
= 48V  
R
= 30.2kI  
SL  
V
= 12V  
WAD  
V
DD  
= 57V  
R
= 60.4kI  
SL  
AUX CONNECTED TO V  
OUT  
10  
20  
30  
40  
R
50  
60  
70  
80  
0
100 200 300 400 500 600 700 800  
LOAD CURRENT (mA)  
0
1.75  
3.50  
5.25  
7.00  
(kI)  
LED VOLTAGE (V)  
SL  
5V LOAD TRANSIENT  
(0% TO 50%)  
5V LOAD TRANSIENT  
(50% TO 100%)  
MAX5986A toc11  
MAX5986A toc12  
V
OUT  
V
OUT  
AC-COUPLED  
50mV/div  
AC-COUPLED  
50mV/div  
I
OUT  
I
OUT  
500mA/div  
500mA/div  
0A  
0A  
100µs/div  
100µs/div  
DC-DC CONVERTER STARTUP  
= 0A  
DC-DC CONVERTER STARTUP  
= 6.67I  
I
R
OUT  
OUT  
MAX5986A toc13  
MAX5986A toc14  
V
V
OUT  
OUT  
1V/div  
1V/div  
V
V
GND  
GND  
2ms/div  
2ms/div  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Pin Configurations  
TOP VIEW  
12  
11  
10  
9
12  
11  
10  
9
SL  
LDO_FB  
8
7
6
5
8
7
6
5
V
V
13  
14  
15  
16  
V
V
13  
14  
15  
16  
DD  
DD  
VDRV  
GND  
FB  
VDRV  
GND  
FB  
CC  
CC  
MAX5986A  
MAX5987A  
PGND  
RREF  
PGND  
RREF  
*EP  
*EP  
+
+
1
2
3
4
1
2
3
4
TQFN  
TQFN  
*EXPOSED PAD, CONNECT TO GND  
*EXPOSED PAD, CONNECT TO GND  
Pin Description  
PIN  
MAX5986A MAX5987A  
NAME  
FUNCTION  
Auxiliary Voltage Input. Auxiliary input to the internal regulator V  
. Connect AUX  
DRV  
1
1
AUX  
to output of buck converter if the output voltage greater than 4.75V to back bias the  
internal circuitry and increase efficiency. Connect to a clean ground when not used.  
2
3
2
LX  
Inductor Connection. Inductor connection for the internal DC-DC converter.  
LED Driver Output. In sleep mode, LED sources a periodic current (I  
25% duty cycle.  
) at 250Hz with  
LED  
LED  
Wake Mode Enable Input. WK has an internal 50kIpullup resistor to the internal 5V  
bias rail. A falling edge on WK brings the device out of sleep mode and into the normal  
operating mode (wake mode).  
4
WK  
LDO Input Voltage. Connect LDO_IN to output when used, otherwise connect to GND.  
Connect a minimum 1FF bypass capacitor between LDO_IN and GND.  
3
4
LDO_IN  
LDO Output Voltage. Connect a minimum 1FF output capacitor between LDO_OUT and  
GND.  
LDO_OUT  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Pin Description (continued)  
PIN  
NAME  
FB  
FUNCTION  
MAX5986A MAX5987A  
Feedback. Feedback input for the DC-DC buck converter. Connect FB to a resistive  
divider from the output to GND to adjust the output voltage.  
5
5
Ground. Reference Rail for the Device. It is also the “quiet” ground for all voltage  
reference (e.g. FB is referenced to this GND).  
6, 10, 11  
6, 9, 10  
GND  
Internal 5V Regulator Voltage Output. The internal voltage regulator provides 5V to the  
7
8
7
VDRV  
MOSFET driver and other internal circuits. V  
drive external circuits. Connect a 1Ff bypass capacitor between V  
is referenced to GND. Do not use V  
to  
DRV  
DRV  
and GND.  
DRV  
Sleep Mode Enable Input. A falling edge on SL brings the device into sleep mode. An  
external resistor (R ) connected between SL and GND sets the LED current (I ).  
SL  
SL  
LED  
Ultra-Low Power-Mode Enable Input. ULP has an internal 50kIpullup resistor to the  
internal 5V bias rail. A falling edge on SL while ULP is asserted low enables ultra-low  
power mode. When ultra-low power mode is enabled, the power consumption of the  
device is reduced even lower than sleep mode to comply with ultra-low power sleep  
power requirements while still supporting MPS.  
9
ULP  
Wall Power Adapter Detector Input. Wall adapter detection is enabled when the voltage  
from WAD to GND is greater than 8.8V. When a wall power adapter is present, the  
isolation p-channel power MOSFET turns off. Connect WAD directly to GND when the  
wall power adapter or other auxiliary power source is not used.  
12  
12  
WAD  
13  
14  
13  
14  
V
V
Positive Supply Input. Connect a 68nF (min) bypass capacitor between V  
and PGND.  
DD  
DD  
DC-DC Converter Power Input. V  
is connected to V  
by an isolation p-channel  
DD  
CC  
MOSFET. Connect a 10FF capacitor in parallel with a 1FF ceramic capacitor between  
CC  
V
and PGND.  
CC  
Power Ground. Power ground of the DC-DC converter power stage. Connect PGND  
to GND with a star connection. Do not use PGND as reference for sensitive feedback  
circuit.  
15  
16  
15  
16  
8
PGND  
RREF  
Signature Resistor Connection. Connect a 24.9kIresistor (R ) to GND.  
SIG  
LDO Regulator Feedback Input. Connect to V  
to get the preset LDO output voltage  
DRV  
LDO_FB  
of 3.3V, or connect to a resistive divider from the LDO_OUT to GND for an adjustable  
LDO output voltage.  
Open-Drain RESET Output. The RESET output is driven low if either LDO_OUT or FB  
drops below 90% of its set value. RESET goes high 100Fs after both LDO_OUT and FB  
rise above 95% of their set values. Leave unconnected when not used.  
11  
RESET  
EP  
Exposed Pad. Connect the exposed pad to ground.  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
tion current at 10.5mA. The PSE uses this to determine  
the maximum power to deliver. The classification cur-  
Detailed Description  
rent includes current drawn by the supply current of  
the device so the total current drawn by the PD is within  
PD Interface  
The MAX5986A/MAX5987A include complete interface  
the IEEE 802.3af standard. The classification current is  
functions for a PD to comply with the IEEE 802.3af stan-  
turned off when the device leaves classification mode.  
dard as a Class 1 PD. The devices provide the detection  
and classification signatures using a single external sig-  
nature resistor. An integrated MOSFET provides isolation  
from the buck converter when the PSE has not applied  
power. The MAX5986A/MAX5987A guarantee a leakage  
current offset of less than 10µA during the detection  
phase. The devices feature power-mode undervoltage-  
lockout (UVLO) with wide hysteresis and long deglitch  
time to compensate for twisted-pair-cable resistive drop  
and to ensure glitch-free transitions between detection,  
classification, and power-on/-off modes.  
Power Mode (V  
> V  
)
DD  
ON  
In power mode, the MAX5986A/MAX5987A have the  
isolation MOSFET between V and V fully on. The  
DD  
CC  
MAX5987A has the buck regulator enabled and the LDO  
enabled. The MAX5986A can be in either wake mode,  
sleep mode, or ultra-low power mode. The buck regulator  
is enabled when the MAX5986A is in wake mode.  
The devices enter power mode when V  
rises above  
DD  
the undervoltage lockout threshold (V ). When V  
ON  
DD  
rises above V , the device turns on the internal p-chan-  
ON  
nel isolation MOSFET to connect V  
to V  
with inrush  
Operating Modes  
The MAX5986A/MAX5987A operate in three different  
CC  
DD  
current limit internally set to 49mA (typ). The isolation  
MOSFET is fully turned on when V is near V and the  
modes depending on V . The three modes are detec-  
CC  
DD  
DD  
inrush current is below the inrush limit. Once the isola-  
tion MOSFET is fully turned on, the device changes the  
current limit to 201mA (typ). The buck converter turns on  
100ms after the isolation MOSFET turns on fully.  
tion mode, classification mode, and power mode. The  
device is in detection mode when V  
and 10.1V, classification mode when V  
is between 1.4V  
DD  
is between  
DD  
12.6V and 20V, and power mode when the input voltage  
exceeds V  
.
ON  
Undervoltage Lockout  
The MAX5986A/MAX5987A operate with up to a 60V  
supply voltage with a turn-on UVLO threshold (V ) at  
35.4V/38.7V (typ), and a turn-off UVLO threshold (V  
Detection Mode (1.4V < V  
< 10.1V)  
DD  
In detection mode, the MAX5986A/MAX5987A provide  
ON  
OFF  
a signature differential resistance to V . During detec-  
)
DD  
tion, the power-sourcing equipment (PSE) applies two  
at 31.4V (typ). When the input voltage is above V  
,
ON  
voltages to V , both between 1.4V and 10.1V with a  
the device enters power mode and the internal isolation  
MOSFET is turned on. When the input voltage is below  
DD  
minimum 1V increment. The PSE computes the differ-  
ential resistance to ensure the presence of the 24.9kω  
signature resistor. Connect the 24.9kω signature resistor  
V
for more than t  
, the MOSFET and the buck  
OFF_DLY  
OFF  
converter are off.  
(R ) from RREF to GND for proper signature detec-  
SIG  
LED Driver (MAX5986A)  
tion. The device applies V  
to RREF when in detection  
DD  
The MAX5986A drives an LED, or multiple LEDs in series,  
with a maximum LED voltage of 6.5V. In sleep mode and  
ultra-low power mode, the LED current is pulse width  
modulated with a duty cycle of 25% and the amplitude  
mode, and the V  
offset current due to the device is  
DD  
less than 10µA. The DC offset due to protection diodes  
does not significantly affect the signature resistance  
measurement.  
is set by R . The LED driver current amplitude is pro-  
SL  
Classification Mode (12.6V < V  
< 20V)  
grammable from 10mA to 20mA using R according to  
DD  
SL  
In classification mode, the MAX5986A/MAX5987A sink  
a Class 1 classification current. The PSE applies a clas-  
sification voltage between 12.6V and 20V, and measures  
the classification current. The MAX5986A/MAX5987A use  
the formula:  
I
= 646/R (mA)  
SL  
LED  
where R is in kω.  
SL  
the external 24.9kω resistor (R ) to set the classifica-  
SIG  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
The application circuit must ensure that the auxiliary  
power source can provide power to V and V by  
Sleep and Ultra-Low Power Modes  
(MAX5986A)  
The MAX5986A features a sleep mode and an ultra-low  
power mode in which the internal p-channel isolation  
MOSFET is kept on and the buck regulator is off. In sleep  
mode, the LED driver output (LED) pulse width modu-  
lates the LED current with a 25% duty cycle. The peak  
DD  
CC  
means of external diodes. The voltage on V  
must be  
DD  
within the V  
voltage range to allow the DC-DC to oper-  
DD  
ate. To allow operation of the DC-DC converter, the V  
DD  
and V  
voltage must be greater than 8.7V, on the rising  
CC  
edge, while on the falling edge the V  
and V  
may fall  
DD  
CC  
down to 7.3V keeping the DC-DC converter on.  
LED current (I  
) is set by an external resistor R . To  
LED  
SL  
enable sleep mode, apply a falling edge to SL with ULP  
disconnected or high impedance. Sleep mode can only  
be entered from wake mode.  
Note: When operating solely with a wall power adapter,  
the WAD voltage must be able to meet the condition V  
> 8.7V, that likely results in WAD > 9.4V.  
DD  
Ultra-low power mode allows the MAX5986A to reduce  
power consumption lower than sleep mode, while main-  
taining the power signature of the IEEE standard. The  
ultra-low power-mode enable input ULP is internally held  
high with a 50kω pullup resistor to the internal 5V bias of  
the device. To enable ultra-low power mode, apply a fall-  
ing edge to SL with ULP = LOW. Ultra-low power mode  
can only be entered from wake mode.  
Internal Linear Regulator and Back Bias  
An internal voltage regulator provides VDRV to internal  
circuitry. The VDRV output is filtered by a 1µF capaci-  
tor connected from VDRV to GND. The regulator is for  
internal use only and cannot be used to provide power to  
external circuits. VDRV can be powered by either V  
or  
DD  
V
, depending on V  
AUX  
. The internal regulator is used  
AUX  
for both PD and buck converter operations.  
To exit from sleep mode or ultra-low power mode and  
resume normal operation, apply a falling edge on the  
wake-mode enable input (WK).  
V
can be used to back bias the VDRV voltage regu-  
OUT  
lator if V  
is greater than 4.75V. Back biasing VDRV  
OUT  
increases device efficiency by drawing current from  
instead of V . If V is used as back bias,  
V
Thermal-Shutdown Protection  
If the MAX5986A/MAX5987A die temperature reaches  
143°C, an overtemperature fault is generated and the  
device shuts down. The die temperature must cool down  
below +127°C to remove the overtemperature fault con-  
dition. After a thermal shutdown condition clears, the  
device is reset.  
OUT  
DD  
OUT  
OUT  
connect AUX directly to V  
V
converter’s output has reached its regulation voltage.  
. In this configuration, the  
source switches from V  
to V  
after the buck  
DRV  
DD  
AUX  
Cable Discharge Event Protection (CDE)  
A 70V voltage clamp is integrated to protect the internal  
circuits from a cable discharge event.  
WAD Description  
For applications where an auxiliary power source such  
as a wall power adapter is used to power the PD,  
the MAX5986A/MAX5987A feature wall power adapter  
detection.  
DC-DC Buck Converter  
The DC-DC buck converter uses a PWM, peak current-  
mode, fixed-frequency control scheme providing an  
easy-to-implement architecture without sacrificing a fast  
transient response. The buck converter operates in a  
wide input voltage range from 8.7V to 60V and supports  
up to 3.84W of output power at 1.15A load. The devices  
provide a wide array of protection features including  
UVLO, overtemperature shutdown, short-circuit protec-  
tion with hiccup runaway current limit, cycle-by-cycle  
peak current protection, and cycle-by-cycle output over-  
voltage protection, for enhanced performance and reli-  
ability. A frequency foldback scheme is implemented to  
reduce the switching frequency to half at light loads to  
increase the efficiency.  
The wall power adapter is connected from WAD to  
PGND. The MAX5986A/MAX5987A detect the wall power  
adapter when the voltage from WAD to PGND is greater  
than 8.8V. When a wall power adapter is detected, the  
internal isolation MOSFET is turned off, classification cur-  
rent is disabled.  
Connect the auxiliar power source to WAD, connect a  
diode from WAD to V , and connect a diode from WAD  
DD  
to V . See the typical application circuit in Figure 2.  
CC  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Frequency Foldback Protection for  
High-Efficiency Light-Load Operation  
auxiliary power source through V . Connect the auxil-  
iary power source to WAD, connect a diode from WAD to  
CC  
The MAX5986A/MAX5987A enter frequency foldback  
mode when eight consecutive inductor current zero-  
crossings occur. The switching frequency is 275kHz  
under loads large enough that the inductor current does  
not cross zero. In frequency foldback mode, the switch-  
ing frequency is reduced to 137.5kHz to increase power  
conversion efficiency. The device returns to normal  
mode when the inductor current does not cross zero for  
eight consecutive switching periods. Frequency foldback  
mode is forced during startup until 50% of the soft-start  
is completed.  
V
. See the typical application circuit in Figure 2.  
CC  
Adjusting LDO Output Voltage (MAX5987A)  
An uncommitted LDO regulator is available to provide  
a supply voltage to external circuits. A preset voltage  
of 3.3V is set by connecting LDO_FB directly to VDRV.  
For different output voltages connect a resistor divider  
from LDO_OUT and LDO_FB to GND. The total feedback  
resistance should be in the range of 100kω. The maxi-  
mum output current is 85mA and thermal considerations  
must be taken to prevent triggering thermal shutdown.  
The LDO regulator can be powered by VOUT, a differ-  
ent power supply, or grounded when not used. The LDO  
is enabled once the buck converter has reached the  
regulation voltage. The LDO is disabled when the buck  
converter is turned off or not regulating.  
Hiccup Mode  
The MAX5986A/MAX5987A include a hiccup protection  
feature. When hiccup protection is triggered, the devices  
turn off the high-side and turn on the low-side MOSFET  
until the inductor current reaches the valley current limit.  
The control logic waits 120ms until attempting a new soft-  
start sequence. Hiccup mode is triggered if the current  
in the high-side MOSFET exceeds the runaway current-  
limit threshold, both during soft-start and during normal  
operating mode. Hiccup mode can also be triggered in  
normal operating mode in the case of an output under-  
voltage event. This happens if the regulated feedback  
voltage drops below 60% (typ).  
Adjusting Buck Converter Output Voltage  
The buck converter output voltage is set by changing the  
feedback resistor-divider ratio. The output voltage can  
be set from 3.0V to 5.6V. The FB voltage is regulated to  
1.225V. Keep the trace from the FB pin to the center of  
the resistive divider short, and keep the total feedback  
resistance around 100kω.  
Inductor Selection  
Choose an inductor with the following equation:  
RESET Output (MAX5987A)  
The MAX5987A features an open-drain RESET output  
that indicates if either the LDO or the switching regula-  
tor drop out of regulation. The RESET output goes low if  
either regulator drops below 92% of its regulated feed-  
back value. RESET goes high impedance 100µs after  
both regulators are above 95% of their value.  
where LIR is the ratio of the inductor ripple current to  
full load current at the minimum duty cycle. Choose LIR  
between 20% to 40% for best performance and stability.  
Use an inductor with the lowest possible DC resistance  
that fits in the allotted dimensions. Powdered iron ferrite  
core types are often the best choice for performance.  
With any core material, the core must be large enough  
not to saturate at the current limit of the MAX5986A.  
Applications Information  
Operation with Wall Adapter  
For applications where an auxiliary power source such  
as a wall power adapter is used to power the PD, the  
MAX5986A features wall power adapter detection. The  
V
Input Capacitor Selection  
CC  
device gives priority to the WAD supply over V  
supply,  
DD  
The input capacitor reduces the current peaks drawn  
from the input power supply and reduces switching noise  
in the IC. The total input capacitance must be equal or  
greater than the value given by the following equation  
to keep the input-ripple voltage within specification and  
minimize the high-frequency ripple current being fed  
back to the input source:  
and smoothly switches the power supply to WAD when  
it is detected. The wall power adapter is connected from  
WAD to PGND. The MAX5986A detects the wall power  
adapter when the voltage from WAD to PGND is greater  
than 8.8V. When a wall power adapter is detected, the  
internal isolation MOSFET is turned off, classification  
current is disabled and the device draws power from the  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
where V  
is the maximum allowed input ripple  
IN-RIPPLE  
voltage across the input capacitors and is recommended  
to be less than 2% of the minimum input voltage. D is the  
duty cycle (V  
f ).  
S
/V ) and T is the switching period (1/  
OUT IN  
S
The impedance of the input capacitor at the switching  
frequency should be less than that of the input source so  
high-frequency switching currents do not pass through  
the input source, but are instead shunted through the  
input capacitor. The input capacitor must meet the ripple  
current requirement imposed by the switching currents.  
The RMS input ripple current is given by:  
or whichever is larger. The peak-to-peak inductor current  
(I  
)
P-P  
Use these equations for initial output capacitor selec-  
tion. Determine final values by testing a prototype or an  
evaluation circuit. A smaller ripple current results in less  
output-voltage ripple. Since the inductor ripple current is  
a factor of the inductor value, the output-voltage ripple  
decreases with larger inductance. Use ceramic capaci-  
tors for low ESR and low ESL at the switching frequency  
of the converter. The ripple voltage due to ESL is negli-  
gible when using ceramic capacitors.  
where I  
is the input RMS ripple current.  
RIPPLE  
Output Capacitor Selection  
The key selection parameters for the output capacitor are  
capacitance, ESR, ESL, and voltage-rating requirements.  
These affect the overall stability, output ripple voltage,  
and transient response of the DC-DC converter. The out-  
put ripple occurs due to variations in the charge stored in  
the output capacitor, the voltage drop due to the capaci-  
tor’s ESR, and the voltage drop due to the capacitor’s  
ESL. Estimate the output-voltage ripple due to the output  
capacitance, ESR, and ESL:  
Load-transient response depends on the selected output  
capacitance. During a load transient, the output instantly  
changes by ESR x I  
. Before the controller can  
LOAD  
respond, the output deviates further, depending on the  
inductor and output capacitor values. After a short time,  
the controller responds by regulating the output voltage  
back to its predetermined value. The controller response  
time depends on the closed-loop bandwidth. A higher  
bandwidth yields a faster response time, preventing the  
output from deviating further from its regulating value.  
V
= V  
+ V  
+V  
RIPPLE  
RIPPLE(C)  
RIPPLE(ESR) RIPPLE(ESL)  
where the output ripple due to output capacitance, ESR,  
and ESL is:  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
4) Connect V , V , and PGND separately to a large  
PCB Layout  
Careful PCB layout is critical to achieve clean and stable  
operation. It is highly recommended to duplicate the  
MAX5986A EV kit layout for optimum performance. If  
deviation is necessary, follow these guidelines for good  
PCB layout:  
DD CC  
copper area to help cool the IC to further improve  
efficiency and long-term reliability.  
5) Ensure all feedback connections are short and direct.  
Place the feedback resistors and compensation com-  
ponents as close as possible to the IC.  
1) Connect input and output capacitors to the power  
ground plane; connect all other capacitors to the sig-  
nal ground plane.  
6) Route high-speed switching nodes, such as LX, away  
from sensitive analog areas (FB).  
7) Place enough vias in the pad for the EP of the  
MAX5986A/MAX5987A so that heat generated inside can  
be effectively dissipated by the PCB copper. The recom-  
mended spacing for the vias is 1mm to 1.2mm pitch. The  
thermal vias should be plated (1oz copper) and have a  
small barrel diameter (0.3mm to 0.33mm).  
2) Place capacitors on V , V , AUX, V  
as close  
DRV  
DD CC  
as possible to the IC and its corresponding pin using  
direct traces. Keep power ground plane (connected  
to PGND) and signal ground plane (connected to  
GND) separate.  
3) Keep the high-current paths as short and wide as  
possible. Keep the path of switching current short  
and minimize the loop area formed by LX, the output  
capacitors, and the input capacitors.  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Typical Application Circuits  
C1  
68nF  
C2  
10µF  
RJ-45 AND  
BRIDGE  
1µF  
RECTIFIER  
V
V
WAD  
AUX  
DD CC  
VDRV  
L0  
47µH  
5V  
OUTPUT  
C3  
1µF  
LX  
C4  
47µF  
R1  
75kI  
WK  
ULP  
SL  
MAX5986A  
TO µP OPEN-DRAIN OUTPUTS  
OR PULLDOWN SWITCHES  
FB  
R2  
24.9kI  
R
SL  
60.4kI  
LED  
RREF  
GND  
PGND  
R
SIG  
24.9kI  
0I  
Figure 3. MAX5986A 5V Output with Back Bias  
���������������������������������������������������������������� Maxim Integrated Products 16  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Typical Application Circuits (continued)  
C1  
68nF  
C2  
10µF  
RJ-45 AND  
BRIDGE  
1µF  
RECTIFIER  
V
V
WAD  
AUX  
DD CC  
LDO_FB  
VDRV  
L0  
47µH  
5V  
OUTPUT  
C3  
1µF  
LX  
C4  
47µF  
R1  
75kI  
LDO_IN  
TO 5V OUTPUT  
MAX5987A  
LDO_OUT  
FB  
C5  
1µF  
C6  
1µF  
R2  
24.9kI  
LED  
RREF  
GND  
PGND  
R
SIG  
24.9kI  
0I  
Figure 4. MAX5987A 5V Buck Regulator Output and 3.3V LDO Output  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Functional Diagram  
V
V
DD  
CC  
5V  
TVS  
HOT-SWAP  
CONTROLLER  
DETECTION  
GND  
CLASSIFICATION  
5V  
RREF  
WAD  
PD VOLTAGE  
MONITOR  
AUX  
5V  
5V  
5V  
1.5V  
VDRV  
1
5V  
REGULATOR  
0
CLK  
LX  
CONTROL  
DRIVER  
VREF  
LDO_IN  
VREF  
LDO_OUT  
LDO  
PGND  
FB  
LDO_FB  
(MAX5987A ONLY)  
OPEN DRAIN  
RESET  
V
5V  
DD  
MAX5986A  
MAX5987A  
50kI  
50kI  
5V  
WK  
SL  
VREF  
BANDGAP  
LOGIC  
ULP  
LED  
(MAX5986A ONLY)  
���������������������������������������������������������������� Maxim Integrated Products 18  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
NO.  
16 TQFN-EP  
T1655-4  
21-0140  
90-0121  
Ordering Information  
SLEEP/ULP  
PART  
PIN-PACKAGE  
LDO  
UVLO (V)  
RESET  
MODE  
MAX5986AETE+  
16 TQFN-EP*  
16 TQFN-EP*  
YES  
NO  
35.7  
38.7  
NO  
MAX5987AETE+**  
NO  
YES  
YES  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
���������������������������������������������������������������� Maxim Integrated Products 19  
MAX5986A/MAX5987A  
IEEE 802.3af-Compliant, High-Efficiency, Class 1,  
Powered Devices with Integrated DC-DC Converter  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
4/12  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
20  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5987AETE+

IEEE 802.3af-Compliant, High-Efficiency, Class 1,Powered Devices with Integrated DC-DC Converter
MAXIM

MAX5987AETE+T

Switching Regulator, BICMOS, PQCC16,
MAXIM

MAX5988

High Efficiency During Light Loads Reduces Power Consumption
MAXIM

MAX5988A

High Efficiency During Light Loads Reduces Power Consumption
MAXIM

MAX5988AETP+

Switching Regulator, BICMOS, PQCC20,
MAXIM

MAX5988AEVKIT#

Power Management Circuit,
MAXIM

MAX5988B

High Efficiency During Light Loads Reduces Power Consumption
MAXIM

MAX5988BETP+

IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, Powered Devices
MAXIM

MAX5988CETP+

Switching Regulator
MAXIM

MAX5988CETP+T

Switching Regulator
MAXIM

MAX5991

High Efficiency During Light Loads Reduces Power Consumption
MAXIM

MAX5991A

High Efficiency During Light Loads Reduces Power Consumption
MAXIM