MAX618EEE [MAXIM]

28V, PWM, Step-Up DC-DC Converter; 28V , PWM ,升压型DC- DC转换器
MAX618EEE
型号: MAX618EEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

28V, PWM, Step-Up DC-DC Converter
28V , PWM ,升压型DC- DC转换器

转换器
文件: 总14页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1462; Rev 0; 6/99  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX618 CMOS, PWM, step-up DC-DC converter  
g e ne ra te s outp ut volta g e s up to 28V a nd a c c e p ts  
inputs from +3V to +28V. An internal 2A, 0.3switch  
eliminates the need for external power MOSFETs while  
supplying output currents up to 500mA or more. A  
PWM control scheme combined with Idle Mode™ oper-  
ation at light loads minimizes noise and ripple while  
maximizing efficiency over a wide load range. No-load  
operating current is 500µA, which allows efficiency up  
to 93%.  
Adjustable Output Voltage Up to +28V  
Up to 93% Efficiency  
Wide Input Voltage Range (+3V to +28V)  
Up to 500mA Output Current at +12V  
500µA Quiescent Supply Current  
3µA Shutdown Current  
250kHz Switching Frequency  
Small 1W 16-Pin QSOP Package  
A fast 250kHz switching frequency allows the use of  
small surface-mount inductors and capacitors. A shut-  
down mode extends battery life when the device is not  
in us e . Ad a p tive s lop e c omp e ns a tion a llows the  
MAX618 to accommodate a wide range of input and  
output voltages with a simple, single compensation  
capacitor.  
The MAX618 is available in a thermally enhanced 16-  
pin QSOP package that is the same size as an industry-  
s ta nd a rd 8-p in SO b ut d is s ip a te s up to 1W. An  
e va lua tion kit (MAX618EVKIT) is a va ila b le to he lp  
speed designs.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX618EEE  
-40°C to +85°C  
16 QSOP  
Ap p lic a t io n s  
Automotive-Powered DC-DC Converters  
Industrial +24V and +28V Systems  
LCD Displays  
Typ ic a l Op e ra t in g Circ u it  
Palmtop Computers  
P in Co n fig u ra t io n  
V
IN  
3V TO 28V  
V
OUT  
IN  
LX  
UP TO 28V  
TOP VIEW  
MAX618  
GND  
LX  
1
2
3
4
5
6
7
8
16 GND  
15 PGND  
14 PGND  
13 PGND  
12 GND  
11 VL  
SHDN  
PGND  
LX  
LX  
MAX618  
VL  
FB  
SHDN  
COMP  
FB  
10 IN  
COMP  
GND  
GND  
9 GND  
QSOP  
Idle Mode is a trademark of Maxim Integrated Products.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
ABSOLUTE MAXIMUM RATINGS  
IN to GND...............................................................-0.3V to +30V  
LX to GND ..............................................................-0.3V to +30V  
VL to GND ................................................................-0.3V to +6V  
SHDN, COMP, FB to GND............................-0.3V to (VL + 0.3V)  
PGND to GND.....................................................................±0.3V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C) (Note 1)  
A
16-Pin QSOP (derate 15mW/°C above +70°C)...................1W  
MAX618  
2
Note 1: With part mounted on 0.9 in. of copper.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +6V, PGND = GND, C = 4.7µF, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
VL  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
28  
UNITS  
V
Input Voltage  
V
IN  
3
Supply Current, No Load  
I
500  
5
700  
µA  
V
= 3V to 28V, V = 1.6V, SHDN = VL  
IN  
IN  
FB  
Supply Current, Full Load, VL  
Connected to IN  
I
IN  
6.5  
3.5  
mA  
mA  
V
IN  
= 3V to 5.5V, V = 1.4V, SHDN = VL = IN  
FB  
V
= 3.4V to 28V, V = 1.4V, SHDN = VL,  
FB  
IN  
Supply Current, Full Load  
I
IN  
2.5  
V
VL  
< V  
IN  
Shutdown Supply Current  
VL Output Voltage  
VL Load Regulation  
VL Undervoltage Lockout  
FB Set Voltage  
I
3
8
µA  
V
V
= 28V, V = 1.6V, SHDN = GND  
IN  
IN  
FB  
V
V
IN  
= 3.5V or 28V, no load  
2.9  
3.05  
25  
3.2  
40  
VL  
V  
I
= 0 to 2mA, V = 1.6V  
mV  
V
VL  
LOAD  
FB  
Rising edge, 1% hysteresis  
2.58  
1.47  
2.7  
1.5  
1
2.8  
1.53  
50  
V
V
FB  
FB Input Bias Current  
Line Regulation  
I
FB  
V
FB  
= 1.6V  
nA  
%/V  
%
V  
V
IN  
= 3V to 6V, V = 12V  
OUT  
0.01  
0.2  
0.08  
OUT  
Load Regulation  
V  
V
OUT  
= 12V, I = 10mA to 500mA  
LOAD  
OUT  
LX Voltage  
V
LX  
28  
V
LX Switch Current Limit  
I
PWM mode  
1.7  
2.2  
2.7  
A
LXON  
Idle Mode Current-Limit  
Threshold  
0.25  
0.35  
0.45  
A
LX On-Resistance  
R
0.3  
0.02  
200  
0.6  
10  
LXON  
LX Leakage Current  
I
V
= 28V  
µA  
µA  
LXOFF  
LX  
COMP Maximum Output Current  
I
FB = GND  
100  
0.8  
COMP  
COMP Current vs. FB Voltage  
Transconductance  
FB = 0.1V  
1
mmho  
V
IL  
0.8  
V
V
SHDN Input Logic Low  
SHDN Input Logic High  
Shutdown Input Current  
Switching Frequency  
Maximum Duty Cycle  
V
IH  
2.0  
1
µA  
kHz  
%
SHDN = GND or VL  
f
200  
90  
250  
95  
300  
DC  
2
_______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
ELECTRICAL CHARACTERISTICS  
(V = +6V, PGND = GND, C = 4.7µF, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
IN  
VL  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
28  
UNITS  
V
Input Voltage  
V
IN  
3
Supply Current, No Load  
I
IN  
800  
µA  
V
IN  
= 3V to 28V, V = 1.6V, SHDN = VL  
FB  
Supply Current, Full Load,  
VL Connected to IN  
I
7.5  
4
mA  
mA  
V
= 3V to 5.5, V = 1.4V, SHDN = VL = IN  
IN  
IN  
FB  
V
= 3.4V to 28V, V = 1.4V, SHDN = VL,  
FB  
IN  
Supply Current, Full Load  
I
IN  
VL < V  
IN  
Supply Current Shutdown  
VL Output Voltage  
I
10  
3.3  
µA  
V
V
= 28V, V = 1.6V, SHDN = GND  
IN  
IN  
FB  
V
V
IN  
= 3.5V or 28V, no load  
2.85  
2.55  
VL  
VL Undervoltage Lockout  
FB Set Voltage  
V
Rising edge, 1% hysteresis  
2.85  
1.545  
28  
V
VL  
V
1.455  
V
FB  
LX Voltage Range  
V
V
LXON  
LX Switch Current Limit  
LX On-Resistance  
I
PWM mode  
1.4  
3
A
LXON  
R
0.6  
LXON  
f
Switching Frequency  
188  
312  
kHz  
Note 2: Specifications to -40°C are guaranteed by design, not production tested.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, T = +25°C.)  
A
EFFICIENCY vs. OUTPUT CURRENT  
(V = 12V)  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 28V)  
OUT  
OUT  
100  
100  
V
IN  
= 12V  
V
= 8V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 5V  
IN  
V
IN  
= 3V  
V
IN  
= 5V  
V
= 3V  
IN  
0
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
3
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, T = +25°C.)  
A
NO-LOAD SUPPLY CURRENT  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
700  
650  
600  
550  
500  
450  
400  
350  
300  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.65  
V
= 3V  
IN  
MAX618  
0.60  
0.55  
0.50  
0.45  
0.40  
V
IN  
= 5V  
V
= 8V  
IN  
INCLUDES CAPACITOR LEAKAGE CURRENT  
2
7
12  
17  
22  
27  
32  
0
5
10  
15  
20  
25  
30  
-50 -30 -10 10 30 50 70 90 110  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
HEAVY-LOAD SWITCHING  
MEDIUM-LOAD SWITCHING  
WAVEFORMS  
WAVEFORMS  
LINE-TRANSIENT RESPONSE  
MAX618 toc08  
MAX618 toc07  
MAX618 toc09  
I
L
V
OUT  
(1A/div)  
(50mV/div)  
I
L
(1A/div)  
0
0
V
LX  
V
LX  
(10V/div)  
(10V/div)  
V
V
OUT  
6V  
3V  
OUT  
V
(5V/div)  
IN  
(100mV/div)  
(100mV/  
div)  
2µs/div  
= 5V, V = 12V, I = 500mA  
2µs/div  
2ms/div  
V
IN  
OUT  
OUT  
I
= 200mA, V = 12V  
V
IN  
= 5V, V = 12V, I = 200mA  
OUT OUT  
OUT  
OUT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
SHUTDOWN RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX618 toc11  
MAX618 toc10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 12V  
OUT  
V
SHDN  
(2V/div)  
OUT  
(200mV/div)  
0
12V  
5V  
I
OUT  
(100mA/div)  
V
OUT  
0
(2V/div)  
500µs/div  
2
3
4
5
6
7
8
9
10 11 12  
5ms/div  
INPUT VOLTAGE (V)  
V
IN  
= 5V, V = 12V, I  
= 500mA  
OUT  
LOAD  
V
IN  
= 5V, V = 12V  
OUT  
4
_______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
P in De s c rip t io n  
PIN  
NAME  
GND  
LX  
FUNCTION  
1, 8, 9,  
12, 16  
Ground  
2, 3, 4  
5
Drain of internal N-channel switch. Connect the inductor between IN and LX.  
Shutdown Input. A logic low puts the MAX618 in shutdown mode and reduces supply current to 3µA.  
SHDN must not exceed VL. In shutdown, the output falls to V less one diode drop.  
SHDN  
IN  
6
7
COMP  
FB  
Compensation Input. Bypass to GND with the capacitance value shown in Table 2.  
Feedback Input. Connect a resistor-divider network to set V  
. FB threshold is 1.5V.  
OUT  
LDO Regulator Supply Input. IN accepts inputs up to +28V. Bypass to GND with a 1µF ceramic capacitor  
as close to pins 10 and 12 as possible.  
10  
IN  
11  
VL  
Internal 3.1V LDO Regulator Output. Bypass to GND with a 4.7µF capacitor.  
Power Ground, source of internal N-channel switch  
13, 14, 15  
PGND  
_______________ De t a ile d De s c rip t io n  
The MAX618 pulse-width modulation (PWM) DC-DC  
L
3V TO 28V  
V
converter with an internal 28V switch operates in a wide  
ra ng e of DC-DC c onve rs ion a p p lic a tions inc lud ing  
boost, SEPIC, and flyback configurations. The MAX618  
IN  
C
IND  
uses fixed-frequency PWM operation and Maxims pro-  
ECB1Q503L  
prietary Idle Mode control to optimize efficiency over a  
wide range of loads. It also features a shutdown mode  
to minimize quiescent current when not in operation.  
V
OUT  
LX  
IN  
UP TO 28V  
1µF  
C
OUT  
MAX618  
R1  
SHDN  
PGND  
P WM Co n t ro l S c h e m e a n d  
Id le Mo d e Op e ra t io n  
The MAX618 combines continuous-conduction PWM  
operation at medium to high loads and Idle Mode oper-  
ation at light loads to provide high efficiency over a  
wide range of load conditions. The MAX618 control  
scheme actively monitors the output current and auto-  
matically switches between PWM and Idle Mode to  
optimize efficiency and load regulation. Figure 2 shows  
a functional diagram of the MAX618s control scheme.  
V
FB  
L
4.7µF  
C
P
R2  
GND  
COMP  
C
COMP  
The MAX618 normally operates in low-noise, continu-  
ous-conduction PWM mode, switching at 250kHz. In  
PWM mode, the internal MOSFET switch turns on with  
each clock pulse. It remains on until either the error  
comparator trips or the inductor current reaches the 2A  
switch-current limit. The error comparator compares the  
feedback-error signal, current-sense signal, and slope-  
compensation signal in one circuit block. When the  
switch turns off, energy transfers from the inductor to  
V
R1  
R2  
C
L
C
C
C
COMP  
OUT  
IND  
OUT  
P
8V  
402k93.1k150µF  
100µF  
12µH  
15µH  
39µH  
150µF 220pF 0.082µF  
100µH 56pF  
33µF 47pF  
12V 715k100kΩ  
28V 574k32.4k86µF  
0.1µF  
0.47µF  
Figure 1. Single-Supply Operation  
_______________________________________________________________________________________________________  
5
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
IDLE MODE  
CURRENT LIMIT  
MAX618  
PWM  
CURRENT LIMIT  
CURRENT-  
SENSE  
IN  
MAX618  
PGND  
CIRCUIT  
VL  
ERROR  
COMPARATOR  
PWM  
LOGIC  
NMOS  
R
LX  
FB  
OUT  
250kHz  
OSCILLATOR  
14R  
GND  
SLOPE  
COMPENSATION  
REFERENCE  
INTEGRATOR  
COMP  
LINEAR  
REGULATOR  
THERMAL  
SHUTDOWN  
SHDN  
SHUTDOWN  
IN  
VL  
Figure 2. Functional Diagram  
the output capacitor. Output current is limited by the 2A  
MOSFET c urre nt limit a nd the MAX618s p a c ka g e  
p owe r-d is s ip a tion limit. Se e the Ma ximum Outp ut  
Current section for details.  
ranges. The MAX618 uses both control schemes in par-  
allel: the dominant, low-frequency components of the  
error signal are tightly regulated with a voltage-control  
loop, while a current-control loop improves stability at  
higher frequencies. Compensation is achieved through  
In Idle Mode, the MAX618 improves light-load efficien-  
cy by reducing inductor current and skipping cycles to  
reduce the losses in the internal switch, diode, and  
inductor. In this mode, a switching cycle initiates only  
when the error comparator senses that the output volt-  
a g e is a b out to d rop out of re g ula tion. Whe n this  
occurs, the NMOS switch turns on and remains on until  
the inductor current exceeds the nominal 350mA Idle  
Mode current limit.  
the selection of the output capacitor (C  
), the inte-  
OUT  
grator capacitor (C  
), and the pole capacitor (C )  
COMP  
P
from FB to GND. C cancels the zero formed by C  
P
OUT  
and its ESR. Refer to the Capacitor Selection section for  
guidance on selecting these capacitors.  
VL Lo w -Dro p o u t Re g u la t o r  
The MAX618 contains a 3.1V low-dropout linear regula-  
tor to power internal circuitry. The regulators input is IN  
and its output is VL. The IN to VL dropout voltage is  
100mV, so that when IN is less than 3.2V, VL is typically  
100mV below IN. The MAX618 still operates when the  
LDO is in dropout, as long as VL remains above the  
2.7V undervoltage lockout. Bypass VL with a 4.7µF  
ceramic capacitor placed as close to the VL and GND  
pins as possible.  
Refer to Table 1 for an estimate of load currents at which  
the MAX618 transitions between PWM and Idle Mode.  
Co m p e n s a t io n S c h e m e  
Although the higher loop gain of voltage-controlled  
architectures tends to provide tighter load regulation,  
current-controlled architectures are generally easier to  
c omp e ns a te ove r wid e inp ut a nd outp ut volta g e  
6
_______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
_______________________________________________________________________________________  
7
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
VL can be overdriven by an external supply between  
2.7V and 5.5V. In systems with +3.3V or +5V logic  
power supplies available, improve efficiency by power-  
The circuit in Figure 3 allows a logic supply to power  
the MAX618 while using a separate source for DC-DC  
conversion power (inductor voltage). The logic supply  
(between 2.7V and 5.5V) connects to VL and IN. VL =  
IN; voltages of 3.3V or more improve efficiency by pro-  
viding greater gate drive for the internal MOSFET.  
ing VL and V directly from the logic supply as shown  
IN  
in Figure 3.  
Op e ra t in g Co n fig u ra t io n s  
The MAX618 can be connected in one of three configura-  
tions described in Table 2 and shown in Figures 1, 3, and  
4. The VL linear regulator allows operation from a single  
supply between +3V and +28V as shown in Figure 1.  
The c irc uit in Fig ure 4 a llows s e p a ra te s up p lie s to  
power IN and the inductor voltage. It differs from the  
connection in Figure 3 in that the MAX618 chip supply  
is not limited to 5.5V.  
MAX618  
Table 2. Input Configurations  
V
INDUCTOR  
VOLTAGE  
IN  
CIRCUIT  
CONNECTION  
BENEFITS/COMMENTS  
RANGE  
Single-supply operation.  
Input voltage connects  
to IN and inductor.  
3V to V  
(up to 28V)  
SHDN must be connected to or pulled up to VL. On/off  
control requires an open-drain or open-collector connection  
to SHDN.  
OUT  
Figure 1  
V
IN  
Increased efficiency.  
SHDN can be driven by logic powered from the supply con-  
nected to IN and VL, or can be connected to or pulled up to  
VL.  
IN and VL connect  
together. Inductor volt-  
age supplied by a  
separate source.  
0 to V  
(up to 28V)  
OUT  
Figure 3  
2.7V to 5.5V  
Input power source (inductor voltage) is separate from the  
MAX618s bias (V = VL) and can be less than or greater  
IN  
than V .  
IN  
Input power source (inductor voltage) is separate from the  
MAX618s bias (V ) and can be less than or greater than  
IN  
IN and inductor volt-  
age supplied by sepa-  
rate sources.  
V
IN  
.
0 to V  
(up to 28V)  
OUT  
Figure 4  
3V to 28V  
SHDN must be connected to or pulled up to VL. On/off  
control requires an open-drain or open-collector connection  
to SHDN.  
V
V
IND  
IND  
L
L
UP TO 28V  
UP TO 28V  
C
IND  
C
IND  
OUT  
UP TO 28V  
IN  
IN  
OUT  
UP TO 28V  
3V TO 28V  
2.7V TO 5.5V  
IN  
IN  
LX  
LX  
1µF  
1µF  
C
OUT  
C
OUT  
MAX618  
MAX618  
R1  
SHDN  
PGND  
SHDN  
R1  
R2  
PGND  
FB  
VL  
VL  
4.7µF  
FB  
4.7µF  
COMP  
C
P
COMP  
C
P
R2  
C
COMP  
C
COMP  
GND  
GND  
Figure 3. Dual-Supply Operation (V = 2.7V to 5.5V)  
Figure 4. Dual-Supply Operation (V = 3V to 28V)  
IN  
IN  
8
_______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
MAX618  
MAX618  
VL  
IN  
SYSTEM  
LOGIC SUPPLY  
OPEN-DRAIN  
LOGIC  
100k  
VL  
SHDN  
ON/OFF  
CONTROL  
SHDN  
SYSTEM LOGIC  
ON/OFF  
CONTROL  
Figure 5. Adding On/Off Control to Circuit of Figure 1 or 4  
Figure 6. Adding On/Off Control to Circuit of Figure 3  
S h u t d o w n Mo d e  
De t e rm in in g t h e In d u c t o r Va lu e  
The MAX618s high switching frequency allows the use  
of a small value inductor. The recommended inductor  
value is proportional to the output voltage and is given  
by the following:  
In shutdown mode (SHDN = 0), the MAX618s feed-  
back and control circuit, reference, and internal biasing  
circuitry turn off and reduce the IN supply current to  
3µA (10µA max). When in shutdown, a current path  
remains from the input to the output through the exter-  
nal inductor and diode. Consequently, the output falls  
V
OUT  
L =  
5
to V less one diode drop in shutdown.  
7 10  
IN  
SHDN may not exceed VL. For always-on operation,  
connect SHDN to VL. To add on/off control to the circuit  
of Figure 1 or 4, pull SHDN to VL with a resistor (10kΩ  
to 100k) and drive SHDN with an open-drain logic  
gate or switch as shown in Figure 5. Alternatively, the  
circuit of Figure 3 allows direct SHDN drive by any  
logic-level gate powered from the same supply that  
powers VL and IN, as shown in Figure 6.  
After solving for the above equation, round down as  
necessary to select a standard inductor value.  
Whe n s e le c ting a n ind uc tor, c hoos e one ra te d to  
250kHz, with a saturation current exceeding the peak  
ind uc tor c urre nt, a nd with a DC re s is ta nc e und e r  
200m. Ferrite core or equivalent inductors are gener-  
a lly a p p rop ria te (s e e MAX618 EV kit d a ta s he e t).  
Calculate the peak inductor current with the following  
equation:  
__________________De s ig n P ro c e d u re  
V
V  
IN  
The MAX618 operates in a number of DC-DC converter  
configurations including step-up, SEPIC, and flyback.  
The following design discussion is limited to step-up  
converters.  
OUT  
(
)
V
V
IN  
OUT  
I
= I  
+ 2µs  
LX(PEAK)  
OUT  
V
L
V
OUT  
IN  
Note that the peak inductor current is internally limited  
to 2A.  
S e t t in g t h e Ou t p u t Vo lt a g e  
Two external resistors (R1 and R2) set the output volt-  
age. First, select a value for R2 between 10kand  
200k. Calculate R1 with:  
Dio d e S e le c t io n  
The MAX618s high switching frequency demands a  
high-speed rectifier. Schottky diodes are preferred for  
most applications because of their fast recovery time  
and low forward voltage. Make sure that the diodes  
peak current rating exceeds the 2A peak switch cur-  
rent, and that its breakdown voltage exceeds the out-  
put voltage.  
V
OUT  
R1=R2  
where V is 1.5V.  
1  
V
FB  
FB  
_______________________________________________________________________________________  
9
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
needed for the output capacitances specified in Table  
Ma x im u m Ou t p u t Cu rre n t  
The MAX618s 2.2A LX current limit determines the  
output power that can be supplied for most applica-  
tions. In some cases, particularly when the input volt-  
age is low, output power is sometimes restricted by  
package dissipation limits. The MAX618 is protected  
by a thermal shutdown circuit that turns off the switch  
when the die temperature exceeds +150°C. When the  
device cools by 10°C, the switch is enabled again.  
Table 3 details output current with a variety of input and  
output voltages. Each listing in Table 3 is either the limit  
set by an LX current limit or by package dissipation at  
+85°C ambient, whichever is lower. The values in Table  
3 assume a 40minductor resistance.  
4. However, if a different output capacitor is used (e.g.,  
a standard value), then recalculate the value of capaci-  
tance needed for the integrator capacitor with the fol-  
lowing formula:  
C
(Table 5) C  
OUT  
COMP  
C
=
COMP  
MAX618  
C
(Table 4)  
OUT  
Pole Compensation Capacitor  
The pole capacitor (C ) cancels the unwanted zero  
P
introduced by C  
’s ESR, and thereby ensures stabil-  
OUT  
ity in PWM op e ra tion. The e xa c t va lue of the p ole  
capacitor is not critical, but it should be near the value  
calculated by the following equation:  
Ca p a c it o r S e le c t io n  
Input Capacitors  
, reduces the input  
ripple created by the boost configuration. High-imped-  
ance sources require high C values. However, 68µF  
is generally adequate for input currents up to 2A. Low  
ESR capacitors are recommended because they will  
decrease the ripple created on the input and improve  
efficiency. Capacitors with ESR below 0.3are gener-  
ally appropriate.  
R
C
(R2 + R2)  
OUT  
ESR  
C
=
The input bypass capacitor, C  
IND  
P
R1 R2  
IND  
where R  
is C  
’s ESR.  
OUT  
ESR  
La yo u t Co n s id e ra t io n s  
Proper PC board layout is essential due to high current  
levels and fast switching waveforms that radiate noise.  
Use the MAX618 evaluation kit or equivalent PC layout  
to perform initial prototyping. Breadboards, wire-wrap,  
and proto-boards are not recommended when proto-  
typing switching regulators.  
In addition to the input bypass capacitor, bypass IN  
with a 1µF ceramic capacitor placed as close to the IN  
and GND pins as possible. Bypass VL with a 4.7µF  
ceramic capacitor placed as close to the VL and GND  
pins as possible.  
It is imp orta nt to c onne c t the GND p in, the inp ut  
bypass capacitor ground lead, and the output filter  
capacitor ground lead to a single point to minimize  
ground noise and improve regulation. Also, minimize  
lead lengths to reduce stray capacitance, trace resis-  
tance, and radiated noise, with preference given to the  
feedback circuit, the ground circuit, and LX. Place the  
feedback resistors as close to the FB pin as possible.  
Place a 1µF input bypass capacitor as close as possi-  
ble to IN and GND.  
Output Capacitor  
Use Table 4 to find the minimum output capacitance  
ne c e s s a ry to e ns ure s ta b le op e ra tion. In a d d ition,  
choose an output capacitor with low ESR to reduce the  
output ripple. The dominant component of output ripple  
is the product of the peak-to-peak inductor ripple cur-  
rent and the ESR of the output capacitor. ESR below  
50mgenerates acceptable levels of output ripple for  
most applications.  
Refer to the MAX618 evaluation kit for an example of  
proper board layout.  
Integrator Capacitor  
The compensation capacitor (C  
) sets the domi-  
COMP  
nant pole in the MAX618s transfer function. The proper  
c omp e ns a tion c a p a c ita nc e d e p e nd s up on outp ut  
capacitance. Table 5 shows the capacitance value  
10 ______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
______________________________________________________________________________________ 11  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
12 ______________________________________________________________________________________  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
MAX618  
______________________________________________________________________________________ 13  
2 8 V, P WM, S t e p -Up DC-DC Co n ve rt e r  
P a c k a g e In fo rm a t io n  
MAX618  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1794  
14 ______________________________________________________________________________________  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY