MAX6319MHUK44AW-T [MAXIM]

Analog IC ; 模拟IC\n
MAX6319MHUK44AW-T
型号: MAX6319MHUK44AW-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog IC
模拟IC\n

模拟IC 电源电路 电源管理电路 光电二极管 输入元件
文件: 总14页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0496; Rev 4; 11/99  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
________________General Description  
____________________________Features  
o Small 5-Pin SOT23 Package  
The MAX6316–MAX6322 family of microprocessor (µP)  
supervisory circuits monitors power supplies and  
microprocessor activity in digital systems. It offers sev-  
eral combinations of push/pull, open-drain, and bidirec-  
tional (such as Motorola 68HC11) reset outputs, along  
with watchdog and manual reset features. The Selector  
Guide below lists the specific functions available from  
each device. These devices are specifically designed  
o Available in 26 Reset Threshold Voltages  
2.5V to 5V, in 100mV Increments  
o Four Reset Timeout Periods  
1ms, 20ms, 140ms, or 1.12s (min)  
o Four Watchdog Timeout Periods  
6.3ms, 102ms, 1.6s, or 25.6s (typ)  
o Four Reset Output Stages  
Active-High, Push/Pull  
Active-Low, Push/Pull  
to ignore fast negative transients on V . Resets are  
CC  
guaranteed valid for V  
down to 1V.  
CC  
Active-Low, Open-Drain  
Active-Low, Bidirectional  
These devices are available in 26 factory-trimmed reset  
threshold voltages (from 2.5V to 5V, in 100mV incre-  
ments), featuring four minimum power-on reset timeout  
periods (from 1ms to 1.12s), and four watchdog timeout  
periods (from 6.3ms to 25.6s). Thirteen standard ver-  
sions are available with an order increment requirement  
of 2500 pieces (see Standard Versions table); contact  
the factory for availability of other versions, which have  
an order increment requirement of 10,000 pieces.  
o Guaranteed Reset Valid to V  
o Immune to Short Negative V  
o Low Cost  
= 1V  
Transients  
CC  
CC  
o No External Components  
_______________Ordering Information  
The MAX6316–MAX6322 are offered in a miniature  
5-pin SOT23 package.  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
MAX6316LUK____-T  
MAX6316MUK____-T  
MAX6317HUK____-T  
MAX6318HUK____-T  
________________________Applications  
Portable Computers  
Computers  
Controllers  
MAX6318MHUK____-T -40°C to +85°C  
Intelligent Instruments  
Ordering Information continued at end of data sheet.  
Portable/Battery-Powered Equipment  
Embedded Control Systems  
Typical Operating Circuit and Pin Configurations appear at  
end of data sheet.  
___________________________________________________________________Selector Guide  
RESET OUTPUTS*  
MANUAL  
RESET  
INPUT  
WATCHDOG  
PART  
ACTIVE-LOW  
PUSH/PULL  
ACTIVE-HIGH  
PUSH/PULL  
ACTIVE-LOW  
BIDIRECTIONAL  
ACTIVE-LOW  
OPEN-DRAIN  
INPUT  
MAX6316L  
MAX6316M  
MAX6317H  
MAX6318LH  
MAX6318MH  
MAX6319LH  
MAX6319MH  
MAX6320P  
MAX6321HP  
MAX6322HP  
* The MAX6318/MAX6319/MAX6321/MAX6322 feature two types of reset output on each device.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
ABSOLUTE MAXIMUM RATINGS  
Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
......................................................................-0.3V to +6V  
SOT23-5 (derate 7.1mW/°C above +70°C)...............571mW  
Operating Temperature Range............................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range..............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
RESET (MAX6320/MAX6321/MAX6322 only)...... -0.3V to +6V  
All Other Pins.........................................-0.3V to (V + 0.3V)  
CC  
Input/Output Current, All Pins .............................................20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.5V to 5.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= -40°C to +85°C  
A
MIN  
TYP  
MAX UNITS  
Operating Voltage Range  
Supply Current  
V
CC  
T
1
5.5  
20  
V
MAX6316/MAX6317/MAX6318/  
MAX6320/MAX6321:  
MR and WDI unconnected  
V
V
= 5.5V  
= 3.6V  
10  
5
CC  
12  
CC  
I
µA  
CC  
V
V
= 5.5V  
= 3.6V  
5
3
12  
8
MAX6319/MAX6322:  
MR unconnected  
CC  
CC  
Reset Threshold Temperature  
Coefficient  
V
TH  
/°C  
40  
ppm/°C  
T
T
= +25°C  
V
V
-1.5% V  
V
V
+1.5%  
+2.5%  
A
TH  
TH  
TH  
Reset Threshold (Note 2)  
Reset Threshold Hysteresis  
V
RST  
V
= -40°C to +85°C  
-2.5% V  
A
TH  
TH  
TH  
3
mV  
MAX63_ _A_-T  
MAX63_ _B_-T  
MAX63_ _C_-T  
MAX63_ _D_-T  
1
1.4  
28  
2
20  
40  
Reset Active Timeout Period  
t
ms  
µs  
RP  
140  
200  
1600  
40  
280  
2240  
1120  
t
V
CC  
falling at 1mV/µs  
V
CC  
to RESET Delay  
RD  
PUSH/PULL RESET OUTPUT (MAX6316L/MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP)  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
1.0V, I  
1.2V, I  
2.7V, I  
4.5V, I  
2.7V, I  
4.5V, I  
2.7V, I  
4.5V, I  
1.8V, I  
2.7V, I  
4.5V, I  
= 50µA  
0.3  
0.3  
0.3  
0.4  
SINK  
SINK  
SINK  
SINK  
= 100µA  
= 1.2mA  
= 3.2mA  
V
OL  
V
V
RESET Output Voltage  
= 500µA  
= 800µA  
0.8 x V  
CC  
SOURCE  
SOURCE  
V
OH  
V
CC  
- 1.5  
= 1.2mA  
0.3  
0.4  
SINK  
V
OL  
= 3.2mA  
SINK  
RESET Output Voltage  
= 150µA  
= 500µA  
= 800µA  
0.8 x V  
0.8 x V  
SOURCE  
SOURCE  
SOURCE  
CC  
V
OH  
CC  
V
CC  
- 1.5  
Note 1: Over-temperature limits are guaranteed by design, not production tested.  
Note 2: A factory-trimmed voltage divider programs the nominal reset threshold (V ). Factory-trimmed reset thresholds are  
TH  
available in 100mV increments from 2.5V to 5V (see Table 1 at end of data sheet).  
2
_______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.5V to 5.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
BIDIRECTIONAL RESET OUTPUT (MAX6316M/MAX6318MH/MAX6319MH)  
Transition Flip-Flop Setup Time  
t
S
(Note 3)  
400  
ns  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.0V, C = 120pF  
333  
L
= 5.0V, C = 200pF  
333  
ns  
L
RESET Output Rise Time  
(Note 4)  
t
R
= 3.0V, C = 250pF  
666  
L
= 5.0V, C = 400pF  
L
666  
Active Pullup Enable Threshold  
RESET Active Pullup Current  
RESET Pullup Resistance  
V
= 5.0V  
= 5.0V  
0.4  
4.2  
0.65  
20  
V
PTH  
mA  
4.7  
5.2  
k
OPEN-DRAIN RESET OUTPUT (MAX6320P/MAX6321HP/MAX6322HP)  
V
CC  
V
CC  
V
CC  
V
CC  
1.0V, I  
1.2V, I  
2.7V, I  
4.5V, I  
= 50µA  
0.3  
0.3  
0.3  
0.4  
SINK  
SINK  
SINK  
SINK  
= 100µA  
= 1.2mA  
= 3.2mA  
V
OL  
V
RESET Output Voltage  
Open-Drain Reset Output  
Leakage Current  
I
1.0  
µA  
ms  
LKG  
WATCHDOG INPUT (MAX6316/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP)  
MAX63_ _ _ W-T  
MAX63_ _ _ X-T  
4.3  
71  
6.3  
102  
1.6  
9.3  
153  
2.4  
Watchdog Timeout Period  
t
WD  
MAX63_ _ _ Y-T  
MAX63_ _ _ Z-T  
1.12  
17.9  
50  
s
ns  
V
25.6  
38.4  
WDI Pulse Width  
t
V = 0.3 x V , V = 0.7 x V  
IL CC IH CC  
WDI  
V
IL  
0.3 x V  
CC  
WDI Input Threshold  
(Note 5)  
WDI = V , time average  
V
0.7 x V  
CC  
IH  
120  
-15  
160  
CC  
WDI Input Current  
(Note 6)  
I
µA  
WDI  
V
WDI  
= 0, time average  
-20  
0.8  
MANUAL RESET INPUT (MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP)  
V
IL  
V
> 4.0V  
< 4.0V  
TH  
TH  
V
2.0  
IH  
V
MR Input Threshold  
V
IL  
0.3 x V  
1
CC  
V
V
0.7 x V  
CC  
IH  
µs  
ns  
k
MR Input Pulse Width  
MR Glitch Rejection  
MR Pullup Resistance  
MR to Reset Delay  
100  
52  
35  
75  
V
CC  
= 5V  
230  
ns  
Note 3: This is the minimum time RESET must be held low by an external pulldown source to set the active pullup flip-flop.  
Note 4: Measured from RESET V to (0.8 x V ), R  
=
LOAD  
.
OL  
CC  
Note 5: WDI is internally serviced within the watchdog period if WDI is left unconnected.  
Note 6: The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is  
designed for a three-stated-output device with a 10µA maximum leakage current and capable of driving a maximum capaci-  
tive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.  
_______________________________________________________________________________________  
3
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
MAX6316/MAX6317/MAX6319/MAX6320/MAX6322  
MANUAL RESET TO RESET  
MAX6316/MAX6317/MAX6318/MAX6320/MAX6321  
V
FALLING TO RESET PROPAGATION  
DELAY vs. TEMPERATURE  
CC  
SUPPLY CURRENT vs. TEMPERATURE  
PROPAGATION DELAY vs. TEMPERATURE  
10  
320  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
FALLING AT 1mV/ s  
V
CC  
= 5V  
CC  
9
300  
280  
260  
240  
220  
200  
180  
160  
140  
- V = 100mV  
RST  
CC  
V
= 5V  
CC  
8
7
6
5
4
V
V
= 3V  
= 1V  
CC  
CC  
3
2
1
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MAX6316/MAX6317/MAX6318/MAX6320/MAX6321  
NORMALIZED WATCHDOG TIMEOUT  
PERIOD vs. TEMPERATURE  
1.05  
NORMALIZED RESET TIMEOUT  
PERIOD vs. TEMPERATURE  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MAX6316M/6318MH/6319MH  
BIDIRECTIONAL  
MAXIMUM V TRANSIENT DURATION  
CC  
vs. RESET THRESHOLD OVERDRIVE  
PULLUP CHARACTERISTICS  
MAX6316toc07  
80  
70  
60  
+5V  
4.7k  
PASSIVE  
4.7k  
PULLUP  
2V/div  
RESET OCCURS ABOVE LINES  
74HC05  
V
= 3.3V  
RST  
100pF  
INPUT  
V
= 4.63V  
RST  
V
50  
40  
30  
20  
10  
0
RESET, ACTIVE  
PULLUP  
+5V  
VCC  
RESET  
2V/div  
= 2.63V  
74HC05  
100pF  
RST  
INPUT  
RESET  
INPUT  
5V/div  
GND  
MR  
200ns/div  
10  
100  
1000  
CC  
RESET THRESHOLD OVERDRIVE (mV) V - V  
RST  
4
_______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
______________________________________________________________Pin Description  
PIN  
MAX6316L  
MAX6316M  
MAX6320P  
MAX6318LH  
MAX6318MH  
MAX6321HP  
MAX6319LH  
MAX6319MH  
MAX6322HP  
NAME  
FUNCTION  
MAX6317H  
MAX6316L/MAX6318LH/MAX6319LH:  
Active-Low, Reset Output. CMOS push/pull  
output (sources and sinks current).  
MAX6316M/MAX6318MH/MAX6319MH:  
Bidirectional, Active-Low, Reset Output.  
Intended to interface directly to microprocessors  
with bidirectional resets such as the Motorola  
68HC11.  
1
1
1
RESET  
MAX6320P/MAX6321HP/MAX6322HP:  
Open-Drain, Active-Low, Reset Output. NMOS out-  
put (sinks current only). Connect a pullup resistor  
from RESET to any supply voltage up to 6V.  
Active-High, Reset Output. CMOS push/pull output  
(sources and sinks current). Inverse of RESET.  
2
1
2
3
2
3
2
RESET  
GND  
Ground  
Active-Low, Manual Reset Input. Pull low to force a  
reset. Reset remains asserted for the duration of  
the Reset Timeout Period after MR transitions from  
low to high. Leave unconnected or connected to  
3
4
5
3
4
5
4
5
MR  
V
CC  
if not used.  
Watchdog Input. Triggers a reset if it remains  
either high or low for the duration of the watchdog  
timeout period. The internal watchdog timer clears  
whenever a reset asserts or whenever WDI sees a  
rising or falling edge. To disable the watchdog fea-  
ture, leave WDI unconnected or three-state the dri-  
ver connected to WDI.  
4
WDI  
Supply Voltage. Reset is asserted when V  
CC  
drops below the Reset Threshold Voltage (V  
).  
RST  
5
V
CC  
Reset remains asserted until V  
rises above  
CC  
V
RST  
and for the duration of the Reset Timeout  
Period (t ) once V  
rises above V  
.
RP  
CC  
RST  
_______________________________________________________________________________________  
5
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
V
CC  
MAX6316–MAX6322  
RESET  
(ALL EXCEPT MAX6317)  
RESET  
GENERATOR  
RESET  
(ALL EXCEPT  
MAX6316/MAX6320P)  
V
CC  
1.23V  
52k  
MR  
(ALL EXCEPT  
MAX6318/MAX6321)  
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
WDI  
(ALL EXCEPT  
MAX6319/MAX6322)  
52k  
GND  
Figure 1. Functional Diagram  
the watchdog timeout period (t ). Reset remains assert-  
WD  
_______________Detailed Description  
ed for the specified reset active timeout period (t ) after  
RP  
A microprocessor’s (µP) reset input starts or restarts the  
µP in a known state. The reset output of the MAX6316–  
MAX6322 µP supervisory circuits interfaces with the  
reset input of the µP, preventing code-execution errors  
during power-up, power-down, and brownout condi-  
tions (see the Typical Operating Circuit). The MAX6316/  
MAX6317/MAX6318/MAX6320/MAX6321 are also capa-  
ble of asserting a reset should the µP become stuck in  
an infinite loop.  
V
CC  
rises above the reset threshold, after MR transitions  
low to high, or after the watchdog timer asserts the reset  
(MAX6316_/MAX6317H/MAX6318_H/MAX6320P/  
MAX6321HP). After the reset active timeout period (t  
)
RP  
expires, the reset output deasserts, and the watchdog  
timer restarts from zero (Figure 2).  
V
CC  
V
V
RST  
RST  
1V  
1V  
Reset Output  
The MAX6316L/MAX6318LH/MAX6319LH feature an  
active-low reset output, while the MAX6317H/  
MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP  
feature an active-high reset output. RESET is guaran-  
teed to be a logic low and RESET is guaranteed to be a  
GND  
t
RP  
RP  
t
RD  
RESET  
t
logic high for V  
down to 1V.  
t
RD  
CC  
RESET  
GND  
The MAX6316–MAX6322 assert reset when V  
is below  
CC  
the reset threshold (V  
), when MR is pulled low  
RST  
(MAX6316_/MAX6317H/MAX6319_H/MAX6320P/  
MAX6322HP only), or if the WDI pin is not serviced within  
Figure 2. Reset Timing Diagram  
6
_______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
scratch. If, on the other hand, RESET is high after a  
delay of two external-clock cycles, the processor  
knows that it caused the reset itself and can jump to a  
different vector and use stored-state information to  
determine what caused the reset.  
RESET  
Bidirectional  
Output  
The MAX6316M/MAX6318MH/MAX6319MH are designed  
to interface with µPs that have bidirectional reset pins,  
such as the Motorola 68HC11. Like an open-drain output,  
these devices allow the µP or other devices to pull the  
bidirectional reset (RESET) low and assert a reset condi-  
tion. However, unlike a standard open-drain output, it  
includes the commonly specified 4.7k pullup resistor  
with a P-channel active pullup in parallel.  
A problem occurs with faster µPs; two external-clock  
cycles are only 500ns at 4MHz. When there are several  
devices on the reset line, and only a passive pullup resis-  
tor is used, the input capacitance and stray capacitance  
can prevent RESET from reaching the logic high state (0.8  
This configuration allows the MAX6316M/MAX6318MH/  
MAX6319MH to solve a problem associated with µPs  
that have bidirectional reset pins in systems where sev-  
eral devices connect to RESET (Figure 3). These µPs  
can often determine if a reset was asserted by an exter-  
nal device (i.e., the supervisor IC) or by the µP itself  
(due to a watchdog fault, clock error, or other source),  
and then jump to a vector appropriate for the source of  
the reset. However, if the µP does assert reset, it does  
not retain the information, but must determine the  
cause after the reset has occurred.  
V ) in the time allowed. If this happens, all resets will  
CC  
be interpreted as external. The µP output stage is guaran-  
teed to sink 1.6mA, so the rise time can not be reduced  
considerably by decreasing the 4.7k internal pullup  
resistance. See Bidirectional Pullup Characteristics in the  
Typical Operating Characteristics.  
The MAX6316M/MAX6318MH/MAX6319MH overcome  
this problem with an active pullup FET in parallel with the  
4.7k resistor (Figures 4 and 5). The pullup transistor  
holds RESET high until the µP reset I/O or the supervisory  
circuit itself forces the line low. Once RESET goes below  
The following procedure describes how this is done in  
the Motorola 68HC11. In all cases of reset, the µP pulls  
RESET low for about four external-clock cycles. It then  
releases RESET, waits for two external-clock cycles,  
then checks RESET’s state. If RESET is still low, the µP  
concludes that the source of the reset was external  
and, when RESET eventually reaches the high state, it  
jumps to the normal reset vector. In this case, stored-  
state information is erased and processing begins from  
V
, a comparator sets the transition edge flip-flop, indi-  
PTH  
cating that the next transition for RESET will be low to  
high. When RESET is released, the 4.7k resistor pulls  
RESET up toward V . Once RESET rises above V  
CC  
PTH  
but is below (0.85 x V ), the active P-channel pullup  
CC  
turns on. Once RESET rises above (0.85 x V ) or the  
CC  
2µs one-shot times out, the active pullup turns off. The  
parallel combination of the 4.7k pullup and the  
V
CC  
V
CC  
WDI*  
MR**  
4.7k  
68HC11  
RESET  
RESET  
RESET  
RESET  
CIRCUITRY  
RESET  
CIRCUITRY  
RESET***  
C
IN  
C
C
STRAY  
IN  
MAX6316M  
MAX6318MH  
MAX6319MH  
C
OTHER DEVICES  
IN  
*
**  
***  
MAX6316M/MAX6318MH  
MAX6316M/MAX6319MH  
ACTIVE-HIGH PUSH/PULL MAX6318MH/MAX6319MH  
Figure 3. MAX6316M/MAX6318MH/MAX6319MH Supports Additional Devices on the Reset Bus  
_______________________________________________________________________________________  
7
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
V
CC  
MAX6316M  
MAX6318MH  
MAX6319MH  
LASER-  
TRIMMED  
RESISTORS  
V
CC  
VREF  
52k  
MR  
(MAX6316M/  
MAX6319MH)  
RESET  
GENERATOR  
(MAX6316M/  
MAX6318MH)  
WATCHDOG ON  
CIRCUITRY  
WDI  
V
CC  
2 s ONE SHOT  
TRANSITION  
FLIP-FLOP  
R
Q
4.7k  
FF  
S
RESET  
ACTIVE PULLUP  
ENABLE COMPARATOR  
0.65V  
0.85V  
CC  
GND  
Figure 4. MAX6316/MAX6318MH/MAX6319MH Bidirectional Reset Output Functional Diagram  
8
_______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
P-channel transistor on-resistance quickly charges  
register a logic low (see Electrical Characteristics), and  
small enough to register a logic high while supplying all  
input current and leakage paths connected to the RESET  
line. A 10k pullup is sufficient in most applications.  
stray capacitance on the reset line, allowing RESET to  
transition from low to high within the required two elec-  
tronic-clock cycles, even with several devices on the  
reset line. This process occurs regardless of whether  
Manual-Reset Input  
The MAX6316_/MAX6317H/MAX6319_H/MAX6320P/  
MAX6322HP feature a manual reset input. A logic low on  
MR asserts a reset. After MR transitions low to high, reset  
remains asserted for the duration of the reset timeout peri-  
the reset was caused by V  
dipping below the reset  
CC  
threshold, the watchdog timing out, MR being asserted,  
or the µP or other device asserting RESET. The parts do  
not require an external pullup. To minimize supply cur-  
rent consumption, the internal 4.7k pullup resistor dis-  
connects from the supply whenever the MAX6316M/  
MAX6318MH/MAX6319MH assert reset.  
od (t ). The MR input is connected to V  
through an  
RP  
CC  
internal 52k pullup resistor and therefore can be left  
unconnected when not in use. MR can be driven with  
TTL-logic levels in 5V systems, with CMOS-logic levels in  
3V systems, or with open-drain or open-collector output  
devices. A normally-open momentary switch from MR to  
ground can also be used; it requires no external  
debouncing circuitry. MR is designed to reject fast,  
negative-going transients (typically 100ns pulses). A  
0.1µF capacitor from MR to ground provides additional  
noise immunity.  
RESET  
Open-Drain  
Output  
The MAX6320P/MAX6321HP/MAX6322HP have an  
active-low, open-drain reset output. This output struc-  
ture will sink current when RESET is asserted. Connect  
a pullup resistor from RESET to any supply voltage up  
to 6V (Figure 6). Select a resistor value large enough to  
V
CC  
The MR input pin is equipped with internal ESD-protection  
circuitry that may become forward biased. Should MR be  
t
0.8 x V  
RP  
CC  
RESET  
OR  
driven by voltages higher than V , excessive current  
CC  
C RESET DELAY  
0.7V  
would be drawn, which would damage the part. For  
example, assume that MR is driven by a +5V supply other  
t
R
t
S
than V . If V  
drops lower than +4.7V, MR’s absolute  
CC  
CC  
maximum rating is violated [-0.3V to (V  
+ 0.3V)], and  
CC  
ACTIVE  
PULLUP  
TURNS ON  
RESET PULLED LOW  
BY C OR  
RESET GENERATOR  
undesirable current flows through the ESD structure from  
MR to V . To avoid this, use the same supply for MR as  
CC  
the supply monitored by V . This guarantees that the  
CC  
voltage at MR will never exceed V  
.
CC  
Figure 5. Bidirectional RESET Timing Diagram  
Watchdog Input  
The MAX6316_/MAX6317H/MAX6318_H/MAX6320P/  
MAX6321HP feature a watchdog circuit that monitors  
the µP’s activity. If the µP does not toggle the watchdog  
+3.3V  
+5.0V  
input (WDI) within the watchdog timeout period (t ),  
WD  
V
reset asserts. The internal watchdog timer is cleared by  
reset or by a transition at WDI (which can detect pulses  
as short as 50ns). The watchdog timer remains cleared  
while reset is asserted. Once reset is released, the  
timer begins counting again (Figure 7).  
CC  
MR*  
10k  
WDI**  
RESET  
5V SYSTEM  
RESET***  
The WDI input is designed for a three-stated output  
device with a 10µA maximum leakage current and the  
capability of driving a maximum capacitive load of 200pF.  
The three-state device must be able to source and sink at  
least 200µA when active. Disable the watchdog function  
by leaving WDI unconnected or by three-stating the driver  
connected to WDI. When the watchdog timer is left open  
circuited, the timer is cleared internally at intervals equal  
to 7/8 of the watchdog period.  
MAX6320  
MAX6321  
MAX6322  
* MAX6320/MAX6322  
** MAX6320/MAX6321  
*** MAX6321/MAX6322  
GND  
Figure 6. MAX6320P/MAX6321HP/MAX6322HP Open-Drain  
RESET Output Allows Use with Multiple Supplies  
_______________________________________________________________________________________  
9
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
V
CC  
t
RST  
V
CC  
MAX6316  
MAX6318  
MAX6319  
RESET  
WDI  
t
RP  
t
t
RP  
WD  
V
CC  
GND  
RESET  
100k  
MAX6316/MAX6317  
MAX6318/MAX6320  
MAX6321  
Figure 7. Watchdog Timing Relationship  
Figure 8. Ensuring RESET Valid to V  
= 0 on Active-Low  
CC  
Push/Pull and Bidirectional Outputs  
Applications Information  
Watchdog Input Current  
The WDI input is internally driven through a buffer and  
series resistor from the watchdog counter. For minimum  
watchdog input current (minimum overall power con-  
sumption), leave WDI low for the majority of the watch-  
dog timeout period. When high, WDI can draw as much  
as 160µA. Pulsing WDI high at a low duty cycle will  
reduce the effect of the large input current. When WDI  
is left unconnected, the watchdog timer is serviced  
within the watchdog timeout period by a low-high-low  
pulse from the counter chain.  
MAX6317  
MAX6318  
MAX6319  
MAX6321*  
V
CC  
100k  
MAX6322*  
V
CC  
GND  
RESET  
*THIS SCHEMATIC DOES NOT WORK ON THE OPEN-DRAIN  
OUTPUTS OF THE MAX6321/MAX6322.  
Negative-Going V  
Transients  
CC  
Figure 9. Ensuring RESET Valid to V  
Push/Pull Outputs  
= 0 on Active-High  
These supervisors are immune to short-duration, nega-  
tive-going V transients (glitches), which usually do  
CC  
CC  
not require the entire system to shut down. Typically,  
source current. This scheme does not work with the  
open-drain outputs of the MAX6320/MAX6321/MAX6322.  
The resistor value used is not critical, but it must be  
large enough not to load the reset output when V  
above the reset threshold. For most applications,  
100k is adequate.  
200ns large-amplitude pulses (from ground to V ) on  
CC  
the supply will not cause a reset. Lower amplitude puls-  
es result in greater immunity. Typically, a V  
transient  
CC  
is  
CC  
that goes 100mV under the reset threshold and lasts  
less than 4µs will not trigger a reset. An optional 0.1µF  
bypass capacitor mounted close to V  
tional transient immunity.  
provides addi-  
CC  
Watchdog Software Considerations  
(MAX6316/MAX6317/MAX6318/  
Ensuring Valid Reset Outputs  
MAX6320/MAX6321)  
Down to V  
= 0  
CC  
One way to help the watchdog timer monitor software  
execution more closely is to set and reset the watchdog  
input at different points in the program, rather than  
pulsing the watchdog input high-low-high or low-high-  
low. This technique avoids a stuck loop, in which the  
watchdog timer would continue to be reset inside the  
loop, keeping the watchdog from timing out.  
The MAX6316_/MAX6317H/MAX6318_H/MAX6319_H/  
MAX6321HP/MAX6322HP are guaranteed to operate  
properly down to V  
= 1V. In applications that require  
CC  
valid reset levels down to V  
= 0, a pulldown resistor  
CC  
to active-low outputs (push/pull and bidirectional only,  
Figure 8) and a pullup resistor to active-high outputs  
(push/pull only, Figure 9) will ensure that the reset line  
is valid while the reset output can no longer sink or  
10 ______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
Figure 10 shows an example of a flow diagram where  
the I/O driving the watchdog input is set high at the  
beginning of the program, set low at the end of every  
subroutine or loop, then set high again when the pro-  
gram returns to the beginning. If the program should  
hang in any subroutine, the problem would be quickly  
corrected, since the I/O is continually set low and the  
watchdog timer is allowed to time out, causing a reset  
or interrupt to be issued. As described in the Watchdog  
Input Current section, this scheme results in higher time  
average WDI current than does leaving WDI low for the  
majority of the timeout period and periodically pulsing it  
low-high-low.  
START  
SET WDI  
HIGH  
PROGRAM  
CODE  
POSSIBLE  
INFINITE LOOP PATH  
SUBROUTINE OR  
PROGRAM LOOP  
SET WDI LOW  
RETURN  
Figure 10. Watchdog Flow Diagram  
__________________Pin Configurations  
Typical Operating Circuit  
TOP VIEW  
RESET  
GND  
MR  
1
2
3
5
V
RESET  
GND  
MR  
1
2
3
5
V
CC  
CC  
V
IN  
V
V
MAX6316  
MAX6320  
MAX6317  
CC  
CC  
P
RESET  
RESET  
I/O  
MAX6316  
4
WDI  
4
WDI  
MR  
WDI  
MANUAL  
RESET  
GND  
GND  
SOT23-5  
SOT23-5  
RESET  
GND  
1
2
3
5
4
V
RESET  
GND  
1
2
3
5
4
V
CC  
CC  
MAX6318  
MAX6321  
MAX6319  
MAX6322  
RESET  
WDI  
RESET  
MR  
SOT23-5  
SOT23-5  
______________________________________________________________________________________ 11  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
Table 1. Factory-Trimmed Reset Thresholds  
T
A
= +25°C  
TYP  
T = -40°C to +85°C  
A
PART  
MIN  
MAX  
5.075  
4.974  
4.872  
4.771  
4.699  
4.568  
4.446  
4.365  
4.263  
4.162  
4.060  
3.959  
3.857  
3.756  
3.654  
3.553  
3.451  
3.350  
3.248  
3.126  
3.045  
2.974  
2.842  
2.741  
2.669  
2.538  
MIN  
MAX  
MAX63___50_ _-T  
MAX63___49_ _-T  
MAX63___48_ _-T  
MAX63___47_ _-T  
MAX63___46_ _-T  
MAX63___45_ _-T  
MAX63___44_ _-T  
MAX63___43_ _-T  
MAX63___42_ _-T  
MAX63___41_ _-T  
MAX63___40_ _-T  
MAX63___39_ _-T  
MAX63___38_ _-T  
MAX63___37_ _-T  
MAX63___36_ _-T  
MAX63___35_ _-T  
MAX63___34_ _-T  
MAX63___33_ _-T  
MAX63___32_ _-T  
MAX63___31_ _-T  
MAX63___30_ _-T  
MAX63___29_ _-T  
MAX63___28_ _-T  
MAX63___27_ _-T  
MAX63___26_ _-T  
MAX63___25_ _-T  
4.925  
7.827  
4.728  
4.630  
4.561  
4.433  
4.314  
4.236  
4.137  
4.039  
3.940  
3.842  
3.743  
3.645  
3.546  
3.448  
3.349  
3.251  
3.152  
3.034  
2.955  
2.886  
2.758  
2.660  
2.591  
2.463  
5.000  
4.900  
4.800  
4.700  
4.630  
4.500  
4.390  
4.300  
4.200  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
3.080  
3.000  
2.930  
2.800  
2.700  
2.630  
2.500  
4.875  
4.778  
4.680  
4.583  
4.514  
4.388  
4.270  
4.193  
4.095  
3.998  
3.900  
3.803  
3.705  
3.608  
3.510  
3.413  
3.315  
3.218  
3.120  
3.003  
2.925  
2.857  
2.730  
2.633  
2.564  
2.438  
5.125  
5.023  
4.920  
4.818  
4.746  
4.613  
4.490  
4.408  
4.305  
4.203  
4.100  
3.998  
3.895  
3.793  
3.690  
3.588  
3.485  
3.383  
3.280  
3.157  
3.075  
3.000  
2.870  
2.768  
2.696  
2.563  
Table 2. Standard Versions  
MINIMUM  
RESET  
TIMEOUT (ms)  
TYPICAL  
WATCHDOG  
TIMEOUTS (s)  
SOT  
TOP  
MARK  
RESET  
THRESHOLD (V)  
PART  
MAX6316LUK29CY-T  
MAX6316LUK46CY-T  
MAX6316MUK29CY-T  
MAX6316MUK46CY-T  
MAX6317HUK46CY-T  
MAX6318LHUK46CY-T  
MAX6318MHUK46CY-T  
MAX6319LHUK46C-T  
MAX6319MHUK46C-T  
MAX6320PUK29CY-T  
2.93  
4.63  
2.93  
4.63  
4.63  
4.63  
4.63  
4.63  
4.63  
2.93  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
ACDE  
ACDD  
ACDG  
ACDF  
ACDQ  
ACDH  
ACDJ  
ACDK  
ACDM  
ACDO  
1.6  
12 ______________________________________________________________________________________  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
Table 2. Standard Versions (continued)  
MINIMUM  
RESET  
TIMEOUT (ms)  
TYPICAL  
WATCHDOG  
TIMEOUTS (s)  
SOT  
TOP  
MARK  
RESET  
PART  
THRESHOLD (V)  
MAX6320PUK46CY-T  
MAX6321HPUK46CY-T  
MAX6322HPUK46C-T  
4.63  
4.63  
4.63  
140  
140  
140  
1.6  
1.6  
1.6  
ACDN  
ACGL  
ACGN  
Note: Thirteen standard versions are available, with a required order increment of 2500 pieces. Sample stock is generally held on stan-  
dard versions only. The required order increment for nonstandard versions is 10,000 pieces. Contact factory for availability.  
__Ordering Information (continued)  
Table 3. Reset/Watchdog Timeout Periods  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
RESET TIMEOUT PERIODS  
MAX6319LHUK____-T  
MAX6319MHUK____-T  
MAX6320PUK____-T  
MAX6321HPUK____-T  
MAX6322HPUK____-T  
SUFFIX  
MIN  
1
TYP  
1.6  
MAX  
2
UNITS  
ms  
A
B
C
D
20  
30  
40  
140  
1.12  
200  
1.60  
280  
2.24  
s
Note: These devices are available with factory-set V  
reset  
CC  
thresholds from 2.5V to 5V, in 0.1V increments. Insert the  
desired nominal reset threshold (25 to 50, from Table 1) into the  
blanks following the letters UK. All devices offer factory-pro-  
grammed reset timeout periods. Insert the letter corresponding  
to the desired reset timeout period (A, B, C, or D from Table 3)  
into the blank following the reset threshold suffix. Parts that offer  
a watchdog feature (see Selector Guide) are factory-trimmed to  
one of four watchdog timeout periods. Insert the letter corre-  
sponding to the desired watchdog timeout period (W, X, Y, or Z  
from Table 3) into the blank following the reset timeout suffix.  
WATCHDOG TIMEOUT  
W
X
4.3  
6.3  
102  
1.6  
9.3  
ms  
s
71  
153  
2.4  
Y
1.12  
17.9  
Z
25.6  
38.4  
Chip Information  
TRANSISTOR COUNT: 191  
SUBSTRATE IS INTERNALLY CONNECTED TO V+  
______________________________________________________________________________________ 13  
5-Pin µP Supervisory Circuits with  
Watchdog and Manual Reset  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY