MAX6324CUT44-T [MAXIM]

Analog IC ; 模拟IC\n
MAX6324CUT44-T
型号: MAX6324CUT44-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog IC
模拟IC\n

模拟IC
文件: 总12页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1838; Rev 1; 1/01  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
General Description  
Features  
The MAX6323/MAX6324 microprocessor (µP) supervi-  
sory circuits monitor power supplies and µP activity in  
digital systems. A watchdog timer looks for activity out-  
side an expected window of operation. Six laser-  
trimmed reset thresholds are available with 2.ꢀ5  
accuracy from +2.32V to +4.63V. Valid RESET output is  
Min/Max (Windowed) Watchdog,  
8 Factory-Trimmed Timing Options  
Pulsed Open-Drain, Active-Low Watchdog Output  
Power-On Reset  
Precision Monitoring of +2.5V, +3.0V, +3.3V,  
guaranteed down to V  
= +1.2V.  
CC  
and +5.0V Power Supplies  
The RESET output is either push-pull (MAX6323) or  
open-drain (MAX6324). RESET is asserted low when  
CC  
Open-Drain or Push-Pull RESET Outputs  
Low-Power Operation (23µA typ)  
Debounced Manual Reset Input  
V
falls below the reset threshold, or when the manual  
reset input (MR) is asserted low. RESET remains assert-  
ed for at least 100ms after V rises above the reset  
CC  
threshold or MR is deasserted.  
Guaranteed Reset Valid to V  
= +1.2V  
CC  
The watchdog pulse output (WDPO) utilizes an open-  
drain configuration. It can be triggered either by a fast  
timeout fault (watchdog input pulses are too close to  
each other) or a slow timeout fault (no watchdog input  
pulse is observed within the timeout period). The  
watchdog timeout is measured from the last falling  
edge of watchdog input (WDI) with a minimum pulse  
width of 300ns. WDPO is asserted for 1ms when a fault  
is observed. Eight laser-trimmed timeout periods are  
available.  
Ordering Information  
TEMP.  
PIN-  
RESET  
PART*  
RANGE  
PACKAGE OUTPUT  
MAX6323_UT__-T -40°C to +12ꢀ°C 6 SOT23-6 Push-Pull  
MAX6324_UT__-T -40°C to +12ꢀ°C 6 SOT23-6 Open Drain  
*These devices are factory trimmed to one of eight watchdog-  
timeout windows and one of six reset voltage thresholds. Insert  
the letter corresponding to the desired watchdog-timeout window  
(A, B, C, D, E, F, G, or H) into the blank following the number  
6323 or 6324 (see Watchdog Timeout table). Insert the two-digit  
code (46, 44, 31, 29, 26, or 23) after the letters UT for the desired  
nominal reset threshold (see Reset Threshold Range table at end  
of data sheet).  
The MAX6323/MAX6324 are offered in a 6-pin SOT23  
package and operate over the extended temperature  
range (-40°C to +12ꢀ°C).  
Applications  
Note: There are eight standard versions of each device available  
(see Standard Versions table). Sample stock is generally held on  
standard versions only. Standard versions have an order incre-  
ment requirement of 2500 pieces. Nonstandard versions have an  
order increment requirement of 10,000 pieces. Contact factory for  
availability of nonstandard versions.  
Automotive  
Industrial  
Medical  
Embedded Control Systems  
Watchdog Timeout  
Pin Configuration  
WATCHDOG TIMEOUT*  
TOP VIEW  
FAST  
SLOW  
UNITS  
SUFFIX  
MAX  
1.ꢀ  
1ꢀ  
UNITS  
ms  
MIN  
10  
MR  
GND  
WDI  
1
2
3
6
5
4
RESET  
WDPO  
A
B
C
D
E
ms  
100  
300  
10  
ms  
s
MAX6323  
MAX6324  
1ꢀ  
ms  
1ꢀ  
ms  
V
CC  
1ꢀ  
ms  
60  
F
23  
ms  
47  
ms  
s
SOT23  
G
H
39  
719  
ms  
ms  
82  
1.3  
Typical Operating Circuit appears at end of data sheet.  
*See Figure 1 for operation.  
________________________________________________________________ Maxim Integrated Products  
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
..................................................................-0.3V to +6.0V  
6-Pin SOT23 (derate 8.7mW/°C above +70°C)..........696mW  
Operating Temperature Range .........................-40°C to +12ꢀ°C  
Junction Temperature......................................................+1ꢀ0°C  
Storage Temperature Range.............................-6ꢀ°C to +1ꢀ0°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
MR, RESET (MAX6323), WDI .............-0.3V to (V  
WDPO, RESET (MAX6324)..............................-0.3V to +6.0V  
+ +0.3V)  
CC  
Input Current, V , WDI, MR ..............................................20mA  
Output Current, RESET, WDPO ..........................................20mA  
CC  
Rate of Rise, V  
............................................................100V/µs  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= full range, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are at V  
= 3V, T = +2ꢀ°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
ꢀ.ꢀ  
UNITS  
Operating Voltage Range  
V
CC  
1.2  
V
V
V
= 2.ꢀV or 3.3V  
= ꢀ.ꢀV  
23  
4ꢀ  
CC  
No load, RESET  
deasserted  
Supply Current  
I
µA  
CC  
27  
ꢀ7  
CC  
MAX632_ _UT46  
MAX632_ _UT44  
MAX632_ _UT31  
MAX632_ _UT29  
MAX632_ _UT26  
MAX632_ _UT23  
RESET deasserted  
4.ꢀ0  
4.2ꢀ  
3.00  
2.8ꢀ  
2.ꢀꢀ  
2.2ꢀ  
100  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
180  
20  
4.7ꢀ  
4.ꢀ0  
3.1ꢀ  
3.00  
2.70  
2.38  
280  
Reset Threshold Voltage  
Reset Timeout Delay  
V
t
V
TH  
ms  
µs  
RP  
10mV/ms, V +100mV to V -100mV  
V
CC  
to RESET Delay  
TH  
TH  
I
= 1.2mA, V  
= 2.2ꢀV (MAX632_ _UT23,  
CC  
SINK  
MAX632_ _UT26, MAX632_ _UT29,  
MAX632_ _UT31)  
0.4  
V
OL  
V
WDPO, RESET Output Voltage  
I
= 3.2mA, V  
= 4.2ꢀV (MAX632_ _UT44,  
SINK  
CC  
0.4  
0.4  
MAX632_ _UT46)  
I
= 100µA, V > 1.2V, RESET asserted  
CC  
SINK  
I
= ꢀ00µA, V = 3.1ꢀV, RESET  
CC  
SOURCE  
0.8 x V  
deasserted (MAX632_ _UT23, MAX632_ _UT26,  
MAX632_ _UT29, MAX632_ _UT31)  
CC  
RESET Output Voltage  
(MAX6323)  
V
I
V
OH  
I
= 800µA, V = 4.7ꢀV, RESET  
CC  
SOURCE  
V
CC  
- 1.ꢀ  
deasserted, (MAX632_ _UT44, MAX632_ _UT46)  
V
= V = +ꢀ.ꢀV, RESET, WDPO  
RESET  
WDPO  
1
µA  
WDPO, RESET Output Leakage  
LKG  
deasserted  
2
_______________________________________________________________________________________  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= full range, T = -40°C to +12ꢀ°C, unless otherwise noted. Typical values are at V  
= 3V, T = +2ꢀ°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
WATCHDOG INPUT AND OUTPUT  
MAX632_AUT_ _  
1
1.ꢀ  
1ꢀ  
MAX632_BUT_ _  
MAX632_CUT_ _  
MAX632_DUT_ _  
MAX632_EUT_ _  
MAX632_FUT_ _  
MAX632_GUT_ _  
MAX632_HUT_ _  
MAX632_AUT_ _  
MAX632_BUT_ _  
MAX632_CUT_ _  
MAX632_DUT_ _  
MAX632_EUT_ _  
MAX632_FUT_ _  
MAX632_GUT_ _  
MAX632_HUT_ _  
10  
10  
1ꢀ  
10  
1ꢀ  
Watchdog Timeout (Fast)  
(Notes 2, 3)  
t
ms  
WD1  
10  
1ꢀ  
17  
23  
29  
39  
ꢀ43  
10  
719  
1ꢀ  
100  
300  
10  
1ꢀ0  
4ꢀ0  
1ꢀ  
ms  
s
Watchdog Timeout (Slow)  
(Note 4)  
t
WD2  
60  
90  
47  
63  
ms  
s
82  
108  
1.8  
1.3  
Minimum Watchdog Input  
Pulse Width  
300  
ns  
ns  
V
WDI Glitch Immunity  
V
= ꢀ.ꢀV  
100  
CC  
V
0.7ꢀ x V  
-1.ꢀ  
IH  
CC  
WDI Input Voltage  
V
0.8  
IL  
WDI = 0  
WDI = V  
-1  
1
WDI Input Current  
µA  
ms  
1.ꢀ  
3
CC  
V
IL  
= 0.8V, V = 0.7ꢀV x V  
IH  
0.ꢀ  
1
WDPO Pulse Width  
CC  
MANUAL RESET INPUT  
V
0.7 x V  
1
IH  
CC  
V
MR Input Voltage  
V
0.3 x V  
CC  
IL  
µs  
ns  
ns  
k
MR Minimum Pulse Width  
MR Glitch Immunity  
MR to Reset Delay  
V
V
= 2.ꢀV  
100  
120  
8ꢀ  
CC  
= 2.ꢀV  
CC  
ꢀ0  
MR Pullup Resistance  
Note 1: Devices are tested at T = +2ꢀ°C and guaranteed by design for T = T  
to T  
, as specified.  
MAX  
A
A
MIN  
Note 2: WDPO will pulse low if a falling edge is detected on WDI before this timeout period expires.  
Note 3: To avoid a potential fake fault, the first WDI pulse after the rising edge of RESET or WDPO will not create a fast watchdog  
timeout fault.  
Note 4: WDPO will pulse low if no falling edge is detected on WDI after this timeout period expires.  
_______________________________________________________________________________________  
3
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
Typical Operating Characteristics  
(V  
= full range, T = +2ꢀ°C, unless otherwise noted.)  
A
CC  
POWER-DOWN RESET DELAY  
vs. TEMPERATURE  
MR TO RESET DELAY  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
40  
35  
30  
25  
20  
160  
140  
120  
100  
80  
V
CC  
= 5.5V  
V
V
= 20mV  
OD  
30  
25  
20  
15  
10  
5
15  
10  
V
CC  
= 3.3V  
60  
= 100mV  
OD  
20  
40  
V
CC  
= 1.0V  
5
0
20  
0
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
NORMALIZED POWER-UP RESET TIMEOUT  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT  
PERIOD (FAST) vs. TEMPERATURE  
1.0005  
1.0000  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.9995  
0.9990  
0.9985  
0.9980  
0.996  
0.994  
0.992  
0.996  
0.994  
-40  
-20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
NORMALIZED WATCHDOG OUTPUT  
PULSE WIDTH vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
NORMALIZED WATCHDOG TIMEOUT  
PERIOD (SLOW) vs. TEMPERATURE  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
400  
350  
300  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
V
= V - V  
TH CC  
OD  
250  
200  
RESET ASSERTED  
ABOVE THIS LINE  
150  
100  
50  
0.996  
0.994  
0.992  
0.997  
0.996  
0.995  
MAX632_AUT23  
100  
0
-40  
-20  
0
20  
40  
60  
80  
1
10  
1000  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE ( C)  
RESET COMPARATOR OVERDRIVE (mV)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
Typical Operating Characteristics (continued)  
(V  
= full range, T = +2ꢀ°C, unless otherwise noted.)  
A
CC  
SLOW WATCHDOG TIMEOUT PERIOD  
FAST WATCHDOG TIMEOUT PERIOD  
MAX6323/24-11  
MAX6323/24-10  
WDI  
2V/div  
2V/div  
WDI  
2V/div  
2V/div  
WDPO  
WDPO  
MAX6323AUT23  
500 s/div  
MAX6323AUT23  
5ms/div  
Pin Description  
PIN  
NAME  
MR  
FUNCTION  
Active-Low, Manual Reset Input. When MR is asserted low, RESET is asserted low, the internal watchdog  
timer is reset to zero, and WDPO is reset to high impedance (open drain). After the rising edge of MR,  
RESET is asserted for at least 100ms. Leave MR unconnected or connect to V  
1
2
3
if unused.  
CC  
GND  
WDI  
Ground  
Watchdog Input. The internal watchdog timer is reset to zero and begins to count at the falling edge of WDI  
if RESET is high. If WDI sees another falling edge within the factory-trimmed watchdog window, WDPO will  
remain unasserted. Transitions outside this window, either faster or slower, will cause WDPO to pulse low for  
1ms (typ).  
Supply Voltage for the Device. Input for V  
(min) capacitor.  
reset monitor. For noisy systems, bypass V  
with a ꢀ00pF  
CC  
CC  
4
V
CC  
Watchdog Pulse Output. The open-drain WDPO output is pulsed low for 1ms (typ) upon detection of a fast  
or slow watchdog fault. WDPO is only active when RESET is high.  
WDPO  
RESET  
Active-Low. Reset is asserted when V  
drops below V and remains asserted until V  
rises above V  
CC  
TH  
CC TH  
for the duration of the reset timeout period. The MAX6323 has a push-pull output and the MAX6324 has an  
6
open-drain output. Connect a pullup resistor from RESET to any supply voltage up to +6V.  
_______________________________________________________________________________________  
5
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
t
(min)  
)
t
(max)  
t
(min)  
t
(max)  
WD1  
WD1  
WD2  
WD2  
POSSIBLE STATES  
GUARANTEED TO  
ASSERT WDPO  
GUARANTEED NOT TO  
ASSERT WDPO  
GUARANTEED TO  
ASSERT WDPO  
*
*
UNDETERMINED  
UNDETERMINED  
CONDITION 1  
FAST FAULT  
CONDITION 2  
CONDITION 3  
NORMAL OPERATION  
SLOW FAULT  
*
UNDETERMINED STATES MAY OR MAY NOT GENERATE A FAULT CONDITION.  
Figure 1. Detailed Watchdog Input Timing Relationship  
other (faster than t  
) (Figure 2) or falling edges that  
WD1  
Detailed Description  
are too far apart (slower than t  
) (Figure 3), WDPO is  
WD2  
The MAX6323/MAX6324 µP supervisory circuits main-  
tain system integrity by alerting the µP to fault condi-  
pulsed low. Normal watchdog operation is displayed in  
Figure 4 (WDPO is not asserted). The internal watch-  
dog timer is cleared when a WDI falling edge is detect-  
ed within the valid watchdog window or when the  
device’s RESET or WDPO outputs are deasserted. All  
WDI input pulses are ignored while either RESET or  
WDPO is asserted. Figure 1 identifies the input timing  
regions where WDPO fault outputs will be observed  
tions. In addition to a standard V  
monitor (for  
CC  
power-on reset, brownout detect, and power-down  
reset), the devices include a sophisticated watchdog  
timer that detects when the processor is running out-  
side an expected window of operation for a specific  
application. The watchdog signals a fault when the  
input pulses arrive too early (faster than the selected  
with respect to t  
and t  
. After RESET or WDPO  
WD2  
WD1  
t
timeout period) or too late (slower than the select-  
WD1  
ed t  
deasserts, the first WDI falling edge is ignored for the  
fast fault condition (Figure 2).  
timeout period) (Figure 1). Incorrect timing can  
WD2  
lead to poor or dangerous system performance in tight-  
ly controlled operating environments. Incorrect timing  
could be the result of improper µP clocking or code  
execution errors. If a timing error occurs, the  
MAX6323/MAX6324 issue a watchdog pulse output,  
independent from the reset output, indicating that sys-  
tem maintenance may be required.  
Upon detecting a watchdog fault, the WDPO output will  
pulse low for 1ms. WDPO is an open-drain output.  
Connect a pullup resistor on WDPO to any supply up to  
+6V.  
V
CC  
Reset  
The MAX6323/MAX6324 also include a standard V  
CC  
reset monitor to ensure that the µP is started in a known  
state and to prevent code execution errors during  
power-up, power-down, or brownout conditions.  
Watchdog Function  
A pulse on the watchdog output WDPO can be trig-  
gered by a fast fault or a slow fault. If the watchdog  
input (WDI) has two falling edges too close to each  
RESET is asserted whenever the V  
supply voltage  
CC  
6
_______________________________________________________________________________________  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
t
< t  
(min)  
WDI WD1  
RESET  
WDI  
WDPO  
FAST FAULT  
Figure 2. Fast Fault Timing  
t
< t  
(max)  
WDI WD2  
RESET  
WDI  
WDPO  
SLOW FAULT  
Figure 3. Slow Fault Timing  
t
(max) < t < t  
(min)  
WD1  
WDI WD2  
RESET  
WDI  
H
WDPO  
L
NORMAL OPERATION (NO PULSING, OUTPUT STAYS HIGH)  
Figure 4. Normal Operation, WDPO Not Asserted  
_______________________________________________________________________________________  
7
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
V
TH  
V
CC  
100ms (min)  
100ms (min)  
120ns (typ)  
20 s (typ)  
RESET  
MR  
1 s (min)  
Figure 5. RESET Timing Relationship  
falls below the preset threshold or when the manual  
Applications Information  
reset input (MR) is asserted. The RESET output remains  
Negative-Going V  
Transients  
asserted for at least 100ms after V  
has risen above  
CC  
The MAX6323/MAX6324 are relatively immune to short-  
duration negative-going V transients (glitches),  
CC  
the reset threshold and MR is deasserted (Figure ꢀ).  
For noisy environments, bybass V with a ꢀ00pF (min)  
CC  
CC  
which usually do not require the entire system to shut  
down. Typically, 200ns large-amplitude pulses (from  
capacitor to ensure correct operation.  
The MAX6323 has a push-pull output stage, and the  
MAX6324 utilizes an open-drain output. Connect a pull-  
up resistor on the RESET output of the MAX6324 to any  
supply up to +6V. Select a resistor value large enough  
to register a logic low (see Electrical Characteristics)  
and small enough to register a logic high while supply-  
ing all input leakage currents and leakage paths con-  
nected to the RESET line. A 10k pullup is sufficient in  
most applications.  
ground to V ) on the supply will not cause a reset.  
CC  
Lower amplitude pulses result in greater immunity.  
Typically, a V  
transient that falls 100mV below the  
CC  
reset threshold and lasts less than 20µs will not trigger  
a reset (see Typical Operating Characteristics). An  
optional 0.1µF bypass capacitor mounted close to V  
provides additional transient immunity.  
CC  
Ensuring a Valid Reset Output  
Down to V = 0  
CC  
falls below +1.2V, the MAX6323 RESET out-  
Manual Reset Input  
Many µP-based products require manual reset capabil-  
ity to allow an operator or external logic circuitry to initi-  
ate a reset. The manual reset input (MR) can connect  
directly to a switch without an external pullup resistor or  
When V  
CC  
put no longer sinks current; it becomes an open circuit.  
Therefore, high-impedance CMOS logic inputs con-  
nected to RESET can drift to undetermined voltages.  
This does not present a problem in most applications,  
since most µPs and other circuitry are inoperative with  
debouncing network. MR is internally pulled up to V  
CC  
and, therefore, can be left unconnected if unused. MR  
is designed to reject fast, negative-going transients  
(typically 100ns pulses), and it must be held low for a  
minimum of 1µs to assert the reset output (Figure ꢀ). A  
0.1µF capacitor from MR to ground provides additional  
noise immunity. After MR transitions from low to high,  
reset will remain asserted for the duration of the reset  
timeout period, at least 100ms.  
V
below +1.2V. However, in applications where  
CC  
RESET must be valid down to 0, adding a pulldown  
resistor to RESET causes any stray leakage currents to  
flow to ground, holding RESET low (Figure 6). R1’s  
value is not critical; 100k is large enough not to load  
RESET and small enough to pull RESET to ground. This  
scheme does not work with the open-drain output of the  
MAX6324.  
8
_______________________________________________________________________________________  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
P
MAX6324  
MAX6323  
RESET  
INPUT  
RESET  
RESET  
R1  
100k  
GND  
GND  
GND  
Figure 7. Interfacing to µPs with Bidirectional Reset Pins  
Figure 6. RESET Valid to V  
= Ground Circuit  
CC  
technique avoids a “stuck” loop in which the watchdog  
time would continue to be reset within the loop, keeping  
the watchdog from timing out.  
Interfacing to µPs with  
Bidirectional Reset Pins  
Since the RESET output on the MAX6324 is open-drain,  
this device easily interfaces with µPs that have bidirec-  
tional reset pins, such as the Motorola 68HC11.  
Connecting the µP supervisor’s RESET output directly  
to the microcontroller’s (µC’s) RESET pin with a single  
pullup resistor allows either device to assert reset  
(Figure 7).  
Figure 9 shows an example of a flow diagram where  
the I/O driving the watchdog input is set high at the  
beginning of the program, set low at the beginning of  
every subroutine or loop, then set high again when the  
program returns to the beginning. If the program should  
“hang” in any subroutine, the problem would be quickly  
corrected, since the I/O is continually set low and the  
watchdog time is allowed to time out, causing a reset or  
interrupt to be issued.  
MAX6324 Open-Drain RESET Output  
Allows Use with Multiple Supplies  
Generally, the pullup resistor connected to the  
MAX6324 will connect to the supply voltage that is  
WDPO to MR Loopback  
An error detected by the watchdog often indicates that  
a problem has occurred in the µP code execution. This  
could be a stalled instruction or a loop from which the  
processor cannot free itself. If the µP will still respond to  
a nonmaskable input (NMI), the processor can be redi-  
rected to the proper code sequence by connecting the  
WDPO output to an NMI input. Internal RAM data  
should not be lost, but it may have been contaminated  
by the same error that caused the watchdog to time  
out.  
being monitored at the IC’s V  
pin. However, some  
CC  
systems may use the open-drain output to level-shift  
from the monitored supply to reset circuitry powered by  
some other supply (Figure 8). Keep in mind that as the  
MAX6324’s V  
decreases below +1.2V, so does the  
CC  
IC’s ability to sink current at RESET. Also, with any pull-  
up resistor, RESET will be pulled high as V decays  
CC  
toward 0. The voltage where this occurs depends on  
the pullup resistor value and the voltage to which it is  
connected.  
If the processor will not recognize NMI inputs, or if the  
internal data is considered potentially corrupted when a  
watchdog error occurs, the processor should be  
restarted with a reset function. To obtain proper reset  
timing characteristics, the WDPO output should be con-  
nected to the MR input, and the RESET output should  
Watchdog Software Considerations  
To help the watchdog timer monitor software execution  
more closely, set and reset the watchdog input at dif-  
ferent points in the program, rather than “pulsing” the  
watchdog input high-low-high or low-high-low. This  
_______________________________________________________________________________________  
9
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
+3.3V  
+5.0V  
START  
R
PULLUP  
SET WDI  
LOW  
V
CC  
V
CC  
5V SYSTEM  
MAX6324  
SUBROUTINE OR  
PROGRAM LOOP  
SET WDI HIGH  
RESET  
INPUT  
RESET  
GND  
GND  
RETURN  
END  
Figure 8. MAX6324 Open-Drain RESET Output Allows Use with  
Multiple Supplies  
drive the µP RESET input (Figure 10). The short 1ms  
WDPO pulse output will assert the manual reset input  
and force the RESET output to assert for the full reset  
timeout period (100ms min). All internal RAM data is  
lost during the reset period, but the processor is guar-  
anteed to begin in the proper operating state.  
Figure 9. Watchdog Flow Diagram  
Reset Threshold Range  
(-40°C to +125°C)  
Standard Versions  
SUFFIX  
46  
MIN  
4.ꢀ0  
4.2ꢀ  
3.00  
2.8ꢀ  
2.ꢀꢀ  
2.2ꢀ  
TYP  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
MAX  
4.7ꢀ  
4.ꢀ0  
3.1ꢀ  
3.00  
2.70  
2.38  
UNITS  
MAX6323AUT29  
MAX6323AUT46  
MAX6323CUT29  
MAX6323CUT46  
MAX6323DUT29  
MAX6323DUT46  
MAX6323HUT29  
MAX6323HUT46  
MAX6324AUT29  
MAX6324AUT46  
MAX6324BUT29  
MAX6324BUT46  
MAX6324EUT29  
MAX6324EUT46  
MAX6324HUT29  
MAX6324HUT46  
44  
31  
V
29  
26  
23  
Chip Information  
TRANSISTOR COUNT: 1371  
PROCESS: BiCMOS  
10 ______________________________________________________________________________________  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
V
CC  
500pF  
V
CC  
V
CC  
*R  
PULLUP  
P
MAX6323  
MAX6324  
RESET  
WDI  
RESET  
I/O  
MR  
WDPO  
GND  
*MAX6324 ONLY  
Figure 10. WDPO to MR Loopback Circuit  
Typical Operating Circuit  
V
CC  
500pF  
V
CC  
V
CC  
*R  
PULLUP  
P
MAX6323  
MAX6324  
RESET  
WDI  
RESET  
I/O  
MR  
WDPO  
NMI  
GND  
*MAX6324 ONLY  
______________________________________________________________________________________ 11  
µP Supervisory Circuits with Windowed  
(Min/Max) Watchdog and Manual Reset  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY