MAX6397MATA+ [MAXIM]

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANTMO-229WEEC, TDFN-8;
MAX6397MATA+
型号: MAX6397MATA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANTMO-229WEEC, TDFN-8

开关 控制器
文件: 总18页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3668; Rev 5; 1/09  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
General Description  
Features  
The MAX6397/MAX6398 are small, high-voltage overvolt-  
age protection circuits. These devices disconnect the  
output load or limit the output voltage during an input  
overvoltage condition. These devices are ideal for appli-  
cations that must survive high-voltage transients such as  
those found in automotive and industrial applications.  
o 5.5V to 72V Wide Supply Voltage Range  
o Overvoltage Protection Controllers Allow User to  
Size External n-Channel MOSFETs  
o Internal Charge-Pump Circuit Ensures MOSFET  
Gate-to-Source Enhancement for Low R  
DS(ON)  
The MAX6397/MAX6398 monitor the input or output  
voltages and control an external n-channel MOSFET to  
isolate or limit the load from overvoltage transient energy.  
When the monitored input voltage is below the user-  
adjustable overvoltage threshold, the external n-channel  
MOSFET is turned on by the GATE output. In this mode,  
the internal charge pump fully enhances the n-channel  
MOSFET with a 10V gate-to-source voltage.  
Performance  
o Disconnect or Limit Output from Input During  
Overvoltage Conditions  
o Adjustable Overvoltage Threshold  
o Thermal-Shutdown Protection  
o Always-On, Low-Current (37µA) Linear Regulator  
Sources Up to 100mA (MAX6397)  
When the input voltage exceeds the overvoltage thresh-  
old, the protection can disconnect the load from the  
input by quickly forcing the GATE output low. In some  
applications, disconnecting the output from the load is  
not desirable. In these cases, the protection circuit can  
be configured to act as a voltage limiter where the  
GATE output sawtooths to limit the voltage to the load.  
o Fully Specified from -40°C to +125°C (T )  
J
o Small, Thermally Enhanced 3mm x 3mm TDFN  
Package  
Ordering Information  
The MAX6397 also offers an always-on linear regulator  
that is capable of delivering up to 100mA of output  
current. This high-voltage linear regulator consumes  
only 37µA of quiescent current.  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 TDFN-EP**  
6 TDFN-EP**  
MAX6397_ATA-T*  
MAX6398ATT-T*  
The regulator is offered with output options of 5V, 3.3V,  
2.5V, or 1.8V. An open-drain, power-good output (POK)  
asserts when the regulator output falls below 92.5% or  
87.5% of its nominal voltage.  
*Replace “-T” with “+T” for lead(Pb)-free/RoHS-compliant packages.  
**EP = Exposed pad.  
The MAX6397 linear regulator is offered in four output voltage  
options and a choice of a 92.5% or 87.5% POK threshold  
assertions. See the Selector Guide.  
The MAX6397/MAX6398 include internal thermal-shut-  
down protection, disabling the external MOSFET and  
linear regulator if the chip reaches overtemperature  
conditions. The devices operate over a wide 5.5V to  
72V supply voltage range, are available in small TDFN  
packages, and are fully specified from -40°C to  
+125°C.  
Selector Guide and Typical Operating Circuit appear at end  
of data sheet.  
Pin Configurations  
TOP VIEW  
REG OUT GATE GND  
8
7
6
5
Applications  
Automotive  
Industrial  
*EP  
®
FireWire  
MAX6397  
Notebook Computers  
Wall Cube Power Devices  
1
2
3
4
IN SHDN SET POK  
TDFN  
FireWire is a registered trademark of Apple Computer, Inc.  
*EXPOSED PAD. CONNECT TO GND.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
ABSOLUTE MAXIMUM RATINGS  
(All pins referenced to GND, unless otherwise noted.)  
IN, GATE, OUT ............................................................-0.3V to +80V  
SHDN..................................................................-0.3V to (IN + 0.3V)  
GATE to OUT .................................................................-0.3 to +20V  
SET, REG, POK ...........................................................-0.3V to +12V  
Maximum Current:  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin TDFN (derate 18.2mW/°C above +70°C) .............1455mW  
8-Pin TDFN (derate 18.2mW/°C above +70°C) .............1455mW  
Operating Temperature Range (T ) ......................-40°C to +125°C  
A
Junction Temperature...........................................................+150°C  
Storage Temperature Range .................................-65°C to +150°C  
Lead Temperature ................................................................+300°C  
IN, REG...............................................................................350mA  
All Remaining Pins ...................................................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional oper-  
ation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 14V; C  
= 6000pF, C  
= 4.7µF, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
J
J
IN  
GATE  
REG  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
72  
UNITS  
Supply Voltage Range  
V
5.5  
V
IN  
SHDN = high, no load (MAX6397)  
SHDN = high, (MAX6398)  
118  
104  
37  
140  
130  
45  
Input Supply Current  
µA  
SHDN = low, no load (MAX6397)  
SHDN = low, (MAX6398)  
7/MAX6398  
11  
20  
IN Undervoltage Lockout  
V
rising, enables GATE  
4.66  
5
5.50  
V
IN  
IN Undervoltage Lockout  
Hysteresis  
V
falling, disables GATE  
175  
mV  
IN  
SET Threshold Voltage  
SET Threshold Hysteresis  
SET Input Current  
V
With respect to GND  
1.181  
-50  
1.215  
4
1.248  
+50  
V
TH  
V
%
HYST  
I
nA  
µs  
SET  
Startup Response Time  
t
SHDN rising (Note 2)  
100  
1
START  
GATE rising from GND to V  
+ 8V,  
OUT  
GATE Rise Time  
ms  
µs  
C
= 6000pF, OUT = GND  
GATE  
SET rising from V - 100mV to V  
TH  
100mV  
+
TH  
SET to GATE Propagation Delay  
GATE Output High Voltage  
t
0.75  
OV  
V
+
V
+
V
+
IN  
IN  
IN  
V
V
= V = 6V, R  
to IN = 1MΩ  
OUT  
OUT  
IN  
GATE  
3.8V  
4.2V  
4.6V  
V
V
OH  
V
+
V
+
V
+
IN  
IN  
IN  
= V ; V 14V, R  
to IN = 1MΩ  
IN IN  
GATE  
8.5V  
9.2V  
11.5V  
GATE Output Low Voltage  
V
GATE sinking 20mA, V  
GATE = GND  
= GND  
OUT  
0.38  
V
µA  
V
OL  
GATE Charge-Pump Current  
GATE to OUT Clamp Voltage  
SHDN Logic-High Input Voltage  
SHDN Logic-Low Input Voltage  
I
75  
1
GATE  
V
13  
18  
CLMP  
V
1.4  
IH  
V
0.4  
IL  
V
= 2V, SHDN is internally pulled  
SHDN  
SHDN Input Pulldown Current  
µA  
down to GND  
Thermal Shutdown  
(Note 3)  
+150  
20  
°C  
°C  
Thermal Shutdown Hysteresis  
REGULATOR (MAX6397)  
I
I
= 1mA  
40  
60  
48  
REG  
Ground Current  
I
SHDN = GND  
µA  
GND  
= 100mA  
REG  
2
_______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 14V; C  
= 6000pF, C  
= 4.7µF, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 1)  
J
J
IN  
GATE  
REG  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1mA  
MIN  
4.925  
4.85  
TYP  
MAX  
5.120  
5.15  
UNITS  
I
5
REG  
MAX6397L/M  
MAX6397S/T  
MAX6397Y/Z  
MAX6397V/W  
1mA < I  
< 100mA  
REG  
I
= 1mA  
3.243  
3.201  
2.456  
2.41  
3.3  
2.5  
1.8  
3.360  
REG  
1mA < IREG < 100mA  
I = 1mA  
REG  
V
3. 360  
2.542  
2.55  
REG Output Voltage  
(V V + 1.8V)  
V
REG  
IN  
REG  
1mA < I  
< 100mA  
REG  
I
= 1mA  
1.760  
1.715  
1.837  
1.837  
0.12  
REG  
1mA < I  
< 100mA  
REG  
mV/V  
5.5V VIN 72V, I  
5.5V VIN 72V, I  
VIN = 14V  
= 1mA, V  
= 5V  
REG  
REG  
REG  
Dropout Voltage (Note 4)  
Current Limit  
VDO  
= 100mA, V  
= 5V  
1.2  
REG  
150  
300  
mA  
% of  
Overvoltage-Protection Threshold  
Overvoltage-Protection Sink Current  
V
105  
15  
OVP  
V
REG  
I
V
= 1.1 x V  
(nominal)  
REG  
mA  
OVP  
REG  
6.5V VIN 72V, I  
5.5V VIN 72V, I  
5.5V VIN 72V, I  
= 10mA, V  
= 5V  
0.22  
0.05  
REG  
REG  
REG  
REG  
V  
V  
/
REG  
Line Regulation (Note 5)  
= 1mA, V  
= 5V  
mV/V  
REG  
REG  
= 100mA, V  
= 5V  
1.5  
REG  
VREG /  
IREG  
Load Regulation  
1mA I  
100mA, V  
= 5V  
REG  
0.8  
mV/mA  
REG  
Power-Supply Rejection Ratio  
Startup Response Time  
I
= 10mA, f = 100Hz, 0.5V  
55  
dB  
µs  
REG  
P-P  
t
R
L
= 500, V  
= 5V, C  
= 4.7µF  
180  
START  
REG  
REG  
REG  
4.500  
4.230  
2.966  
2.805  
2.250  
2.125  
1.590  
1.524  
4.67  
4.780  
4.500  
3.140  
2.970  
2.375  
2.250  
1.696  
1.625  
M
T
4.375  
3.053  
2.892  
2.304  
2.188  
1.653  
1.575  
35  
S
POK Assertion Threshold  
(MAX6397 Only)  
V
V
POK_TH  
Z
Y
W
V
REG to POK Delay  
V
V
V
rising or falling  
= 5V  
µs  
nA  
V
REG  
POK  
POK Leakage Current  
POK Output Low Voltage  
300  
0.3  
V
1.5V, I  
= 1.6mA, POK asserted  
OL  
IN  
SINK  
Note 1: Specifications to T = -40°C are guaranteed by design and not production tested.  
A
Note 2: The MAX6397/MAX6398 power up with the external FET in off mode (V  
= GND). The external FET turns on t  
after the  
GATE  
START  
device is powered up and all input conditions are valid.  
Note 3: For accurate overtemperature shutdown performance, place the device in close thermal contact with the external MOSFET.  
Note 4: Dropout voltage is defined as V - V when V is 2% below the value of V for V = V (nominal) + 2V.  
IN  
REG  
REG  
REG  
IN  
REG  
Note 5: Operations beyond the thermal dissipation limit may permanently damage the device.  
_______________________________________________________________________________________  
3
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Characteristics  
(V = 14V, C  
IN  
= 4.7µF, I  
= 0, unless otherwise noted.)  
REG  
REG  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
180  
160  
120  
110  
100  
90  
MAX6397  
170  
MAX6397  
GATE ON  
MAX6398  
GATE ON  
140  
120  
100  
80  
160  
150  
140  
130  
120  
110  
100  
90  
V
= 72V  
IN  
80  
70  
V
= 14V  
IN  
60  
60  
50  
80  
40  
40  
3
-50 -25  
0
25  
50  
75 100 125  
0
10 20 30 40 50 60 70 80  
INPUT VOLTAGE (V)  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE (MAX6397)  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
20  
18  
16  
14  
12  
10  
8
140  
130  
120  
110  
100  
90  
50  
45  
40  
35  
30  
25  
20  
MAX6398  
GATE OFF  
MAX6398  
GATE ON  
REGULATOR ON  
GATE OFF  
V
= 72V  
IN  
V
= 14V  
IN  
6
4
2
80  
0
50  
-50 -25  
0
25  
50  
75 100 125  
0
10 20 30 40  
60 70 80  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
UVLO THRESHOLD  
vs. TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. INPUT VOLTAGE  
SET THRESHOLD vs. TEMPERATURE  
1.240  
1.236  
1.232  
1.228  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
12  
10  
8
V
= V  
IN  
OUT  
6
4
2
0
-50 -25  
0
25  
50  
75 100 125  
4
6
8
10 12 14 16 18 20 22 24  
INPUT VOLTAGE (V)  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
Typical Operating Characteristics (continued)  
(V = 14V, C  
= 4.7µF, I  
= 0, unless otherwise noted.)  
IN  
REG  
REG  
GATE-TO-OUT CLAMP VOLTAGE  
vs. TEMPERATURE  
DROPOUT VOLTAGE  
vs. REG LOAD CURRENT  
REG OUTPUT VOLTAGE  
vs. LOAD CURRENT AND TEMPERATURE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
17.0  
16.9  
16.8  
16.7  
16.6  
16.5  
16.4  
16.3  
16.2  
16.1  
16.0  
MAX6397L  
MAX6397L  
T
= +125°C  
A
I
= 10mA  
LOAD  
I
= 50mA  
LOAD  
T
= +25°C  
A
I
= 100mA  
LOAD  
T
= -40°C  
A
-50 -25  
0
25  
50  
75 100 125  
0
20 40 60 80 100 120 140 160 180  
REG LOAD CURRENT (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM REG OUTPUT VOLTAGE  
vs. LOAD CURRENT AND TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10.500  
10.495  
10.490  
10.485  
10.480  
10.475  
10.470  
10.465  
10.460  
10.455  
10.450  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
C
I
= 10µF  
REG  
= 10mA  
T
= -40°C  
A
REG  
T
= +25°C  
A
T
= +125°C  
A
THERMAL  
SHUTDOWN  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
40 80 120 160 200 240 280 320 360 400  
LOAD CURRENT (mA)  
-50 -25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
STARTUP WAVEFORM  
STARTUP WAVEFORM FROM SHUTDOWN  
(R  
LOAD  
= 100, C = 10µF, C  
= 10µF)  
OUT  
MAX6397-98 toc16  
(C = 10µF, C  
= 10µF)  
IN  
IN  
OUT  
MAX6397-98 toc17  
R
= 100Ω  
LOAD  
V
IN  
V
SHDN  
10V/div  
2V/div  
V
V
GATE  
GATE  
10V/div  
10V/div  
V
OUT  
V
OUT  
10V/div  
10V/div  
I
I
OUT  
OUT  
200mA/div  
200mA/div  
4ms/div  
400µs/div  
_______________________________________________________________________________________  
5
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Characteristics (continued)  
(V = 14V, C  
= 4.7µF, I  
= 0, unless otherwise noted.)  
IN  
REG  
REG  
VOLTAGE LIMIT FAULT  
OVERVOLTAGE SWITCH FAULT  
MAX6397-98 toc19  
MAX6397-98 toc18  
V
= 30V  
OV  
V
= 30V  
V
IN  
V
OV  
IN  
20V/div  
20V/div  
V
V
GATE  
GATE  
20V/div  
20V/div  
V
V
OUT  
OUT  
20V/div  
20V/div  
V
V
REG  
REG  
5V/div  
5V/div  
1ms/div  
200µs/div  
7/MAX6398  
TRANSIENT RESPONSE  
REG LOAD-TRANSIENT RESPONSE  
MAX6397-98 toc20  
MAX6397-98 toc21  
C
= 10µF  
REG  
= 10mA  
C
= 10µF  
REG  
I
REG  
V
REG  
V
IN  
AC-COUPLED  
500mV/div  
10V/div  
I
REG  
V
REG  
100mA/div  
100mV/div  
400µs/div  
1ms/div  
REGULATOR POK ASSERTION  
REGULATOR STARTUP WAVEFORM  
MAX6397-98 toc23  
MAX6397-98 toc22  
I
= 10mA  
REG  
V
REG  
V
IN  
2V/div  
10V/div  
0V  
V
REG  
2V/div  
V
POK  
2V/div  
0V  
0A  
V
POK  
I
2V/div  
REG  
200mA/div  
I
= 0  
REG  
100µs/div  
1ms/div  
6
_______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6397  
MAX6398  
1
1
IN  
Supply Voltage Input. Bypass with a minimum 10µF capacitor to GND.  
Shutdown Input. Drive SHDN low to force GATE low, turning off the external n-channel  
MOSFET. REG remains active when in shutdown mode. SHDN is internally pulled down  
to GND with a 1µA source. Connect to IN for normal operation.  
2
3
2
3
SHDN  
Overvoltage Threshold Adjustment Input. Connect SET to an external resistor voltage-  
divider network to OUT (overvoltage limiter) or IN (overvoltage switch) to adjust the  
desired overvoltage limit threshold. Use SET to monitor a system input or output voltage.  
SET  
Open-Drain Output. POK remains low until REG exceeds 92.5% or 87.5% of REG  
nominal output voltage. Connect to an external pullup resistor.  
4
5
4
POK  
GND  
Ground  
Gate-Drive Output. Connect GATE to the gate of an external n-channel MOSFET. GATE  
is a charge pump with a 75µA pullup current to 10V (typ) above IN during normal  
operation. GATE is quickly shorted to OUT during an overvoltage condition. GATE pulls  
low when SHDN is low.  
6
5
GATE  
7
8
6
OUT  
REG  
EP  
Output-Voltage-Sense Input. Connect to the source of the external n-channel MOSFET.  
Regulator Output. Fixed 5.0V, 3.3V, 2.5V, or 1.8V output. REG sources up to 100mA.  
Bypass with a minimum 4.7µF capacitor to GND.  
Exposed Pad. Connect to ground plane.  
The MAX6397/MAX6398 are configurable to operate as  
Detailed Description  
overvoltage protection switches or as closed-looped volt-  
age limiters. In overvoltage protection switch mode, the  
input voltage is monitored. When an overvoltage condi-  
tion occurs at IN, GATE pulls low, disconnecting the load  
from the power source, and then slowly enhances upon  
removal of the overvoltage condition. In overvoltage  
limit mode, the output voltage is monitored and the  
MAX6397/MAX6398 regulate the source of the external  
MOSFET at the adjusted overvoltage threshold, allowing  
devices within the system to continue operating during an  
overvoltage condition.  
The MAX6397/MAX6398 are ultra-small, low-current,  
high-voltage protection circuits for automotive applica-  
tions that must survive load dump and high-voltage  
transient conditions. These devices monitor the input/  
output voltages and control an external n-channel  
MOSFET to isolate the load or to regulate the output  
voltage from overvoltage transient energy. The con-  
troller allows system designers to size the external  
MOSFET to their load current and board size.  
The MAX6397/MAX6398 drive the MOSFET’s gate high  
when the monitored input voltage is below the adjustable  
overvoltage threshold. An internal charge-pump circuit  
provides a 5V to 10V gate-to-source drive (see the  
Typical Operating Characteristics) to ensure low input-to-  
load voltage drops in normal operating modes. When the  
input voltage rises above the user-adjusted overvoltage  
threshold, GATE pulls to OUT, turning off  
the MOSFET.  
The MAX6397/MAX6398 undervoltage lockout (UVLO)  
function disables the devices as long as the input  
remains below the 5V (typ) UVLO turn-on threshold. The  
MAX6397/MAX6398 have an active-low SHDN input to  
turn off the external MOSFET, disconnecting the load and  
reducing power consumption. After power is applied and  
SHDN is driven above its logic-high voltage, there is a  
100µs delay before GATE enhancement commences.  
_______________________________________________________________________________________  
7
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Linear Regulator (MAX6397 Only)  
The MAX6397 is available with 5.0V, 3.3V, 2.5V, and 1.8V  
factory-set output voltages. Each regulator sources up to  
100mA and includes a current limit of 230mA. The linear  
regulator operates in an always-on condition regardless  
IN  
THERMAL  
PROTECTION  
of the SHDN logic. For fully specified operation, V must  
IN  
be greater than 6.5V for the MAX6397L/M (5V regulator  
output). The actual output current may be limited by the  
operating condition and package power dissipation.  
UVLO  
10V  
CHARGE  
PUMP  
Power-OK Output  
POK is an open-drain output that goes low when REG  
falls to 92.5% or 87.5% (see the Selector Guide) of its  
nominal output voltage. To obtain a logic-level output,  
connect a pullup resistor from POK to REG or another  
system voltage. Use a resistor in the 100krange to  
minimize current consumption. POK provides a valid  
5V  
GATE  
SET  
OUT  
logic-output level down to V = 1.5V.  
IN  
1.23V  
SHDN  
GATE Voltage  
7/MAX6398  
The MAX6397/MAX6398 use a high-efficiency charge  
pump to generate the GATE voltage. Upon V exceed-  
IN  
REG  
LINEAR  
REGULATOR  
ing the 5V (typ) UVLO threshold, GATE enhances 10V  
above IN (for V 14V) with a 75µA pullup current. An  
IN  
overvoltage condition occurs when the voltage at SET  
pulls above its 1.215V threshold. When the threshold is  
crossed, GATE falls to OUT within 100ns with a 100mA  
(typ) pulldown current. The MAX6397/MAX6398 include  
an internal clamp to OUT that ensures GATE is limited  
to 18V (max) above OUT to prevent gate-to-source  
damage to the external FET.  
MAX6397  
MAX6398  
POK  
GND  
V
POK_TH  
MAX6397 ONLY  
The GATE cycle during overvoltage limit and overvolt-  
age switch modes are quite similar but have distinct  
characteristics. In overvoltage switch mode (Figure 2a),  
GATE is enhanced to V + 10V while the monitored IN  
IN  
Figure 1. Functional Diagram  
voltage remains below the overvoltage fault threshold  
(SET < 1.215V). When an overvoltage fault occurs (SET  
1.215V), GATE is pulled one diode below OUT, turn-  
ing off the external FET and disconnecting the load  
from the input. GATE remains low (FET off) as long as  
The MAX6397 integrates a high-input-voltage, low-qui-  
escent-current linear regulator in addition to an over-  
voltage protector circuit. The linear regulator remains  
enabled at all times to power low-current “always-on”  
applications (independent of the state of the external  
MOSFET). The regulator is offered with several stan-  
dard output voltage options (5V, 3.3V, 2.5V, or 1.8V).  
An open-drain power-good output notifies the system if  
the regulator output falls to 92.5% or 87.5% of its nomi-  
nal voltage. The MAX6397’s REG output operates inde-  
pendently of the SHDN logic input.  
V
is above the overvoltage fault threshold. As V falls  
IN  
IN  
back below the overvoltage fault threshold (-5% hys-  
teresis) GATE is again enhanced to V + 10V.  
IN  
In overvoltage limit mode (Figure 2b), GATE is enhanced  
to V + 10V. While the monitored OUT voltage remains  
IN  
below the overvoltage fault threshold (SET < 1.215V).  
When an overvoltage fault occurs (SET 1.215V),  
GATE is pulled low one diode drop below OUT until  
OUT drops 5% below the overvoltage fault threshold.  
GATE is then turned back on until OUT again reaches  
the overvoltage fault threshold and GATE is again  
turned off.  
The MAX6397/MAX6398 include internal thermal-shut-  
down protection, disabling the external MOSFET and  
linear regulator if the chip reaches overtemperature  
conditions.  
8
_______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
V
IN  
10V/div  
GATE  
V
BATT  
IN  
OUT  
R1  
R2  
V
MAX6397  
MAX6398  
GATE  
10V/div  
SET  
V
OUT  
GND  
10V/div  
10ms/div  
Figure 3. Overvoltage Switch Protection Configuration  
Figure 2a. MAX6397/MAX6398 GATE Waveform During Over-  
voltage Switch Mode  
Overvoltage Monitoring  
When operating in overvoltage mode, the MAX6397/  
MAX6398 feedback path (Figure 3) consists of IN,  
SET’s internal comparator, the internal gate charge  
pump, and the external n-channel MOSFET resulting in  
a switch-on/off function. When the programmed over-  
voltage threshold is tripped, the internal fast compara-  
tor turns off the external MOSFET, pulling GATE to OUT  
V
IN  
10V/div  
V
GATE  
within t  
and disconnecting the power source from  
10V/div  
OV  
the load. When IN decreases below the adjusted over-  
voltage threshold, the MAX6397/MAX6398 slowly  
enhance GATE above OUT, reconnecting the load to  
the power source.  
V
OUT  
10V/div  
Overvoltage Limiter  
When operating in overvoltage limiter mode, the  
MAX6397/MAX6398 feedback path (Figure 4) consists  
of OUT, SET’s internal comparator, the internal gate  
charge pump and the external n-channel MOSFET,  
which results in the external MOSFET operating as a  
voltage regulator.  
4ms/div  
Figure 2b. MAX6397/MAX6398 GATE Waveform During Over-  
voltage Limit Mode  
GATE cycles on-off-on-off-on in a sawtooth waveform  
until OUT remains below the overvoltage fault threshold  
and GATE remains constantly on (V + 10V). The over-  
IN  
voltage limiter’s sawtooth GATE output operates the  
MOSFET in a switched-linear mode while the input volt-  
age remains above the overvoltage fault threshold. The  
sawtooth frequency depends on the load capacitance,  
load current, and MOSFET turn-on time (GATE charge  
current and GATE capacitance).  
During normal operation, GATE is enhanced 10V above  
OUT. The external MOSFET source voltage is monitored  
through a resistor-divider between OUT and SET. When  
OUT rises above the adjusted overvoltage threshold, an  
internal comparator sinks the charge-pump current, dis-  
charging the external GATE, regulating OUT at the set  
overvoltage threshold. OUT remains active during the  
overvoltage transients and the MOSFET continues to con-  
duct during the overvoltage event, operating in switched-  
linear mode.  
GATE goes high when the following startup conditions  
are met: V is above the UVLO threshold, SHDN is  
IN  
high, an overvoltage fault is not present and the device  
is not in thermal shutdown.  
_______________________________________________________________________________________  
9
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
C
OUT  
V
PEAK  
GATE  
V
IN  
OUT  
SET  
BATT  
R1  
R2  
MAX6397  
MAX6398  
t
> 5ms  
RISE  
V
BATT  
GND  
100ms  
200ms  
300ms  
400ms  
Figure 4. Overvoltage Limiter Protection Switch Configuration  
Figure 5. Load Dump Voltage Profile  
As the transient begins decreasing, OUT fall time will  
depend on the MOSFET’s GATE charge, the internal  
charge-pump current, the output load, and the tank  
capacitor at OUT.  
characteristics of the charging system (Figure 5).  
These transients are capable of destroying semicon-  
ductors on the first ‘fault event.’  
7/MAX6398  
Setting Overvoltage Thresholds  
SET provides an accurate means to set the overvoltage  
level for the MAX6397/MAX6398. Use a resistor-divider to  
set the desired overvoltage condition (Figure 6). SET has  
a rising 1.215V threshold with a 5% falling hysteresis.  
For fast-rising transients and very large-sized MOSFETs,  
add an additional external bypass capacitor from GATE  
to GND to reduce the effect of the fast-rising voltages at  
IN. The external capacitor acts as a voltage-divider  
working against the MOSFETs’ drain-to-gate capaci-  
Begin by selecting the total end-to-end resistance,  
tance. For a 6000pF C , a 0.1µF capacitor at GATE will  
gd  
R
= R1 + R2. Choose R  
to yield a total cur-  
TOTAL  
TOTAL  
reduce the impact of the fast-rising V input.  
IN  
rent equivalent to a minimum 100 x I  
(SET’s input  
SET  
Caution must be exercised when operating the  
MAX6397/MAX6398 in voltage-limiting mode for long  
durations. If the V is a DC voltage greater than the  
IN  
MOSFET’s maximum gate voltage, the FET will dissipate  
power continuously. To prevent damage to the external  
MOSFET, proper heatsinking should be implemented.  
bias current) at the desired overvoltage threshold.  
For example:  
With an overvoltage threshold set to 20V:  
R
< 20V/(100 x I  
)
TOTAL  
SET  
where I  
is SET’s 50nA input bias current.  
SET  
Applications Information  
R
< 4MΩ  
TOTAL  
Use the following formula to calculate R2:  
Load Dump  
Most automotive applications run off a multicell, 12V  
lead-acid battery with a nominal voltage that swings  
between 9V and 16V (depending on load current,  
charging status, temperature, battery age, etc.). The  
battery voltage is distributed throughout the automobile  
and is locally regulated down to voltages required by  
the different system modules. Load dump occurs when  
the alternator is charging the battery and the battery  
becomes disconnected. Power in the alternator (essen-  
tially an inductor) flows into the distributed power sys-  
tem and elevates the voltage seen at each module. The  
voltage spikes have rise times typically greater than  
5ms and decays within several hundred milliseconds  
but can extend out to 1s or more depending on the  
R
TOTAL  
R2 = V  
×
TH  
V
OV  
where V is the 1.215V SET rising threshold and V  
TH  
is the overvoltage threshold.  
OV  
R2 = 243k, use a 240kstandard resistor.  
R
= R2 + R1, where R1 = 3.76M.  
TOTAL  
Use a 3.79Mstandard resistor.  
A lower value for total resistance dissipates more  
power but provides slightly better accuracy.  
10 ______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
GATE  
GATE  
IN  
IN  
IN  
OUT  
SET  
IN  
OUT  
R1  
R2  
R1  
R2  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
SET  
GND  
GND  
Figure 6. Setting the MAX6397/MAX6398 Overvoltage Threshold  
Q1  
IN  
IN  
GATE  
GATE  
V
V
BATT  
LOAD  
LOAD  
BATT  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
OUT  
OUT  
GND  
GND  
(a)  
(b)  
Figure 7. Reverse Battery Protection Using a Diode or p-Channel MOSFET  
the drain voltage. When the source voltage exceeds  
Q1’s threshold voltage, Q1 turns on. Once the FET is  
on, the battery is fully connected to the system and can  
deliver power to the device and the load.  
Reverse-Battery Protection  
Use a diode or p-channel MOSFET to protect the  
MAX6397/MAX6398 during a reverse-battery insertion  
(Figures 7a, 7b). Low p-channel MOSFET on-resistance  
of 30mor less yields a forward-voltage drop of only a  
few millivolts (versus hundreds of millivolts for a diode,  
Figure 7a) thus improving efficiency.  
An incorrectly inserted battery reverse-biases the FET’s  
body diode. The gate remains at the ground potential.  
The FET remains off and disconnects the reversed bat-  
tery from the system. The zener diode and resistor com-  
bination prevent damage to the p-channel MOSFET  
during an overvoltage condition.  
Connecting a positive battery voltage to the drain of Q1  
(Figure 7b) produces forward bias in its body diode,  
which clamps the source voltage one diode drop below  
______________________________________________________________________________________ 11  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
V
BATT  
1kΩ  
IN  
GATE  
C
GATE  
IN  
C
V
OUT  
LOAD  
BATT  
GATE  
60V  
TVS  
MAX6397  
MAX6398  
LOAD  
MAX6397  
MAX6398  
OUT  
GND  
OUT  
GND  
7/MAX6398  
Figure 8. MAX6397/MAX6398 Controlling GATE Inrush Current  
Figure 9. Protecting the MAX6397/MAX6398 Input from High-  
Voltage Transients  
where I  
is GATE’s 75µA sourcing current, I  
is  
REG Capacitor Selection for Stability  
For stable operation over the full temperature range and  
with load currents up to 100mA, use ceramic capacitor  
values greater than 4.7µF. Large output capacitors help  
reduce noise, improve load-transient response, and  
power-supply rejection at REG. Note that some ceramic  
dielectrics exhibit large capacitance and ESR variation  
with temperature. At lower temperatures, it may be nec-  
essary to increase capacitance.  
GATE  
LOAD  
is the output  
the load current at startup, and C  
capacitor.  
OUT  
Input Transients Clamping  
When the external MOSFET is turned off during an over-  
voltage occurrence, stray inductance in the power path  
may cause voltage ringing exceeding the MAX6397/  
MAX6398 absolute maximum input (IN) supply rating.  
The following techniques are recommended to reduce  
the effect of transients:  
Under normal conditions, use a 10µF capacitor at IN.  
Larger input capacitor values and lower ESR provide bet-  
ter supply-noise rejection and line-transient response.  
Minimize stray inductance in the power path using  
wide traces, and minimize loop area including the  
power traces and the return ground path.  
Inrush/Slew-Rate Control  
Inrush current control can be implemented by placing a  
capacitor at GATE (Figure 8) to slowly ramp up the  
GATE, thus limiting the inrush current and controlling  
GATE’s slew rate during initial turn-on. The inrush cur-  
rent can be approximated using the following formula:  
Add a zener diode or transient voltage suppressor  
(TVS) rated below the IN absolute maximum rating  
(Figure 9).  
Add a resistor in series with IN to limit transient current  
going into the input for the MAX6398 only.  
C
OUT  
I
=
× I  
+ I  
INRUSH  
GATE LOAD  
C
GATE  
12 ______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
V
MAX  
V
OV  
V
Q1  
V
BATT  
V
BATT  
+
-
I
LOAD  
GATE  
OUT  
t
2
IN  
GATE  
OUT  
60V  
TVS  
LOAD  
t
1
t
3
MAX6397  
MAX6398  
SET  
t
OVP  
GND  
Figure 11. MAX6397/MAX6398 Timing Diagram  
same thermal island. Good thermal contact between the  
MAX6397/MAX6398 and the external nFET is essential  
for the thermal-shutdown feature to operate effectively.  
Place the nFET as close as possible to OUT.  
Figure 10. Power Dissipated Across MOSFETs During an  
Overvoltage Fault (Overvoltage Limiter Mode)  
When the junction temperature exceeds T = +150°C,  
J
MOSFET Selection  
the thermal sensor signals the shutdown logic, turning off  
REG’s internal pass transistor and the GATE output,  
allowing the device to cool. The thermal sensor turns  
the pass transistor and GATE on again after the IC’s  
junction temperature cools by 20°C. Thermal-overload  
protection is designed to protect the MAX6397/  
MAX6398 and the external MOSFET in the event of cur-  
rent-limit fault conditions. For continuous operation, do  
not exceed the absolute maximum junction-tempera-  
Select external MOSFETs according to the application  
current level. The MOSFET’s on-resistance (R  
)
DS(ON)  
should be chosen low enough to have minimum voltage  
drop at full load to limit the MOSFET power dissipation.  
Determine the device power rating to accommodate  
an overvoltage fault when operating the MAX6397/  
MAX6398 in overvoltage limit mode.  
During normal operation, the external MOSFETs dissipate  
little power. The power dissipated in normal operation is:  
ture rating of T = +150°C.  
J
P
Q1  
= I  
2 x R  
LOAD DS(ON).  
Thermal Shutdown  
Overvoltage Limiter Mode  
When operating the MAX6397/MAX6398 in overvoltage  
limit mode for a prolonged period of time, a thermal  
shutdown is possible due to device self-heating. The  
thermal shutdown is dependent on a number of differ-  
ent factors:  
The most power dissipation will occur during a pro-  
longed overvoltage event when operating the  
MAX6397/MAX6398 in voltage limiter mode, resulting in  
high power dissipated in Q1 (Figure 10) where the  
power dissipated across Q1 is:  
P
Q1  
= V x I  
Q1 LOAD  
where V  
is the voltage across the MOSFET’s drain  
Q1  
The device’s ambient temperature (T )  
A
and source.  
The output capacitor (C  
)
OUT  
Thermal Shutdown  
The output load current (I  
)
OUT  
The MAX6397/MAX6398 thermal-shutdown feature shuts  
off the linear regulator output, REG, and GATE if it  
exceeds the maximum allowable thermal dissipation.  
Thermal shutdown also monitors the PC board tempera-  
ture of the external nFET when the devices sit on the  
The overvoltage threshold limit (V  
)
OV  
The overvoltage waveform period (t  
)
OVP  
The power dissipated across the package (P  
)
DISS  
______________________________________________________________________________________ 13  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
During t2, C  
loses charge through the output load.  
OUT  
The voltage across C  
(V2) decreases until the  
OUT  
180  
170  
I
= 0  
OUT  
A
THERMAL SHUTDOWN  
MOSFET reaches its V  
approximated using the following formula:  
threshold and can be  
GS(TH)  
T = +125°C  
CGATE = 0  
160  
150  
140  
t2  
V2 = I  
OUT  
C
OUT  
CGATE = 10nF  
Once the MOSFET V  
(
) is obtained, the slope of the  
output voltage rise is determined by the MOSFET Q  
GS TH  
CGATE = InF  
G
charge through the internal charge pump with respect  
to the drain potential. The time for the OUT voltage to  
rise again to the overvoltage threshold can be approxi-  
mated using the following formula:  
130  
120  
CGATE = ADDITIONAL CAPACITANCE  
FROM GATE TO GND  
1
10  
100  
1000  
OUTPUT CAPACITANCE (µF)  
Q
V  
OUT  
I
GATE  
GD  
GS _QGD  
t3 ≅  
×
V
Figure 12. Junction Temperature vs. C  
OUT  
where V  
= ( V x 0.05) + V2.  
OV  
When OUT exceeds the adjusted overvoltage threshold,  
an internal GATE pulldown current is enabled until OUT  
drops by 5%. The capacitance at OUT is discharged by  
the internal current sink and the external OUT load cur-  
rent. The discharge time (t1) is approximately:  
OUT  
7/MAX6398  
The total period of the overvoltage waveform can be  
summed up as follows:  
t
= t1 + t2 + t3  
OVP  
The MAX6397/MAX6398 dissipate the most power dur-  
ing an overvoltage event when I = 0 (C is dis-  
charged only by the internal current sink). The maximum  
power dissipation can be approximated using the follow-  
ing equation:  
V
× 0.05  
OUT  
OUT  
OV  
t1 = C  
OUT  
I
+ I  
OUT  
GATEPD  
where V  
is the adjusted overvoltage threshold, I  
OUT  
OV  
is the external load current and I  
is the GATE’s  
GATEPD  
t1  
internal 100mA (typ) pulldown current.  
P
= V  
× 0.975 × I  
×
DISS  
OV  
GATEPD  
t  
When OUT falls 5% below the overvoltage threshold  
point, the internal current sink is disabled and the  
MAX6397/MAX6398’s internal charge pump begins  
recharging the external GATE voltage. The OUT volt-  
age continues to drop due to the external OUT load  
current until the MOSFET gate is recharged. The time  
needed to recharge GATE and re-enhance the external  
nFET is approximately:  
OVP  
The die temperature (T ) increase is related to θ  
J
JC  
(8.3°C/W and 8.5°C/W for the MAX6397 and MAX6398,  
respectively) of the package when mounted correctly  
with a strong thermal contact to the circuit board. The  
MAX6397/MAX6398 thermal shutdown is governed by  
the equation:  
T = T + P  
(typical thermal-shutdown temperature)  
x (θ  
+ θ  
< 170°C  
)
CA  
J
A
DISS  
JC  
V
+ V  
F
GS(TH)  
t2 = C  
ISS  
For the MAX6397, the power dissipation of the internal  
linear regulator must be added to the overvoltage pro-  
tection circuit power dissipation to calculate the die  
temperature. The linear regulator power dissipation is  
calculated using the following equation:  
I
GATE  
where C  
is the MOSFET’s input capacitance, V  
GS(TH)  
ISS  
is the MOSFET’s gate-to-source threshold voltage, V is  
F
the internal clamp diode forward voltage (V = 1.5V typ),  
F
and I  
is the MAX6397/MAX6398 charge-pump cur-  
GATE  
P
REG  
= (V – V  
) (I  
REG REG  
)
IN  
rent (75µA typ).  
For example, using an IRFR3410 100V n-channel  
MOSFET, Figure 12 illustrates the junction temperature  
vs. output capacitor with I  
= 0, T = +125°C,  
A
OUT  
= 75mA, and I  
V
OV  
< 16V,V = 1.5V, I  
=
F
GATE  
GATEPD  
100mA. Figure 12 shows the relationship between output  
capacitance versus die temperature for the conditions  
listed above.  
14 ______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
An additional capacitor can be added to GATE and  
OUTPUT Current Calculation  
The MAX6397 high input voltage (+72V max) provides up  
to 100mA of output current at REG. Package power dissi-  
pation limits the amount of output current available for a  
given input/output voltage and ambient temperature.  
Figure 13 depicts the maximum power dissipation curve  
for the MAX6397. The graph assumes that the exposed  
metal pad of the MAX6397 package is soldered to 1in2 of  
PC board copper. Use Figure 11 to determine the allow-  
able package dissipation for a given ambient tempera-  
ture. Alternately, use the following formula to calculate the  
allowable package dissipation:  
GND to shift the curves as this increases t1. These val-  
ues are used for illustration only. Customers must verify  
worst-case conditons for their specific application.  
2.0  
1.455W  
1.8  
1.6  
DERATE 18.2mW/°C  
ABOVE +70°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
P
DISS  
= 1.455W for T +70°C  
A
Maximum power dissipation =  
1.455 - 0.0182 (T - 70°C) for +70°C T +125°C  
A
A
where, 0.0182 W/°C is the MAX6397 package thermal  
derating.  
After determining the allowable package dissipation,  
calculate the maximum output current using the follow-  
ing formula:  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
Figure 13. Maximum Power Dissipation vs. Temperature  
P
D
ISS  
V  
I
=
100mA  
OUT(MAX)  
V
IN  
REG  
Typical Application Circuit  
DC-DC  
CONVERTER  
IN  
OUT  
µC  
GND  
GATE  
12V IN  
IN  
OUT  
SET  
REG  
POK  
MAX6397  
V
CC  
SHDN  
GND  
RESET  
GPIO  
ALWAYS-ON  
µC  
______________________________________________________________________________________ 15  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Circuit  
DC-DC  
DC-DC  
CONVERTER  
CONVERTER  
C
OUT  
C
OUT  
GATE  
GATE  
V
BATT  
V
BATT  
IN  
OUT  
SET  
IN  
OUT  
REG  
R1  
R2  
R1  
R2  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
REG  
SET  
GND  
GND  
7/MAX6398  
OVERVOLTAGE LIMITER CONTROLLER  
OVERVOLTAGE SWITCH CONTROLLER  
Selector Guide  
Pin Configurations (continued)  
REG OUTPUT POK ASSERTION  
VOLTAGE (V) THRESHOLD (%) MARK  
TOP  
TOP VIEW  
PART  
OUT  
6
GATE  
5
GND  
4
MAX6397LATA  
MAX6397MATA  
MAX6397SATA  
MAX6397TATA  
MAX6397YATA  
MAX6397ZATA  
MAX6397VATA  
MAX6397WATA  
MAX6398ATT  
5.0  
5.0  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
92.5  
87.5  
87.5  
92.5  
87.5  
92.5  
87.5  
92.5  
ANN  
ANO  
ANQ  
ANP  
ANK  
ANJ  
ANM  
ANL  
AJD  
*EP  
MAX6398  
1
2
3
IN  
SHDN SET  
TDFN  
*EXPOSED PAD. CONNECT TO GND.  
16 ______________________________________________________________________________________  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
7/MAX6398  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
TRANSISTOR COUNT: 590  
PROCESS: BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
6 TDFN  
T633-2  
21-0137  
21-0137  
8 TDFN  
T833-2  
______________________________________________________________________________________ 17  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
3
4
5
5/05  
1/07  
3/07  
1/09  
Initial release  
1, 14, 15, 17  
1, 3, 18  
3
Changed formula and updated Figure 13 caption title.  
Updated Electrical Characteristics table.  
Updated Electrical Characteristics table.  
7/MAX6398  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY