MAX6397VATA+ [MAXIM]

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANTMO-229WEEC, TDFN-8;
MAX6397VATA+
型号: MAX6397VATA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANTMO-229WEEC, TDFN-8

信息通信管理
文件: 总18页 (文件大小:1942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
General Description  
Features  
5.5V to 72V Wide Supply Voltage Range  
The MAX6397/MAX6398 are small, high-voltage over-  
voltage protection circuits. These devices disconnect  
the output load or limit the output voltage during an  
input overvoltage condition. These devices are ideal for  
applications that must survive high-voltage transients  
such as those found in industrial applications.  
Overvoltage Protection Controllers Allow User to Size  
External n-Channel MOSFETs  
Internal Charge-Pump Circuit Ensures MOSFET  
Gate-to-Source Enhancement for Low R  
Performance  
DS(ON)  
The MAX6397/MAX6398 monitor the input or output  
voltages and control an external n-channel MOSFET to  
isolate or limit the load from overvoltage transient energy.  
When the monitored input voltage is below the user-  
adjustable overvoltage threshold, the external n-channel  
MOSFET is turned on by the GATE output. In this mode,  
the internal charge pump fully enhances the n-channel  
MOSFET with a 10V gate-to-source voltage.  
Disconnect or Limit Output from Input During  
Overvoltage Conditions  
Adjustable Overvoltage Threshold  
Thermal-Shutdown Protection  
Always-On, Low-Current (37µA) Linear Regulator  
Sources Up to 100mA (MAX6397)  
Fully Specified from -40°C to +125°C (T )  
J
When the input voltage exceeds the overvoltage threshold,  
the protection can disconnect the load from the input by  
quickly forcing the GATE output low. In some applications,  
disconnecting the output from the load is not desirable. In  
these cases, the protection circuit can be configured to  
act as a voltage limiter where the GATE output sawtooths  
to limit the voltage to the load.  
Small, Thermally Enhanced 3mm x 3mm TDFN Package  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 TDFN-EP**  
6 TDFN-EP**  
MAX6397_ATA-T*  
MAX6398ATT-T*  
The MAX6397 also offers an always-on linear regulator  
that is capable of delivering up to 100mA of output current.  
This high-voltage linear regulator consumes only 37µA of  
quiescent current.  
*Replace “-T” with “+T” for lead(Pb)-free/RoHS-compliant packages.  
**EP = Exposed pad.  
The MAX6397 linear regulator is offered in four output  
voltage options and a choice of a 92.5% or 87.5% POK  
threshold assertions. See the Selector Guide.  
The regulator is offered with output options of 5V, 3.3V,  
2.5V, or 1.8V. An open-drain, power-good output (POK)  
asserts when the regulator output falls below 92.5% or  
87.5% of its nominal voltage.  
Selector Guide and Typical Operating Circuit appear at end  
of data sheet.  
Pin Configurations  
The MAX6397/MAX6398 include internal thermal-  
shutdown protection, disabling the external MOSFET  
and linear regulator if the chip reaches overtemperature  
conditions. The devices operate over a wide 5.5V to  
72V supply voltage range, are available in small TDFN  
packages, and are fully specified from -40°C to +125°C.  
REG OUT GATE GND  
TOP VIEW  
8
7
6
5
*EP  
MAX6397  
Applications  
Industrial  
®
FireWire  
1
2
3
4
Notebook Computers  
Wall Cube Power Devices  
IN SHDN SET POK  
TDFN  
*EXPOSED PAD. CONNECT TO GND.  
Pin Configurations continued at end of data sheet.  
FireWire is a registered trademark of Apple Computer, Inc.  
19-3668; Rev 6; 7/14  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Absolute Maximum Ratings  
(All pins referenced to GND, unless otherwise noted.)  
Continuous Power Dissipation (T = +70°C)  
A
IN, GATE, OUT......................................................-0.3V to +80V  
6-Pin TDFN (derate 18.2mW/°C above +70°C) ........1455mW  
8-Pin TDFN (derate 18.2mW/°C above +70°C) ........1455mW  
SHDN .........................................................-0.3V to (V + 0.3V)  
IN  
GATE to OUT .......................................................... -0.3 to +20V  
SET, REG, POK ....................................................-0.3V to +12V  
Maximum Current:  
Operating Temperature Range (T )................. -40°C to +125°C  
A
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature ...........................................................+300°C  
IN, REG ........................................................................350mA  
All Remaining Pins.............................................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V = 14V; C  
= 6000pF, C  
= 4.7µF, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.)  
IN  
GATE  
REG  
A
J
A
J
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
72  
UNITS  
Supply Voltage Range  
V
5.5  
V
IN  
SHDN = high, no load (MAX6397)  
SHDN = high, (MAX6398)  
118  
104  
37  
11  
140  
130  
45  
Input Supply Current  
µA  
SHDN = low, no load (MAX6397)  
SHDN = low, (MAX6398)  
20  
IN Undervoltage Lockout  
V
rising, enables GATE  
4.66  
5
5.50  
V
IN  
IN Undervoltage-Lockout  
Hysteresis  
V
falling, disables GATE  
175  
mV  
IN  
SET Threshold Voltage  
SET Threshold Hysteresis  
SET Input Current  
V
With respect to GND  
1.181  
-50  
1.215  
4
1.248  
+50  
V
TH  
V
%
HYST  
I
nA  
µs  
SET  
Startup Response Time  
t
SHDN rising (Note 2)  
100  
1
START  
GATE rising from GND to V  
+ 8V,  
OUT  
GATE Rise Time  
ms  
µs  
C
= 6000pF, OUT = GND  
GATE  
SET-to-GATE Propagation  
Delay  
t
SET rising from V - 100mV to V + 100mV  
0.75  
OV  
TH  
TH  
V
3.8V  
+
V
4.2V  
+
V
4.6V  
+
IN  
IN  
IN  
V
V
= V = 6V, R to IN = 1MΩ  
GATE  
OUT  
IN  
GATE Output High Voltage  
V
V
OH  
V
+
V
+
V
+
IN  
IN  
IN  
= V ; V ≥ 14V, R  
to IN = 1MΩ  
OUT  
IN IN  
GATE  
8.5V  
9.2V  
11.5V  
GATE Output Low Voltage  
GATE Charge-Pump Current  
GATE-to-OUT Clamp Voltage  
V
GATE sinking 20mA, V  
= GND  
OUT  
0.38  
18  
V
µA  
V
OL  
I
GATE = GND  
75  
1
GATE  
V
13  
CLMP  
SHDN Logic-High Input Voltage  
SHDN Logic-Low Input Voltage  
V
1.4  
IH  
V
0.4  
48  
IL  
V
= 2V, SHDN is internally pulled  
SHDN  
SHDN Input Pulldown Current  
µA  
down to GND  
Thermal Shutdown (Note 3)  
Thermal-Shutdown Hysteresis  
REGULATOR (MAX6397)  
+150  
20  
°C  
°C  
I
I
= 1mA  
40  
60  
REG  
REG  
Ground Current  
I
SHDN = GND  
µA  
GND  
= 100mA  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Electrical Characteristics (continued)  
(V = 14V; C  
= 6000pF, C  
= 4.7µF, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.)  
IN  
GATE  
REG  
A
J
A
J
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1mA  
MIN  
4.925  
4.85  
TYP  
MAX  
5.120  
5.15  
3.36  
3. 36  
2.542  
2.55  
1.837  
1.837  
0.12  
1.2  
UNITS  
I
5
REG  
MAX6397L/M  
MAX6397S/T  
MAX6397Y/Z  
MAX6397V/W  
1mA < I  
< 100mA  
< 100mA  
< 100mA  
< 100mA  
REG  
I
= 1mA  
3.243  
3.201  
2.246  
2.41  
3.3  
2.5  
1.8  
REG  
V
1mA < I  
REG Output Voltage  
REG  
V
REG  
(V ≥ V  
+ 1.8V)  
IN  
REG  
I
= 1mA  
REG  
1mA < I  
REG  
I
= 1mA  
1.76  
REG  
1mA < I  
1.715  
REG  
mV/V  
5.5V ≤ V ≤ 72V, I  
= 1mA, V  
= 5V  
IN  
REG  
REG  
Dropout Voltage (Note 4)  
Current Limit  
∆V  
DO  
5.5V ≤ V ≤ 72V, I  
= 100mA, V  
= 5V  
IN  
REG  
REG  
V
= 14V  
150  
300  
mA  
IN  
Overvoltage-Protection  
Threshold  
% of  
V
105  
15  
OVP  
V
REG  
Overvoltage-Protection Sink  
Current  
I
V
= 1.1 x V  
(Nominal)  
REG  
mA  
OVP  
REG  
6.5V ≤ V ≤ 72V, I  
= 10mA, V = 5V  
REG  
0.22  
0.05  
IN  
REG  
REG  
REG  
∆V  
∆V  
/
REG  
Line Regulation (Note 5)  
5.5V ≤ V ≤ 72V, I  
= 1mA, V  
= 5V  
mV/mA  
IN  
REG  
REG  
5.5V ≤ V ≤ 72V, I  
= 100mA, V  
= 5V  
1.5  
IN  
REG  
∆VREG /  
∆IREG  
Load Regulation  
1mA ≤ I  
≤ 100mA, V  
= 5V  
REG  
0.8  
mV/mA  
REG  
Power-Supply Rejection Ratio  
Startup Response Time  
I
= 10mA, f = 100Hz, 0.5V  
55  
dB  
µs  
REG  
P-P  
t
R
L
= 500Ω, V  
= 5V, C  
= 4.7µF  
180  
START  
REG  
REG  
REG  
4.500  
4.230  
2.966  
2.805  
2.250  
2.125  
1.590  
1.524  
4.67  
4.780  
4.500  
3.140  
2.970  
2.375  
2.250  
1.696  
1.625  
M
T
4.375  
3.053  
2.892  
2.304  
2.188  
1.653  
1.575  
35  
S
Z
POK Assertion Threshold  
(MAX6397 Only)  
V
V
POK_TH  
Y
W
V
REG-to-POK Delay  
V
V
V
rising or falling  
= 5V  
µs  
nA  
V
REG  
POK  
POK Leakage Current  
POK Output Low Voltage  
100  
0.3  
V
≥ 1.5V, I  
= 1.6mA, POK asserted  
OL  
IN  
SINK  
Note 1: Specifications to T = -40°C are guaranteed by design and not production tested.  
A
Note 2: The MAX6397/MAX6398 power up with the external FET in off mode (V  
= GND). The external FET turns on t  
GATE  
START  
after the device is powered up and all input conditions are valid.  
Note 3: For accurate overtemperature-shutdown performance, place the device in close thermal contact with the external MOSFET.  
Note 4: Dropout voltage is defined as V - V  
Note 5: Operations beyond the thermal dissipation limit may permanently damage the device.  
when V  
is 2% below the value of V  
for V = V  
(nominal) + 2V.  
Maxim Integrated  
IN  
REG  
REG  
REG  
IN  
REG  
3
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Characteristics  
(V = 14V, C  
IN  
= 4.7μF, I  
= 0, unless otherwise noted.)  
REG  
REG  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
160  
120  
110  
100  
90  
MAX6397  
MAX6397  
GATE ON  
MAX6398  
GATE ON  
140  
120  
100  
80  
V
IN  
= 72V  
80  
70  
V
IN  
= 14V  
60  
60  
50  
40  
80  
40  
0
10 20 30 40 50 60 70 80  
INPUT VOLTAGE (V)  
-50 -25  
0
25  
50  
75 100 125  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE (MAX6397)  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
20  
18  
16  
14  
12  
10  
8
140  
130  
120  
110  
100  
90  
50  
45  
40  
35  
30  
25  
20  
MAX6398  
GATE OFF  
MAX6398  
GATE ON  
REGULATOR ON  
GATE OFF  
V
IN  
= 72V  
V
IN  
= 14V  
6
4
2
80  
0
50  
10 20 30 40  
INPUT VOLTAGE (V)  
-50 -25  
0
25  
50  
75 100 125  
0
60 70 80  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
GATE-DRIVE VOLTAGE  
vs. INPUT VOLTAGE  
UVLO THRESHOLD  
vs. TEMPERATURE  
SET THRESHOLD vs. TEMPERATURE  
1.240  
1.236  
1.232  
1.228  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
12  
10  
8
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
V
OUT  
= V  
IN  
6
4
2
0
4
6
8
10 12 14 16 18 20 22 24  
INPUT VOLTAGE (V)  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Characteristics (continued)  
(V = 14V, C  
= 4.7μF, I  
= 0, unless otherwise noted.)  
IN  
REG  
REG  
DROPOUT VOLTAGE  
vs. REG LOAD CURRENT  
REG OUTPUT VOLTAGE  
vs. LOAD CURRENT AND TEMPERATURE  
GATE-TO-OUT CLAMP VOLTAGE  
vs. TEMPERATURE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
17.0  
16.9  
16.8  
16.7  
16.6  
16.5  
16.4  
16.3  
16.2  
16.1  
16.0  
MAX6397L  
MAX6397L  
T
= +125°C  
A
I
= 10mA  
LOAD  
I
= 50mA  
LOAD  
T
A
= +25°C  
I
= 100mA  
LOAD  
T
A
= -40°C  
-50 -25  
0
25  
50  
75 100 125  
0
20 40 60 80 100 120 140 160 180  
REG LOAD CURRENT (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM REG OUTPUT VOLTAGE  
vs. LOAD CURRENT AND TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
10.500  
10.495  
10.490  
10.485  
10.480  
10.475  
10.470  
10.465  
10.460  
10.455  
10.450  
0
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
C = 10µF  
REG  
T
= -40°C  
A
I
= 10mA  
REG  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
T
= +25°C  
A
T
A
= +125°C  
THERMAL  
SHUTDOWN  
0
40 80 120 160 200 240 280 320 360 400  
LOAD CURRENT (mA)  
-50 -25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k 100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
STARTUP WAVEFORM  
STARTUP WAVEFORM FROM SHUTDOWN  
(R  
LOAD  
= 100, C = 10µF, C  
= 10µF)  
OUT  
MAX6397 toc16  
(C = 10µF, C  
IN  
= 10µF)  
IN  
OUT  
MAX6397 toc17  
R
LOAD  
= 100  
V
IN  
V
SHDN  
10V/div  
2V/div  
V
GATE  
V
GATE  
10V/div  
10V/div  
V
OUT  
V
OUT  
10V/div  
10V/div  
I
I
OUT  
OUT  
200mA/div  
200mA/div  
400µs/div  
4ms/div  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Characteristics (continued)  
(V = 14V, C  
= 4.7μF, I  
= 0, unless otherwise noted.)  
IN  
REG  
REG  
OVERVOLTAGE SWITCH FAULT  
VOLTAGE LIMIT FAULT  
MAX6397 toc18  
MAX6397 toc19  
V
OV  
= 30V  
V
= 30V  
V
IN  
V
IN  
OV  
20V/div  
20V/div  
V
GATE  
V
GATE  
20V/div  
20V/div  
V
OUT  
V
OUT  
20V/div  
20V/div  
V
V
REG  
REG  
5V/div  
5V/div  
200µs/div  
1ms/div  
TRANSIENT RESPONSE  
REG LOAD-TRANSIENT RESPONSE  
MAX6397 toc21  
MAX6397 toc20  
C
= 10µF  
= 10mA  
REG  
C
REG  
= 10µF  
I
REG  
V
REG  
V
IN  
AC-COUPLED  
500mV/div  
10V/div  
I
REG  
V
REG  
100mA/div  
100mV/div  
400µs/div  
1ms/div  
REGULATOR STARTUP WAVEFORM  
REGULATOR POK ASSERTION  
MAX6397 toc23  
MAX6397 toc22  
I
= 10mA  
REG  
V
REG  
V
IN  
2V/div  
10V/div  
0V  
V
REG  
2V/div  
V
POK  
2V/div  
0V  
0A  
V
POK  
I
2V/div  
REG  
200mA/div  
I
= 0  
REG  
1ms/div  
100µs/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6397  
MAX6398  
1
1
IN  
Supply Voltage Input. Bypass with a minimum 10µF capacitor to GND.  
Shutdown Input. Drive SHDN low to force GATE low, turning off the external n-channel  
MOSFET. REG remains active when in shutdown mode. SHDN is internally pulled down  
to GND with a 1µA source. Connect to IN for normal operation.  
2
3
2
3
SHDN  
Overvoltage-Threshold-Adjustment Input. Connect SET to an external resistor voltage-  
divider network to OUT (overvoltage limiter) or IN (overvoltage switch) to adjust the  
desired overvoltage-limit threshold. Use SET to monitor a system input or output voltage.  
SET  
Open-Drain Output. POK remains low until REG exceeds 92.5% or 87.5% of REG  
nominal output voltage. Connect to an external pullup resistor.  
4
5
4
POK  
GND  
Ground  
Gate-Drive Output. Connect GATE to the gate of an external n-channel MOSFET.  
GATE is a charge pump with a 75µA pullup current to 10V (typ) above IN during normal  
operation. GATE is quickly shorted to OUT during an overvoltage condition. GATE pulls  
low when SHDN is low.  
6
5
GATE  
7
8
6
OUT  
REG  
EP  
Output-Voltage-Sense Input. Connect to the source of the external n-channel MOSFET.  
Regulator Output. Fixed 5.0V, 3.3V, 2.5V, or 1.8V output. REG sources up to 100mA.  
Bypass with a minimum 4.7µF capacitor to GND.  
Exposed Pad. Connect to ground plane.  
disconnecting the load from the power source, and then  
slowly enhances upon removal of the overvoltage  
Detailed Description  
The MAX6397/MAX6398 are ultra-small, low-current,  
high-voltage protection circuits for applications that must  
survive high-voltage transient conditions. These devices  
monitor the input/output voltages and control an external  
n-channel MOSFET to isolate the load or to regulate the  
output voltage from overvoltage-transient energy. The  
controller allows system designers to size the external  
MOSFET to their load current and board size.  
condition. In overvoltage-limit mode, the output volt-  
age is monitored and the MAX6397/MAX6398 regulate  
the source of the external MOSFET at the adjusted  
overvoltage threshold, allowing devices within the system  
to continue operating during an overvoltage condition.  
The MAX6397/MAX6398 undervoltage lockout (UVLO)  
function disables the devices as long as the input remains  
below the 5V (typ) UVLO turn-on threshold. The MAX6397/  
MAX6398 have an active-lows SHDN input to turn off the  
external MOSFET, disconnecting the load and reducing  
power consumption. After power is applied and SHDN is  
driven above its logic-high voltage, there is a 100µs delay  
before GATE enhancement commences.  
The MAX6397/MAX6398 drive the MOSFET’s gate high  
when the monitored input voltage is below the adjustable  
overvoltage threshold. An internal charge-pump circuit  
provides a 5V to 10V gate-to-source drive (see the Typical  
Operating Characteristics) to ensure low input-to-load  
voltage drops in normal operating modes. When the input  
voltage rises above the user-adjusted overvoltage thresh-  
old, GATE pulls to OUT, turning off the MOSFET.  
The MAX6397 integrates a high input voltage, low-  
quiescent-current linear regulator, in addition to an  
overvoltage-protector circuit. The linear regulator remains  
enabled at all times to power low-current “always-on”  
applications (independent of the state of the external  
MOSFET). The regulator is offered with several standard  
output voltage options (5V, 3.3V, 2.5V, or 1.8V). An open-  
drain power-good output notifies the system if the regulator  
The MAX6397/MAX6398 are configurable to operate  
as overvoltage-protection switches or as closed-looped  
voltage limiters. In overvoltage-protection switch  
mode, the input voltage is monitored. When an  
overvoltage condition occurs at IN, GATE pulls low,  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Power-OK Output  
IN  
POK is an open-drain output that goes low when REG  
falls to 92.5% or 87.5% (see the Selector Guide) of its  
nominal output voltage. To obtain a logic-level output,  
connect a pullup resistor from POK to REG or another  
system voltage. Use a resistor in the 100kΩ range to  
minimize current consumption. POK provides a valid  
THERMAL  
PROTECTION  
UVLO  
logic-output level down to V = 1.5V.  
IN  
10V  
CHARGE  
PUMP  
GATE Voltage  
The MAX6397/MAX6398 use a high-efficiency charge  
5V  
pump to generate the GATE voltage. Upon V exceed-  
ing the 5V (typ) UVLO threshold, GATE enhances 10V  
IN  
GATE  
SET  
above IN (for V ≥14V) with a 75µA pullup current. An  
IN  
OUT  
overvoltage condition occurs when the voltage at SET  
pulls above its 1.215V threshold. When the threshold is  
crossed, GATE falls to OUT within 100ns with a 100mA  
(typ) pulldown current. The MAX6397/MAX6398 include  
an internal clamp to OUT that ensures GATE is limited to  
18V (max) above OUT to prevent gate-to-source damage  
to the external FET.  
1.23V  
SHDN  
REG  
LINEAR  
REGULATOR  
The GATE cycle during overvoltage-limit and overvoltage-  
switch modes are quite similar but have distinct charac-  
teristics. In overvoltage-switch mode (Figure 2a), GATE  
MAX6397  
MAX6398  
POK  
GND  
is enhanced to V + 10V while the monitored IN volt-  
IN  
age remains below the overvoltage-fault threshold (SET  
< 1.215V). When an overvoltage fault occurs (SET ≥  
1.215V), GATE is pulled one diode below OUT, turning  
off the external FET and disconnecting the load from the  
V
POK_TH  
MAX6397 ONLY  
input. GATE remains low (FET off) as long as V is above  
IN  
the overvoltage-fault threshold. As V falls back below  
the overvoltage-fault threshold (-5% hysteresis), GATE is  
IN  
Figure 1. Functional Diagram  
again enhanced to V + 10V.  
IN  
output falls to 92.5% or 87.5% of its nominal voltage. The  
MAX6397’s REG output operates independently of the  
SHDN logic input.  
The MAX6397/MAX6398 include internal thermal-  
shutdown protection, disabling the external MOSFET and  
linear regulator if the chip reaches overtemperature condi-  
tions.  
V
IN  
10V/div  
Linear Regulator (MAX6397 Only)  
V
GATE  
The MAX6397 is available with 5.0V, 3.3V, 2.5V, and 1.8V  
factory-set output voltages. Each regulator sources up to  
100mA and includes a current limit of 230mA. The linear  
regulator operates in an always-on condition regardless  
10V/div  
V
OUT  
10V/div  
of the SHDN logic. For fully specified operation, V must  
IN  
10ms/div  
be greater than 6.5V for the MAX6397L/M (5V regulator  
output). The actual output current may be limited by the  
operating condition and package power dissipation.  
Figure 2a. MAX6397/MAX6398 GATE Waveform During  
Overvoltage Switch Mode  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
V
IN  
10V/div  
GATE  
V
GATE  
V
BATT  
IN  
OUT  
10V/div  
MAX6397  
MAX6398  
R1  
R2  
SET  
V
OUT  
10V/div  
GND  
4ms/div  
Figure 2b. MAX6397/MAX6398 GATE Waveform During  
Overvoltage Limit Mode  
Figure 3. Overvoltage Switch Protection Configuration  
In overvoltage-limit mode (Figure 2b), GATE is enhanced  
MAX6398 slowly enhance GATE above OUT, reconnecting  
the load to the power source.  
to V + 10V. While the monitored OUT voltage remains  
IN  
below the overvoltage fault threshold (SET < 1.215V).  
When an overvoltage fault occurs (SET ≥ 1.215V), GATE  
is pulled low one diode drop below OUT until OUT drops  
5% below the overvoltage-fault threshold. GATE is then  
turned back on until OUT again reaches the overvoltage-  
fault threshold and GATE is again turned off.  
Overvoltage Limiter  
When operating in overvoltage-limiter mode, the  
MAX6397/MAX6398 feedback path (Figure 4) consists of  
OUT, SET’s internal comparator, the internal gate charge  
pump and the external n-channel MOSFET, which results  
in the external MOSFET operating as a voltage regulator.  
GATE cycles on-off-on-off-on in a sawtooth waveform until  
OUT remains below the overvoltage-fault threshold and  
During normal operation, GATE is enhanced 10V above  
OUT. The external MOSFET source voltage is monitored  
through a resistor-divider between OUT and SET. When  
OUT rises above the adjusted overvoltage threshold,  
an internal comparator sinks the charge-pump current,  
discharging the external GATE, regulating OUT at the  
set overvoltage threshold. OUT remains active during  
GATE remains constantly on (V + 10V). The overvoltage  
IN  
limiter’s sawtooth GATE output operates the MOSFET in  
a switched-linear mode while the input voltage remains  
above the overvoltage-fault threshold. The sawtooth  
frequency depends on the load capacitance, load current,  
and MOSFET turn-on time (GATE charge current and  
GATE capacitance).  
GATE goes high when the following startup conditions are  
met: V is above the UVLO threshold, SHDN is high, an  
C
OUT  
IN  
overvoltage fault is not present and the device is not in  
thermal shutdown.  
GATE  
V
BATT  
IN  
OUT  
SET  
Overvoltage Monitoring  
MAX6397  
MAX6398  
R1  
R2  
When operating in overvoltage mode, the MAX6397/  
MAX6398 feedback path (Figure 3) consists of IN, SET’s  
internal comparator, the internal gate charge pump, and  
the external n-channel MOSFET resulting in a switch-on/  
off function. When the programmed overvoltage threshold  
is tripped, the internal fast comparator turns off the external  
GND  
MOSFET, pulling GATE to OUT within t  
and disconnect-  
OV  
ing the power source from the load. When IN decreases  
below the adjusted overvoltage threshold, the MAX6397/  
Figure 4. Overvoltage Limiter Protection Switch Configuration  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
GATE  
GATE  
IN  
IN  
IN  
OUT  
IN  
OUT  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
R1  
R2  
R1  
R2  
SET  
SET  
GND  
GND  
Figure 5. Setting the MAX6397/MAX6398 Overvoltage Threshold  
the overvoltage transients and the MOSFET continues  
to conduct during the overvoltage event, operating in  
switched-linear mode.  
Begin by selecting the total end-to-end resistance,  
= R1 + R2. Choose R to yield a total  
R
TOTAL  
TOTAL  
current equivalent to a minimum 100 x I  
(SET’s input  
SET  
bias current) at the desired overvoltage threshold.  
As the transient begins decreasing, OUT fall time will  
depend on the MOSFET’s GATE charge, the internal  
charge-pump current, the output load, and the tank  
capacitor at OUT.  
For example:  
With an overvoltage threshold set to 20V:  
R
< 20V/(100 x I  
)
TOTAL  
SET  
For fast-rising transients and very large-sized MOSFETs,  
add an additional external bypass capacitor from GATE to  
GND to reduce the effect of the fast-rising voltages at IN.  
The external capacitor acts as a voltage-divider working  
against the MOSFETs’ drain-to-gate capacitance. For a  
where I  
is SET’s 50nA input bias current.  
SET  
R
< 4MΩ  
TOTAL  
Use the following formula to calcue R2:  
R
6000pF C , a 0.1µF capacitor at GATE will reduce the  
impact of the fast-rising V input.  
IN  
TOTAL  
gd  
R2 = V  
×
TH  
V
OV  
Caution must be exercised when operating the MAX6397/  
MAX6398 in voltage-limiting mode for long durations.  
where V is the 1.215V SET rising threshold and V  
TH  
the overvoltage threshold.  
is  
OV  
If the V is a DC voltage greater than the MOSFET’s  
IN  
maximum gate voltage, the FET will dissipate power  
continuously. To prevent damage to the external MOSFET,  
proper heatsinking should be implemented.  
R2 = 243kΩ, use a 240kΩ standard resistor.  
R
= R2 + R1, where R1 = 3.76MΩ.  
TOTAL  
Use a 3.79MΩ standard resistor.  
Applications Information  
A lower value for total resistance dissipates more power  
but provides slightly better accuracy.  
Setting Overvoltage Thresholds  
SET provides an accurate means to set the overvoltage  
level for the MAX6397/MAX6398. Use a resistor-divider  
to set the desired overvoltage condition (Figure 5). SET  
has a rising 1.215V threshold with a 5% falling hysteresis.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Q1  
IN  
IN  
GATE  
GATE  
V
BATT  
V
BATT  
LOAD  
LOAD  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
OUT  
OUT  
GND  
GND  
(a)  
(b)  
Figure 6. Reverse-Battery Protection Using a Diode or p-Channel MOSFET  
voltage. When the source voltage exceeds Q1’s threshold  
Reverse-Battery Protection  
voltage, Q1 turns on. Once the FET is on, the battery is  
fully connected to the system and can deliver power to the  
device and the load.  
Use a diode or p-channel MOSFET to protect the  
MAX6397/MAX6398 during a reverse-battery insertion  
(Figures 6a, 6b). Low p-channel MOSFET on-resistance  
of 30mΩ or less yields a forward-voltage drop of only a  
few millivolts (versus hundreds of millivolts for a diode,  
Figure 6a) thus improving efficiency.  
An incorrectly inserted battery reverse-biases the FET’s  
body diode. The gate remains at the ground potential.  
The FET remains off and disconnects the reversed  
battery from the system. The zener diode and resistor  
combination prevent damage to the p-channel MOSFET  
during an overvoltage condition.  
Connecting a positive battery voltage to the drain of Q1  
(Figure 6b) produces forward bias in its body diode, which  
clamps the source voltage one diode drop below the drain  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
V
BATT  
1k  
IN  
GATE  
C
GATE  
C
OUT  
V
BATT  
IN  
LOAD  
MAX6397  
MAX6398  
LOAD  
GATE  
60V  
TVS  
MAX6397  
MAX6398  
OUT  
GND  
OUT  
GND  
Figure 7. MAX6397/MAX6398 Controlling GATE Inrush Current  
Figure 8. Protecting the MAX6397/MAX6398 Input from High-  
Voltage Transients  
Input Transients Clamping  
REG Capacitor Selection for Stability  
When the external MOSFET is turned off during an  
overvoltage occurrence, stray inductance in the power  
path may cause voltage ringing exceeding the MAX6397/  
MAX6398 absolute maximum input (IN) supply rating.  
The following techniques are recommended to reduce the  
effect of transients:  
For stable operation over the full temperature range  
and with load currents up to 100mA, use ceramic  
capacitor values greater than 4.7µF. Large output  
capacitors help reduce noise, improve load-transient  
response, and power-supply rejection at REG. Note that  
some ceramic dielectrics exhibit large capacitance and  
ESR variation with temperature. At lower temperatures, it  
may be necessary to increase capacitance.  
Minimize stray inductance in the power path using  
wide traces, and minimize loop area including the  
power traces and the return ground path.  
Under normal conditions, use a 10µF capacitor at IN.  
Larger input capacitor values and lower ESR provide  
better supply-noise rejection and line-transient response.  
Add a zener diode or transient voltage suppressor  
(TVS) rated below the IN absolute maximum rating  
(Figure 8).  
Inrush/Slew-Rate Control  
Add a resistor in series with IN to limit transient current  
going into the input for the MAX6398 only.  
Inrush current control can be implemented by placing a  
capacitor at GATE (Figure 7) to slowly ramp up the GATE,  
thus limiting the inrush current and controlling GATE’s  
slew rate during initial turn-on. The inrush current can be  
approximated using the followng formula:  
MOSFET Selection  
Select external MOSFETs according to the application  
current level. The MOSFET’s on-resistance (R  
)
DS(ON)  
should be chosen low enough to have minimum voltage  
drop at full load to limit the MOSFET power dissipation.  
Determine the device power rating to accommodate  
an overvoltage fault when operating the MAX6397/  
MAX6398 in overvoltage-limit mode.  
C
OUT  
I
=
×I  
+ I  
GATE LOAD  
INRUSH  
C
GATE  
where I  
is GATE’s 75µA sourcing current, I  
LOAD  
is the load current at startup, and C  
GATE  
is the output  
OUT  
capacitor.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
V
MAX  
V
OV  
V
Q1  
V
BATT  
V
BATT  
+
-
GATE  
t
2
I
LOAD  
IN  
GATE  
OUT  
t
60V  
TVS  
t
3
1
LOAD  
OUT  
MAX6397  
MAX6398  
t
OVP  
SET  
Figure 10. MAX6397/MAX6398 Timing Diagram  
GND  
pass transistor and GATE on again after the IC’s junction  
temperature cools by 20°C. Thermal-overload protection  
is designed to protect the MAX6397/MAX6398 and the  
external MOSFET in the event of current-limit fault  
conditions. For continuous operation, do not exceed  
the absolute maximum junction-temperature rating of  
Figure 9. Power Dissipated Across MOSFETs During an  
Overvoltage Fault (Overvoltage Limiter Mode)  
T = +150°C.  
J
During normal operation, the external MOSFETs dissipate  
little power. The power dissipated in normal operation is:  
Thermal Shutdown  
Overvoltage Limiter Mode  
P
Q1  
= I  
2 x R  
.
LOAD  
DS(ON)  
When operating the devices in overvoltage-limit mode  
for a prolonged period of time, a thermal shutdown is  
possible due to device self-heating. The thermal  
shutdown is dependent on a number of different factors:  
The most power dissipation will occur during a  
prolonged overvoltage event when operating the  
MAX6397/MAX6398 in voltage limiter mode, resulting in  
high power dissipated in Q1 (Figure 9) where the power  
dissipated across Q1 is:  
The device’s ambient temperature (T )  
A
The output capacitor (C  
)
P
Q1  
= V x I  
Q1 LOAD  
OUT  
The output load current (I  
)
where V is the voltage across the MOSFET’s drain and  
Q1  
source.  
OUT  
The overvoltage-threshold limit (V  
)
OV  
The overvoltage-waveform period (t  
)
Thermal Shutdown  
OVP  
The thermal-shutdown feature of the MAX6397/  
MAX6398 shuts off the linear regulator output (REG),  
and GATE if it exceeds the maximum allowable thermal  
dissipation. Thermal shutdown also monitors the PCB  
temperature of the external nFET when the devices sit on  
the same thermal island. Good thermal contact between  
the MAX6397/MAX6398 and the external nFET is essential  
for the thermal-shutdown feature to operate effectively.  
Place the nFET as close as possible to OUT.  
The power dissipated across the package (P  
)
DISS  
When OUT exceeds the adjusted overvoltage threshold,  
an internal GATE pulldown current is enabled until OUT  
drops by 5%. The capacitance at OUT is discharged by  
the internal current sink and the external OUT load cur-  
rent. The discharge time (∆t1) is approximately:  
V
× 0.05  
+ I  
GATEPD  
OV  
t1 = C  
OUT  
I
OUT  
When the junction temperature exceeds T = +150°C,  
J
the thermal sensor signals the shutdown logic, turning  
off REG’s internal pass transistor and the GATE output,  
allowing the device to cool. The thermal sensor turns the  
where V  
is the external load current and I  
internal 100mA (typ) pulldown current.  
is the adjusted overvoltage threshold, I  
OV OUT  
is the GATE’s  
GATEPD  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
again to the overvoltage threshold can be approximated  
using the following formula:  
180  
I
T
= 0  
= +125°C  
OUT  
THERMAL SHUTDOWN  
A
Q
V  
OUT  
I
GATE  
170  
160  
150  
140  
GD  
GS_QGD  
t3 ≅  
×
CGATE = 0  
V
where ∆V  
= ( V  
x 0.05) + ∆V2.  
OUT  
OV  
CGATE = 10nF  
The total period of the overvoltage waveform can be  
summed up as follows:  
CGATE = InF  
130  
120  
CGATE = ADDITIONAL  
CAPACITANCE FROM GATE TO GND  
t
= ∆t1 + ∆t2 + ∆t3  
OVP  
The MAX6397/MAX6398 dissipate the most power during  
an overvoltage event when I = 0 (C is discharged  
1
10  
100  
1000  
OUT  
OUT  
OUTPUT CAPACITANCE (µF)  
only by the internal current sink). The maximum power  
dissipation can be approximated using the following  
equation:  
Figure 11. Junction Temperature vs. C  
OUT  
When OUT falls 5% below the overvoltage-threshold point,  
the internal current sink is disabled and the MAX6397/  
MAX6398’s internal charge pump begins recharging  
the external GATE voltage. The OUT voltage continues  
to drop due to the external OUT load current until the  
MOSFET gate is recharged. The time needed to recharge  
GATE and re-enhance the external nFET is approximately:  
t1  
P
= V  
× 0.975×I  
×
GATEPD  
DISS  
OV  
t  
OVP  
The die temperature (T ) increase is related to θ  
J
JC  
(8.3°C/W and 8.5°C/W for the MAX6397 and MAX6398,  
respectively) of the package when mounted correctly  
with a strong thermal contact to the circuit board. The  
MAX6397/MAX6398 thermal shutdown is governed by  
the following equation:  
V
+ V  
F
GS(TH)  
t2 = C  
ISS  
I
GATE  
T = T + P  
x (θ  
+ θ ) < 170°C  
J
A
DISS  
JC CA  
(typical thermal-shutdown temperature)  
where C  
is the MOSFET’s input capacitance, V  
GS(TH)  
ISS  
is the MOSFET’s gate-to-source threshold voltage, V  
F
For the MAX6397, the power dissipation of the internal  
linear regulator must be added to the overvoltage-  
protection circuit power dissipation to calculate the die  
temperature. The linear regulator power dissipation is  
calculated using the following equation:  
is the internal clamp diode forward voltage (V = 1.5V  
F
typ), and I  
is the MAX6397/MAX6398 charge-pump  
GATE  
current (75µA typ).  
During ∆t2, C  
loses charge through the output load.  
OUT  
The voltage across C  
MOSFET reaches its V  
(∆V2) decreases until the  
P
= (V − V  
) (I  
)
OUT  
REG  
IN  
REG REG  
threshold and can be  
GS(TH)  
For example, using an IRFR3410 100V n-channel  
MOSFET, Figure 11 illustrates the junction temperature  
approximated using the following formula:  
t2  
vs. output capacitor with I  
< 16V,V = 1.5V, I  
= 0, T = +125°C, V  
OUT  
A
OV  
=
V2 = I  
OUT  
= 75mA, and I  
C
F
GATE  
GATEPD  
OUT  
100mA. Figure 11 shows the relationship between output  
capacitance versus die temperature for the conditions  
listed above.  
Once the MOSFET V  
output voltage rise is determined by the MOSFET Q  
is obtained, the slope of the  
GS(TH)  
G
charge through the internal charge pump, with respect to  
the drain potential. The time for the OUT voltage to rise  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
OUTPUT Current Calculation  
The MAX6397 high input voltage (+72V max) provides  
up to 100mA of output current at REG. Package power  
dissipation limits the amount of output current available  
2.0  
1.455W  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
for  
a
given input/output voltage and ambient  
DERATE 18.2mW/°C  
ABOVE +70°C  
temperature. Figure 12 depicts the maximum power  
dissipation curve for the MAX6397. The graph assumes  
that the exposed metal pad of the MAX6397 package is  
solderedto1in2ofPCBcopper.UseFigure10todeterminethe  
allowable package dissipation for a given ambient  
temperature. Alternately, use the following formula to  
calculate the allowable package dissipation:  
P
DISS  
= 1.455W for T ≤ +70°C  
A
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
Maximum power dissipation = 1.455 - 0.0182 (T - 70°C)  
A
for +70°C ≤ T ≤ +125°C  
A
where 0.0182 W/°C is the MAX6397 package-thermal  
derating.  
Figure 12. Maximum Power Dissipation vs. Temperature  
After determining the allowable package dissipation,  
calculate the maximum output current using the following  
formula:  
An additional capacitor can be added to GATE and GND  
to shift the curves as this increases ∆t1. These values  
are used for illustration only. Customers must verify  
worst-case conditons for their specific application.  
P
DISS  
I
=
100mA  
OUT(MAX)  
V
V  
REG  
IN  
Typical Application Circuit  
DC-DC  
CONVERTER  
IN  
OUT  
µC  
GND  
GATE  
12V IN  
IN  
OUT  
SET  
REG  
POK  
MAX6397  
V
CC  
SHDN  
GND  
RESET  
GPIO  
ALWAYS-ON  
µC  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Typical Operating Circuit  
DC-DC  
DC-DC  
CONVERTER  
CONVERTER  
C
OUT  
C
OUT  
GATE  
GATE  
V
BATT  
V
BATT  
IN  
OUT  
IN  
OUT  
MAX6397  
MAX6398  
MAX6397  
MAX6398  
R1  
R2  
R1  
R2  
REG  
SET  
SET  
REG  
GND  
GND  
OVERVOLTAGE LIMITER CONTROLLER  
OVERVOLTAGE SWITCH CONTROLLER  
Pin Configurations (continued)  
Selector Guide  
REG OUTPUT POK ASSERTION TOP  
VOLTAGE (V) THRESHOLD (%) MARK  
PART  
TOP VIEW  
OUT GATE GND  
MAX6397LATA  
MAX6397MATA  
MAX6397SATA  
MAX6397TATA  
MAX6397YATA  
MAX6397ZATA  
MAX6397VATA  
MAX6397WATA  
MAX6398ATT  
5.0  
5.0  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
92.5  
87.5  
87.5  
92.5  
87.5  
92.5  
87.5  
92.5  
ANN  
ANO  
ANQ  
ANP  
ANK  
ANJ  
ANM  
ANL  
AJD  
6
5
4
*EP  
MAX6398  
1
2
3
IN  
SHDN SET  
TDFN  
*EXPOSED PAD. CONNECT TO GND.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND PATTERN  
NO.  
CODE  
T633+2  
T833+2  
NO.  
6 TDFN  
8 TDFN  
21-0137  
21-0137  
90-0059  
90-0058  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX6397/MAX6398  
Overvoltage Protection Switch/Limiter  
Controllers Operate Up to 72V  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
5/05  
1/07  
3/07  
1/09  
0
3
4
5
Initial release  
1, 14, 15, 17  
1, 3, 18  
3
Changed formula and updated Figure 13 caption title  
Updated Electrical Characteristics table.  
Updated Electrical Characteristics table.  
Deleted automotive references in General Description, Applications, and Detailed  
Description sections; deleted Load Dump section and Figure 5 (renumbering the  
remaining figures)  
6
7/14  
1, 7, 10–15  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY