MAX639C [MAXIM]

5V/3.3V/3V/Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Conver; 5V / 3.3V / 3V /可调,高效率,低IQ ,降压型DC- DC CONVER
MAX639C
型号: MAX639C
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5V/3.3V/3V/Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Conver
5V / 3.3V / 3V /可调,高效率,低IQ ,降压型DC- DC CONVER

文件: 总13页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4505; Rev 4; 7/05  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
_______________General Description  
____________________________Features  
High Efficiency for a Wide Range of Load Currents  
10µA Quiescent Current  
The MAX639/MAX640/MAX653 step-down switching  
regulators provide high efficiency over a wide range of  
load currents, delivering up to 225mA. A current-limiting  
pulse-frequency-modulated (PFM) control scheme gives  
the devices the benefits of pulse-width-modulated  
(PWM) converters (high efficiency at heavy loads), while  
using only 10µA of supply current (vs. 2mA to 10mA for  
PWM converters). The result is high efficiency over a  
wide range of loads.  
Output Currents Up to 225mA  
Preset or Adjustable Output Voltage:  
5.0V (MAX639)  
3.3V (MAX640)  
3.0V (MAX653)  
The MAX639/MAX640/MAX653 input range is 4V to  
11.5V, and the devices provide lower preset output volt-  
ages of 5V, 3.3V, and 3V, respectively. Or, the output  
can be user-adjusted to any voltage from 1.3V to the  
input voltage.  
Low-Battery Detection Comparator  
Current-Limiting PFM Control Scheme  
______________Ordering Information  
The MAX639/MAX640/MAX653 have an internal 1A power  
MOSFET switch, making them ideal for minimum-compo-  
nent, low- and medium-power applications. For increased  
output drive capability, use the MAX649/MAX651/MAX652  
step-down controllers, which drive an external P-channel  
FET to deliver up to 5W.  
PART  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX639CPA  
MAX639CSA  
MAX639C/D  
MAX639EPA  
MAX639ESA  
MAX639MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
________________________Applications  
9V Battery to 5V, 3.3V, or 3V Conversion  
High-Efficiency Linear Regulator Replacement  
Portable Instruments and Handy-Terminals  
5V-to-3.3V Converters  
8 CERDIP  
Ordering Information continued on last page.  
*Contact factory for dice specifications.  
__________Typical Operating Circuit  
__________________Pin Configuration  
TOP VIEW  
INPUT  
5.5V TO 11.5V  
OUTPUT  
5V  
V+  
225mA  
LX  
VOUT  
LBO  
8
7
6
5
1
2
3
4
SHDN  
VFB  
MAX639  
MAX640  
MAX653  
MAX639  
SHDN  
LBI  
ON/OFF  
VOUT  
LBO  
LBI  
V+  
LX  
LOW-BATTERY  
DETECTOR  
OUTPUT  
LOW-BATTERY  
DETECTOR  
INPUT  
GND  
DIP/SO  
VFB  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
ABSOLUTE MAXIMUM RATINGS  
V+...........................................................................................12V  
LX .........................................................(V+ - 12V) to (V+ + 0.3V)  
LBI, LBO, VFB, SHDN, VOUT........................-0.3V to (V+ + 0.3V)  
LX Output Current (Note 1)......................................................1A  
LBO Output Current............................................................10mA  
Operating Temperature Ranges:  
MAX639C_ _ .......................................................0°C to +70°C  
MAX639E_ _ ....................................................-40°C to +85°C  
MAX639MJA..................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)..................640mW  
Note 1: Peak inductor current must be limited to 600mA by using an inductor of 100µH or greater.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 9V for the MAX639, V+ = 5V for the MAX640/MAX653, I  
unless otherwise noted.)  
= 0mA, T = T  
to T  
, typical values are at T = +25°C,  
MAX A  
LOAD  
A
MIN  
PARAMETER  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
11.5  
20  
UNITS  
V
4.0  
Supply Current  
10  
5.00  
3.30  
3.00  
0.5  
µA  
SHDN = V+, no load  
MAX639, V+ = 6.0V to 11.5V, 0mA < I  
MAX640, V+ = 4.0V to 11.5V, 0mA < I  
MAX653, V+ = 4.0V to 11.5V, 0mA < I  
< 100mA  
< 100mA  
< 100mA  
4.80  
3.17  
2.88  
5.20  
3.43  
3.12  
OUT  
OUT  
OUT  
Output Voltage (Note 2)  
Dropout Voltage  
V
V
I
= 100mA, L = 100µH  
OUT  
I
I
I
I
I
I
= 100mA, L = 100µH  
= 25mA, L = 470µH  
= 100mA, L = 100µH  
= 25mA, L = 470µH  
= 100mA, L = 100µH  
= 25mA, L = 470µH  
91  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MAX639  
MAX640  
MAX653  
MAX639  
MAX640  
MAX653  
MAX639  
MAX640  
MAX653  
94  
87  
Efficiency  
%
µs  
µs  
91  
85  
89  
V+ = 9V, V  
V+ = 6V, V  
V+ = 9V, V  
V+ = 4V, V  
V+ = 9V, V  
V+ = 4V, V  
V+ = 9V, V  
V+ = 6V, V  
V+ = 9V, V  
V+ = 4V, V  
V+ = 9V, V  
V+ = 4V, V  
= 5V  
10.6  
14.2  
7.5  
12.5  
16.7  
8.8  
14.4  
19.2  
10.1  
82.1  
9.5  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3V  
= 3.3V  
= 3.3V  
= 3V  
Switch On-Time  
Switch Off-Time  
60.7  
7.1  
71.4  
8.3  
= 3V  
42.5  
9.0  
50.0  
11.7  
19.5  
15.6  
15.6  
17.2  
17.2  
57.5  
13.5  
22.4  
17.9  
17.9  
19.8  
19.8  
= 5V  
= 3V  
16.6  
13.3  
13.3  
14.6  
14.6  
= 3.3V  
= 3.3V  
= 3V  
= 3V  
2
_______________________________________________________________________________________  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 9V for the MAX639, V+ = 5V for the MAX640/MAX653, I  
unless otherwise noted.)  
= 0mA, T = T  
to T  
, typical values are at T = +25°C,  
MAX A  
LOAD  
A
MIN  
PARAMETER  
CONDITIONS  
V+ = 9V, T = +25°C, MAX639/MAX640/MAX653  
MIN  
TYP  
MAX  
1.5  
UNITS  
0.8  
A
LX Switch On-Resistance  
V+ = 6V, T = T  
to T  
to T  
, MAX639  
2.5  
A
MIN  
MIN  
MAX  
MAX  
V+ = 4V, T = T  
, MAX640/MAX653  
2.8  
A
T
= +25°C  
0.003  
1.0  
A
A
LX Switch Leakage  
V+ = 11.5V, V = 0V  
LX  
µA  
T
= T  
to T  
30.0  
15.0  
MIN  
MAX  
VFB Bias Current  
VFB = 2V  
4.0  
50  
nA  
VFB Dual-Mode Trip Point  
mV  
MAX6_ _C  
1.26  
1.24  
1.28  
1.28  
2
1.30  
1.32  
10  
VFB Threshold  
LBI Bias Current  
LBI Threshold  
V
nA  
V
MAX6_ _E/M  
V
LBI  
= 2V  
MAX6_ _C  
1.26  
1.24  
0.8  
1.28  
1.28  
2.5  
1.30  
1.32  
MAX6_ _E/M  
MAX639  
MAX640/MAX653  
LBO Sink Current  
V
LBO  
= 0.4V  
mA  
0.4  
1.2  
LBO Leakage Current  
LBO Delay  
V
= 11.5V  
0.001  
25  
0.1  
µA  
µs  
V
LBO  
50mV overdrive  
0.80  
0.10  
1.15  
0.20  
2.00  
0.40  
SHDN Threshold  
SHDN Pull-Up Current  
µA  
SHDN = 0V  
Note 2: Output guaranteed by correlation to measurements of device parameters (i.e., switch on-resistance, on-times, off-times, and  
output voltage trip points).  
__________________________________________Typical Operating Characteristics  
(Circuit of Figure 3, internal feedback, L = 100µH, T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs.  
OUTPUT CURRENT  
EFFICIENCY vs.  
OUTPUT CURRENT  
EFFICIENCY vs.  
OUTPUT CURRENT  
100  
100  
100  
L = 470µH  
L = 100µH  
V+ = 9V  
L = 470µH  
V+ = 9V  
90  
80  
70  
60  
90  
80  
70  
60  
90  
80  
70  
60  
MAX639, V+ = 6V  
MAX640, V+ = 4.3V  
MAX653, V+ = 4V  
MAX639  
MAX640  
MAX653  
MAX639  
MAX640  
MAX653  
50  
50  
50  
1m  
10m  
1m  
10m  
10µ  
100µ  
100m  
1m  
10m  
100m  
10µ  
100µ  
100m  
10µ  
100µ  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
_______________________________________________________________________________________  
3
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
_____________________________Typical Operating Characteristics (continued)  
(Circuit of Figure 3, internal feedback, L = 100µH, T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs.  
EFFICIENCY vs.  
EFFICIENCY vs.  
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT CURRENT  
100  
100  
95  
100  
I
= 100mA  
L = 470µH  
OUT  
L = 100µH  
I
= 25mA  
OUT  
90  
80  
70  
60  
MAX639  
MAX639  
95  
90  
MAX639, V+ = 6V  
MAX640, V+ = 4.3V  
MAX653, V+ = 4V  
90  
MAX640  
MAX640  
85  
80  
85  
80  
MAX653  
MAX653  
50  
3
4
5
6
7
8
9
10 11 12  
3
4
5
6
7
8
9
10 11 12  
1m  
10m  
100m  
10µ  
100µ  
1
V+ (V)  
V+ (V)  
OUTPUT CURRENT (A)  
MAX639  
OUTPUT VOLTAGE RIPPLE vs.  
INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT vs.  
INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT vs.  
INPUT VOLTAGE  
75  
250  
200  
150  
L = 470µH  
L = 100µH  
I
= 25mA  
OUT  
125  
100  
75  
65  
55  
45  
L = 100µH  
MAX640  
MAX639  
MAX640  
MAX653  
150  
100  
50  
25  
0
L = 220µH  
MAX653  
35  
25  
MAX639  
L = 470µH  
3
4
5
6
7
8
9
10 11 12  
3
4
5
6
7
8
9
10 11 12  
5
6
7
8
9
10  
11  
12  
V+ (V)  
V+ (V)  
INPUT VOLTAGE (V)  
MAX640  
MAX653  
OUTPUT VOLTAGE RIPPLE vs.  
INPUT VOLTAGE  
OUTPUT VOLTAGE RIPPLE vs.  
INPUT VOLTAGE  
150  
150  
I
= 25mA  
I
= 25mA  
OUT  
LOAD  
125  
100  
75  
125  
100  
75  
L = 100µH  
L = 100µH  
L = 220µH  
L = 220µH  
50  
25  
0
50  
25  
0
L = 470µH  
L = 470µH  
3
4
5
6
7
8
9
10 11 12  
3
4
5
6
7
8
9
10 11 12  
V+ (V)  
V+ (V)  
4
_______________________________________________________________________________________  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
_____________________________Typical Operating Characteristics (continued)  
(Circuit of Figure 3, internal feedback, L = 100µH, T = +25°C, unless otherwise noted.)  
A
MAX639  
START-UP TIME vs.  
OUTPUT CURRENT  
MAX639  
START-UP TIME vs.  
OUTPUT CURRENT  
MAX640/MAX653  
START-UP TIME vs.  
OUTPUT CURRENT  
12  
40  
30  
10  
8
MEASURED FROM THE RISING EDGE OF V+  
MEASURED FROM THE RISING EDGE  
MEASURED FROM THE RISING EDGE  
OR SHDN TO (V  
= 3.3V)(MAX640) OR  
OF V+ OR SHDN TO (V  
= 5V).  
OF V+ OR SHDN TO (V  
= 5.0V)  
OUT  
OUT  
OUT  
10  
8
(V  
= 3.0V)(MAX653). THE START-UP  
L = 470µH.  
OUT  
TIME DIFFERENCE BETWEEN THE  
MAX640 AND THE MAX653  
IS NEGLIGIBLE.  
V+ = 5.5V  
V+ = 5.5V  
6
V+ = 9.0V  
6
20  
V+ = 5.0V  
V+ = 9.0V  
4
4
2
0
V+ = 9.0V  
10  
0
2
0
V+ = 11.5V  
V+ = 11.5V  
V+ = 11.5V  
25  
L = 100µH  
0
5
10  
15  
20  
30  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
MAX640/MAX653  
START-UP TIME vs.  
OUTPUT CURRENT  
NO-LOAD SUPPLY CURRENT vs.  
INPUT VOLTAGE  
70  
40  
MEASURED FROM THE RISING EDGE OF  
V+ OR SHDN TO (V = 3.3V)(MAX640)  
OUT  
60  
50  
OR (V  
= 3.0V)(MAX653). THE  
OUT  
MAX639, V  
= 5V  
OUT  
30 START-UP TIME DIFFERENCE BETWEEN  
THE MAX640 AND THE MAX653 IS  
NEGLIGIBLE.  
L = 470µH  
20  
40  
30  
20  
MAX653, V  
= 3V  
OUT  
V+ = 5.0V  
10  
V+ = 9.0V  
25  
10  
0
V+ = 11.5V  
0
0
5
10  
15  
20  
30  
0
1
2
3
4
5
6
7
8
9 10 11 12  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
_____________________________Typical Operating Characteristics (continued)  
(Circuit of Figure 3, internal feedback, L = 100µH, T = +25°C, unless otherwise noted.)  
A
MAX639  
LOAD-TRANSIENT RESPONSE  
MAX653  
LOAD-TRANSIENT RESPONSE  
A
B
A
B
1ms/div  
1ms/div  
A: I  
LOAD,  
0mA TO 200mA, 100mA/div  
A: I  
LOAD,  
0mA TO 100mA, 50mA/div  
B: V , 100mV/div, AC COUPLED  
OUT  
B: V , 100mV/div, AC COUPLED  
OUT  
V
IN  
= 9V, V  
= 5V  
OUT  
V
IN  
= 5V, V  
= 3V  
OUT  
MAX639  
LINE-TRANSIENT RESPONSE  
MAX653  
LINE-TRANSIENT RESPONSE  
A
B
A
B
10ms/div  
10ms/div  
A: V 6V TO 11.5V, 2V/div  
IN,  
A: V 4V TO 8V, 2V/div  
IN,  
B: V , 100mV/div  
OUT  
B: V , 100mV/div  
OUT  
V
OUT  
= 5V, I  
= 100mA  
LOAD  
V
OUT  
= 3V, I  
= 100mA  
LOAD  
6
_______________________________________________________________________________________  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
______________________________________________________________Pin Description  
PIN  
1
NAME  
FUNCTION  
Sense Input for regulated-output operation. Internally connected to an on-chip voltage divider and to  
the variable duty-cycle, on-demand oscillator. It must be connected to the external regulated output.  
VOUT  
Low-Battery Output. An open-drain N-channel MOSFET sinks current when the voltage at LBI drops  
below 1.28V.  
2
LBO  
3
4
LBI  
Low-Battery Input. When the voltage at LBI drops below 1.28V, LBO sinks current.  
Ground  
GND  
Drain of a PMOS power switch that has its source connected to V+. LX drives the external inductor,  
which provides current to the load.  
5
6
LX  
V+  
Positive Supply-Voltage Input. Should not exceed 11.5V  
Dual-Mode Feedback Pin. When VFB is grounded, the internal voltage divider sets the output to 5V  
(MAX639), 3.3V (MAX640) or 3V (MAX653). For adjustable operation, connect VFB to an external volt-  
age divider.  
Shutdown Input — active low. When pulled below 0.8V, the LX power switch stays off, shutting down  
the regulator. When the shutdown input is above 2V, the regulator stays on. Tie SHDN to V+ if shut-  
down mode is not used.  
7
8
VFB  
SHDN  
____________________Getting Started  
Designing power supplies with the MAX639/MAX640/  
MAX653 is easy. The few required external components  
are readily available. The most general applications use  
the following components:  
I
L
L
V
L
V
OUT  
C
V+  
OUT  
(1) Capacitors: For the input and output filter capaci-  
tors, try using electrolytics in the 100µF range, or  
use low-ESR capacitors to minimize output ripple.  
Capacitor values are not critical.  
(2) Diode: Use the popular 1N5817 or equivalent  
Schottky diode.  
Figure 1. Simplified Step-Down Converter  
(3) Inductor: For the highest output current, choose a  
100µH inductor with an incremental saturation cur-  
rent rating of at least 600mA. To obtain the highest  
efficiencies and smallest size, refer to the Inductor  
Selection section.  
I AT 200mA/div  
L
_______________Detailed Description  
Figure 1 shows a simplified, step-down DC-DC con-  
verter. When the switch is closed, a voltage equal to  
0A  
0V  
(V+ - V  
) is applied to the inductor. The current  
OUT  
through the inductor ramps up, storing energy in the  
inductor’s magnetic field. This same current also flows  
into the output filter capacitor and load. When the switch  
opens, the current continues to flow through the inductor  
in the same direction, but must also flow through the  
diode. The inductor alone supplies current to the load  
when the switch is open. This current decays to zero as  
the energy stored in the inductor’s magnetic field is  
transferred to the output filter capacitor and the load.  
V AT 5V/div  
L
SWITCH ON  
SWITCH ON  
SWITCH OFF  
SWITCH OFF  
Figure 2. Simplified Step-Down Converter Operation  
_______________________________________________________________________________________  
7
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
Figure 2 shows what happens to the ideal circuit of  
Figure 1 if the switch turns on with a 66% duty cycle and  
When the output dips:  
(1) The error comparator switches high.  
V+ = 3/2 V  
. The inductor current rises more slowly  
OUT  
(2) The internal oscillator starts (15µs start-up time)  
and connects to the gate of the LX output driver.  
than it falls because the magnitude of the voltage  
applied during t is less than that applied during t  
.
OFF  
ON  
Varying the duty cycle and switching frequency keeps  
(3) LX turns on and off according to t  
and t  
,
OFF  
ON  
the peak current constant as input voltage varies. The  
charging and discharging the inductor, and sup-  
plying current to the output (as described above).  
MAX639/MAX640/MAX653 control the switch (t  
OFF  
and  
ON  
t
) according to the following equations:  
When the output voltage recovers:  
(1) The comparator switches low.  
(2) LX turns off.  
Equation (1) t  
Equation (2) t  
Equation (3) I  
= 50µsV / (V+ - V  
)
OUT  
ON  
50µsV / V  
OFF  
PEAK  
OUT  
= 50µsV / L  
(3) The oscillator shuts down to save power.  
These three equations ensure constant peak currents for  
a given inductor value, across all input voltages (ignoring  
the voltage drop across the diode (D1) and the resistive  
losses in the switch and inductor). The variable duty  
cycle also ensures that the current through the inductor  
discharges to zero at the end of each pulse.  
Fixed or Adjustable Output  
For operation at the preset output voltage, connect VFB  
to GND; no external resistors are required. For other  
output voltages, use an external voltage divider. Set the  
output voltage using R3 and R4 as determined by the  
following formula:  
Figure 3 shows the MAX639/MAX640/MAX653 block dia-  
gram and a typical connection in which 9V is converted  
to 5V (MAX639), 3.3V (MAX640), or 3.0V (MAX653). The  
sequence of events in this application is as follows:  
R3 = R4 [(V  
/ VFB Threshold) - 1]  
OUT  
where R4 is any resistance in the 10kto 1Mrange (typ-  
ically 100k), and the VFB threshold is typically 1.28V.  
INPUT, +5.5V TO +11.5V (MAX639),  
+3.8V TO +11.5V (MAX640), +3.5V TO +11.5V (MAX653)  
8
6
V+  
5V, 3.3V OR 3.0V  
AT 100mA  
SHDN  
LX  
5
C
33µF  
IN  
L = 100µH  
1N5817  
+1.28V  
BANDGAP  
REFERENCE  
VARIABLE  
FREQUENCY  
AND  
DUTY-CYCLE  
OSCILLATOR  
ERROR  
COMPARATOR  
VOUT  
1
R1  
C
OUT  
LOW-BATTERY  
COMPARATOR  
100µF  
MODE-SELECT  
COMPARATOR  
3
2
LBI  
LBO  
50mV  
MAX639  
MAX640  
MAX653  
R2  
VFB  
7
GND  
4
Figure 3. Block Diagram  
_______________________________________________________________________________________  
8
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
Low-Battery Detector  
Table 1. Component Suppliers  
The low-battery detector compares the voltage on the  
INDUCTORS — THROUGH HOLE  
LBI input with the internal 1.28V reference. LBO goes  
low whenever the input voltage at LBI is less than  
1.28V. Set the low-battery detection voltage with resis-  
tors R1 and R2 (Figure 3) as determined by the follow-  
ing formula:  
PART  
NUMBER  
SIZE  
(inches)  
VALUE  
(µH)  
I
SERIES R  
MAX  
(A)  
()  
0.2  
MAXL001* 0.65 x 0.33 dia.  
100  
100  
150  
220  
330  
470  
1000  
1.75  
0.89  
0.72  
0.58  
0.47  
0.39  
0.27  
7300-13**  
7300-15**  
7300-17**  
7300-19**  
7300-21**  
7300-25**  
0.63 x 0.26 dia.  
0.63 x 0.26 dia.  
0.63 x 0.26 dia.  
0.63 x 0.26 dia.  
0.63 x 0.26 dia.  
0.63 x 0.26 dia.  
0.27  
0.36  
0.45  
0.58  
0.86  
2.00  
R1 = R2 [(VLB / LBI Threshold) - 1]  
where R2 is any resistance in the 10kto 1Mrange  
(typically 100k), the LBI threshold is typically 1.28V,  
and VLB is the desired low-battery detection voltage.  
The low-battery comparator remains active in shutdown  
mode.  
* Maxim Integrated Products  
**Caddell-Burns  
Shutdown Mode  
Bringing SHDN below 0.8V places the MAX639/  
MAX640/MAX643 in shutdown mode. LX becomes high  
impedance, and the voltage at VOUT falls to zero. The  
time required for the output to rise to its nominal regu-  
lated voltage when brought out of shutdown (start-up  
time) depends on the inductor value, input voltage, and  
load current (see the Start-Up Time vs. Output Current  
graph in the Typical Operating Characteristics). The  
low-battery comparator remains active in shutdown  
mode.  
258 East Second Street  
Mineola, NY 11501-3508  
(516) 746-2310  
INDUCTORS — SURFACE MOUNT  
PART  
NUMBER  
SIZE  
(mm)  
VALUE  
(µH)  
I
SERIES R  
MAX  
(A)  
()  
CD54  
5.2 x 5.8 x 4.5  
5.2 x 5.8 x 4.5  
7.1 x 7.7 x 4.5  
7.1 x 7.7 x 4.5  
9.2 x 10.0 x 5.0  
9.2 x 10.0 x 5.0  
100  
220  
100  
220  
100  
220  
0.52  
0.35  
0.52  
0.35  
0.80  
0.54  
0.63  
1.50  
0.51  
0.98  
0.35  
0.69  
CD54  
CDR74  
CDR74  
CDR105  
CDR105  
__________Applications Information  
Sumida Electric (USA)  
637 East Golf Road  
Arlington Heights, IL 60005  
(708) 956-0666  
Inductor Selection  
When selecting an inductor, consider these four factors:  
peak-current rating, inductance value, series resistance,  
and size. It is important not to exceed the inductor’s  
peak-current rating. A saturated inductor will pull exces-  
sive currents through the MAX639/MAX640/MAX653’s  
switch, and may cause damage. Avoid using RF chokes  
or air-core inductors since they have very low peak-cur-  
rent ratings. Electromagnetic interference must not upset  
nearby circuitry or the regulator IC. Ferrite-bobbin types  
work well for most digital circuits; toroids or pot cores  
work well for EMI-sensitive analog circuits.  
CAPACITORS — LOW ESR  
PART  
SIZE  
VALUE  
(µF)  
ESR  
()  
0.2  
0.2  
0.2  
V
MAX  
(V)  
NUMBER  
(inches)  
MAXC001* 0.49 x 0.394 dia.  
267 Series** D SM packages  
267 Series** E SM packages  
150  
47  
35  
10  
100  
6.3  
* Maxim Integrated Products  
**Matsuo Electronics  
2134 Main Street  
Huntington Beach, CA 92648  
(714) 969-2491  
Recall that the inductance value determines I  
for all  
PEAK  
input voltages (Equation 3). If there are no resistive loss-  
es and the diode is ideal, the maximum average current  
that can be drawn from the MAX639/MAX640/MAX653  
SCHOTTKY DIODES — SURFACE MOUNT  
PART  
NUMBER  
V
(V)  
I
F
MAX  
(A)  
SIZE  
SOT89  
SOT89  
will be one-half I . With the real losses in the switch,  
PEAK  
SE014  
0.55  
1
inductor, and diode taken into account, the real maxi-  
mum output current typically varies from 90% to 50% of  
the ideal. The following steps describe a conservative  
way to pick an appropriate inductor.  
SE024  
0.55  
0.95  
Collmer Semiconductor  
14368 Proton Road  
Dallas, TX 75244  
(214) 233-1589  
Step 1: Decide on the maximum required output  
NOTE: This list does not constitute an endorsement by Maxim  
current, in amperes: I  
.
OUTMAX  
Integrated Products and is not intended to be a comprehensive  
list of all manufacturers of these components.  
Step 2:  
I
= 4 x I  
.
PEAK  
OUTMAX  
_______________________________________________________________________________________  
9
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
INPUT  
+4.0V TO +11.5V  
L = 100µH  
OUTPUT  
5
6
8
V+  
LX  
C
OUT  
1N5817  
SHDN  
100µF  
MAX639  
MAX640  
MAX653  
C
IN  
1
7
MAX639  
MAX640  
MAX653  
R3  
R4  
VOUT  
VFB  
100µF  
GND  
4
LBI  
3
Figure 4. Adjustable-Output Operation  
Figure 5. Through-Hole PC Layout and Component Placement  
Diagram for Standard Step-Down Application (Top-Side View)  
Step 3: L = 50 / I  
. L will be in µH. Do not use an  
It decreases with larger inductance, but increases as  
the input voltage lessens. As a general rule, a smaller  
amount of charge delivered in each pulse results in  
less output ripple.  
PEAK  
inductor of less than 100µH.  
Step 4: Make sure that I  
does not exceed 0.6A or  
PEAK  
the inductor’s maximum current rating,  
whichever is lower.  
With low-cost aluminum electrolytic capacitors, the  
ESR-induced ripple can be larger than that caused by  
the charge variation. Consequently, high-quality alu-  
minum-electrolytic or tantalum filter capacitors will mini-  
mize output ripple. Best results at reasonable cost are  
typically achieved with an aluminum-electrolytic capac-  
itor in the 100µF range, in parallel with a 0.1µF ceramic  
capacitor (Table 1).  
Inductor series resistance affects both efficiency and  
dropout voltage. A high series resistance severely limits  
the maximum current available at lower input voltages.  
Output currents up to 225mA are possible if the induc-  
tor has low series resistance. Inductor and series  
switch resistance form an LR circuit during t . If the  
ON  
ON  
L/R time constant is less than the oscillator t , the  
inductor’s peak current will fall short of the desired  
External Diode  
In most MAX639/MAX640/MAX653 circuits, the current  
in the external diode (D1, Figure 3) changes abruptly  
from zero to its peak value each time LX switches off.  
To avoid excessive losses, the diode must have a fast  
turn-on time. For low-power circuits with peak currents  
less than 100mA, signal diodes such as the 1N4148  
perform well. The 1N5817 diode works well for high-  
power circuits, or for maximum efficiency at low power.  
1N5817 equivalent diodes are also available in surface-  
mount packages (Table 1). Although the 1N4001 and  
other general-purpose rectifiers are rated for high cur-  
rents, they are unacceptable because their slow turn-  
off times result in excessive losses.  
I
.
PEAK  
To maximize efficiency, choose the highest-value  
inductor that will provide the required output current  
over the whole range of your input voltage (see Typical  
Operating Characteristics). Inductors with peak cur-  
rents in the 600mA range do not need to be very large.  
They are about the size of a 1W resistor, with surface-  
mount versions less than 5mm in diameter. Table 1 lists  
suppliers of inductors suitable for use with the  
MAX639/MAX640/MAX653.  
Output Filter Capacitor  
The MAX639/MAX640/MAX653’s output ripple has two  
components. One component results from the variation  
in stored charge on the filter capacitor with each LX  
pulse. The other is the product of the current into the  
capacitor and the capacitor’s equivalent series resis-  
tance (ESR).  
Minimum Load  
Under no-load conditions, because of leakage from the  
PMOS power switch (see the LX Leakage Current vs.  
Temperature graph in the Typical Operating  
Characteristics) and from the internal resistor from V+  
The amount of charge delivered in each oscillator pulse  
is determined by the inductor value and input voltage.  
to V  
, leakage current may be supplied to the output  
OUT  
10 ______________________________________________________________________________________  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
160  
T
= +25°C  
A
6
8
140  
C
L = 100µH  
MAX639  
IN  
V
IN  
V+  
L = 100µH  
SHDN  
100µF  
5
1
120  
100  
LX  
1N5817  
MAX639  
MAX640  
MAX653  
80  
60  
40  
VOUT  
C
OUT  
100µF  
20  
0
-5V  
-3.3V  
OR -3V  
GND  
4
VFB  
7
0
1
2
3
4
5
V+ (V)  
Figure 6. Inverting Configuration  
Figure 7. Maximum Current Capability of Figure 6 Circuit  
capacitor, even when the switch is off. This will usually not  
be a problem for a 5V output at room temperature, since  
the diode’s reverse leakage current and the feedback  
resistors’ current typically drain the excess. However, if  
the diode leakage is very low (which can occur at low  
temperatures and/or small output voltages), charge may  
87.0  
86.5  
86.0  
build up on the output capacitor, making V  
rise above  
OUT  
its set point. If this happens, add a small load resistor  
(typically 1M) to the output to pull a few extra  
microamps of current from the output capacitor.  
85.5  
T
V
= +25°C  
A
= -5V  
OUT  
85.0  
L = 470µH  
= 10mA  
Layout  
Several of the external components in a MAX639/  
MAX640/MAX653 circuit experience peak currents up  
to 600mA. Wherever one of these components con-  
nects to ground, there is a potential for ground bounce.  
Ground bounce occurs when high currents flow  
through the parasitic resistances of PC board traces.  
What one component interprets as ground can differ  
from the IC’s ground by several millivolts. This may  
increase the MAX639/MAX640/MAX653’s output ripple,  
since the error comparator (which is referenced to  
ground) will generate extra switching pulses when they  
are not needed. It is essential that the input filter capac-  
itor’s ground lead, the MAX639/MAX640/MAX653’s  
GND pin, the diode’s anode, and the output filter  
capacitor’s ground lead are as close together as possi-  
ble, preferably at the same point. Figure 5 shows a  
suggested through-hole printed circuit layout that mini-  
mizes ground bounce.  
I
OUT  
84.5  
84.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
V+ (V)  
Figure 8. Efficiency of Figure 6 Circuit  
-3.3V (MAX640), or -3V (MAX653). Avoid exceeding the  
maximum differential voltage of 11.5V from V+ to V  
Other negative voltages can be generated by placing a  
voltage divider across C and connecting the tap  
point to VFB in the same manner as the normal step-  
down configuration.  
.
OUT  
OUT  
Two AA Batteries to 5V, 3.3V, or 3V  
For battery-powered applications, where the signal  
ground does not have to correspond to the power-supply  
ground, the circuit in Figure 6 generates 5V (MAX639),  
3.3V (MAX640), or 3V (MAX653) from a pair of AA batter-  
Inverter Configuration  
ies. Connect the V ground point to your system’s input,  
IN  
and connect the output to your system’s ground input.  
This configuration has the added advantage of reduced  
Figure 6 shows the MAX639/MAX640/MAX653 in a  
floating ground configuration. By tying what would nor-  
mally be the output to the supply-voltage ground, the  
IC’s GND pin is forced to a regulated -5V (MAX639),  
on resistance, since the IC’s internal power FET has V  
+
IN  
V
of gate drive (Figures 7 and 8).  
OUT  
______________________________________________________________________________________ 11  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
_Ordering Information (continued)  
___________________Chip Topography  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
SHDN  
VOUT  
MAX640CPA  
MAX640CSA  
MAX640C/D  
MAX640EPA  
MAX640ESA  
MAX640MJA  
MAX653CPA  
MAX653CSA  
MAX653C/D  
MAX653EPA  
MAX653ESA  
MAX653MJA  
LBO  
VFB  
Dice*  
8 Plastic DIP  
8 SO  
8 CERDIP  
8 Plastic DIP  
8 SO  
0.083"  
(2.108mm)  
V+  
LBI  
Dice*  
8 Plastic DIP  
8 SO  
8 CERDIP  
GND  
LX  
*Contact factory for dice specifications.  
0.072"  
(1.828mm)  
TRANSISTOR COUNT: 221  
SUBSTRATE CONNECTED TO V+  
12 ______________________________________________________________________________________  
5V/3.3V/3V/Adjustable, High-Efficiency,  
Low IQ, Step-Down DC-DC Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
13 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY