MAX6501CMP045 [MAXIM]

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220; 低成本, + 2.7V至+ 5.5V ,微功耗温度开关,SOT23封装和TO -220
MAX6501CMP045
型号: MAX6501CMP045
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220
低成本, + 2.7V至+ 5.5V ,微功耗温度开关,SOT23封装和TO -220

模拟IC 开关 信号电路 局域网
文件: 总8页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1280; Rev 2; 11/99  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
________________General Description  
____________________________Features  
The MAX6501–MAX6504 low-cost, fully integrated tem-  
perature switches assert a logic signal when their die  
temperature crosses a factory-programmed threshold.  
Operating from a +2.7V to +5.5V supply, these devices  
feature two on-chip, temperature-dependent voltage  
references and a comparator. They are available with  
factory-trimmed temperature trip thresholds from -45°C  
to +115°C in 10°C increments, and are accurate to  
0.5°C ꢀtypꢁ or 6°C ꢀmaꢂꢁ. These devices reꢃuire no  
eꢂternal components and typically consume 30µA sup-  
ply current. Hysteresis is pin-selectable at +2°C or  
+10°C.  
0.5°C (typical) Threshold Accuracy Over  
Full Temperature Range  
No External Components Required  
Low Cost  
30µA Supply Current  
Factory-Programmed Thresholds from  
-45°C to +115°C in 10°C Increments  
Open-Drain Output (MAX6501/MAX6503)  
Push-Pull Output (MAX6502/MAX6504)  
Pin-Selectable +2°C or +10°C Hysteresis  
SOT23-5 and TO220-7 Packages  
The MAX6501/MAX6503 have an active-low, open-drain  
output intended to interface with a microprocessor ꢀµPꢁ  
reset input. The MAX6502/MAX6504 have an active-  
high, push-pull output intended to directly drive fan-  
control logic. The MAX6501/MAX6502 are offered with  
hot-temperature thresholds ꢀ+35°C to +115°Cꢁ, assert-  
ing when the temperature is above the threshold. The  
MAX6503/MAX6504 are offered with cold-temperature  
thresholds ꢀ-45°C to +15°Cꢁ, asserting when the tem-  
perature is below the threshold.  
Ordering Information  
PART*  
TEMP. RANGE  
PIN-PACKAGE  
5 SOT23-5  
7 TO-220-7  
5 SOT23-5  
7 TO-220-7  
5 SOT23-5  
7 TO-220-7  
5 SOT23-5  
7 TO-220-7  
MAX6501UK_ _ _ _-T  
-55°C to +125°C  
MAX6501CM_ _ _ _-T -55°C to +125°C  
MAX6502UK_ _ _ _-T  
-55°C to +125°C  
MAX6502CM_ _ _ _-T -55°C to +125°C  
MAX6503UK_ _ _ _-T  
-55°C to +125°C  
MAX6503CM_ _ _ _-T -55°C to +125°C  
MAX6504UK_ _ _ _-T  
-55°C to +125°C  
MAX6504CM_ _ _ _-T -55°C to +125°C  
The MAX6501–MAX6504 are offered in eight standard  
temperature versions; contact the factory for pricing  
and availability of nonstandard temperature versions.  
They are available in 5-pin SOT23 and 7-pin TO-220  
packages.  
Typical Operating Circuit  
*These parts are offered in eight standard temperature versions  
with a minimum order of 2,500 pieces. To complete the suffix  
information, add P or N for positive or negative trip temperature,  
and select an available trip point in degrees centigrade. For  
example, the MAX6501UKP065-T describes a MAX6501 in a  
SOT23-5 package with a +65°C threshold. Contact the factory for  
pricing and availability of nonstandard temperature versions (mini-  
mum order 10,000 pieces).  
+2.7V TO +5.5V  
V
V
CC  
CC  
MAX6502  
TOVER  
µP  
INT  
GND GND HYST  
GND  
________________________Applications  
µP Temperature Monitoring in High-Speed  
Computers  
Temperature Control  
Temperature Alarms  
Fan Control  
Selector Guide and Pin Configurations appear at end of  
data sheet.  
Patents Pending  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ꢀV ꢁ ...............................................-0.3V to +7V  
Output Current ꢀall pinsꢁ .....................................................20mA  
CC  
TOVER ꢀMAX6501...................................................-0.3V to +7V  
Continuous Power Dissipation ꢀT = +70°Cꢁ  
A
TOVER ꢀMAX6502.....................................-0.3V to ꢀV  
+ 0.3Vꢁ  
5-Pin SOT23-5 ꢀderate 7.1mW/°C above +70°Cꢁ .........571mW  
Operating Temperature Range .........................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature ꢀsoldering, 10secꢁ .............................+300°C  
CC  
TUNDER ꢀMAX6503ꢁ ................................................-0.3V to +7V  
TUNDER ꢀMAX6504ꢁ ..................................-0.3V to ꢀV  
All Other Pins..............................................-0.3V to ꢀV  
+ 0.3Vꢁ  
+ 0.3Vꢁ  
CC  
CC  
Input Current ꢀall pinsꢁ ........................................................20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
ꢀV  
= +2.7V to +5.5V, R  
= 100kꢀMAX6501/MAX6503 onlyꢁ, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
CC  
PULL-UP  
A
MIN  
at T = +25°C.ꢁ ꢀNote 1ꢁ  
A
PARAMETER  
Supply Voltage Range  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
85  
6
UNITS  
V
V
2.7  
CC  
CC  
I
30  
0.5  
0.5  
0.5  
0.5  
2
µA  
-45°C to -25°C  
-15°C to +15°C  
+35°C to +65°C  
-6  
-4  
-4  
-6  
4
Temperature Threshold  
Accuracy ꢀNote 2ꢁ  
T  
TH  
°C  
4
+75°C to +115°C  
HYST = GND  
6
Temperature Threshold  
Hysteresis  
T
HYST  
°C  
V
HYST = V  
10  
CC  
V
IH  
0.8 ꢂ V  
0.8 ꢂ V  
CC  
HYST Input Threshold  
ꢀNote 3ꢁ  
V
IL  
0.2 ꢂ V  
CC  
I
= 500µA, V  
> 2.7V  
SOURCE  
CC  
CC  
ꢀMAX6502/MAX6504 onlyꢁ  
Output Voltage High  
V
OH  
V
I
= 800µA, V > 4.5V  
SOURCE  
CC  
V
- 1.5  
CC  
ꢀMAX6502/MAX6504 onlyꢁ  
I
I
= 1.2mA, V  
= 3.2mA, V  
> 2.7V  
> 4.5V  
0.3  
0.4  
SINK  
CC  
Output Voltage Low  
V
OL  
V
SINK  
CC  
Open-Drain Output Leakage  
Current  
V
V
= 2.7V, V  
= 5.5V ꢀMAX6503ꢁ,  
TUNDER  
CC  
10  
nA  
= 5.5V ꢀMAX6501ꢁ  
TOVER  
Note 1: 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 2: The MAX6501–MAX6504 are available with internal, factory-programmed temperature trip thresholds from -45°C to +115°C  
in +10°C increments (see Selector Guide).  
Note 3: Guaranteed by design.  
2
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
__________________________________________Typical Operating Characteristics  
ꢀV  
= +5V, R  
= 100kꢀMAX6501/MAX6503ꢁ, T = +25°C, unless otherwise noted.ꢁ  
CC  
PULL-UP  
A
MAX6502/MAX6504  
OUTPUT SOURCE RESISTANCE  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
TRIP THRESHOLD ACCURACY  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
100  
0
SAMPLE SIZE = 300  
V
= 2.7V  
CC  
V
V
= 3.3V  
= 5.0V  
CC  
CC  
0
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-55  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
ACCURACY (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT SINK RESISTANCE  
vs. TEMPERATURE  
SOT23 THERMAL STEP RESPONSE  
IN PERFLUORINATED FLUID  
SOT23 THERMAL STEP RESPONSE  
IN STILL AIR  
MAX6501 TOC4  
MAX6501 TOC5  
160  
140  
120  
100  
80  
V
= 2.7V  
CC  
+100°C  
+100°C  
V
= 3.3V  
CC  
+12.5°C/div  
+15°C/div  
V
= 5.0V  
60  
CC  
2
2
MOUNTED ON 0.75in  
OF 2 oz. COPPER  
40  
MOUNTED ON 0.75in  
OF 2 oz. COPPER  
20  
+25°C  
+25°C  
0
5sec/div  
-55  
-25  
5
35  
65  
95  
125  
20sec/div  
TEMPERATURE (°C)  
HYSTERESIS  
vs. TRIP TEMPERATURE  
MAX6501 START-UP AND POWER-DOWN  
MAX6501 START-UP DELAY  
(T > T  
(T < T  
)
)
TH  
TH  
MAX6501 TOC07  
MAX6501 TOC07A  
16  
14  
12  
10  
8
MAX6503  
MAX6504  
HYST = V  
MAX6501  
MAX6502  
HYST = V  
CC  
CC  
A
B
A
B
6
MAX6501  
MAX6502  
HYST = GND  
MAX6503  
MAX6504  
HYST = GND  
4
2
0
-45 -25 -5 15 35 55 75 95 115  
TRACE A: TOVER VOLTAGE, R  
= 100kΩ  
TRACE A: TOVER VOLTAGE, R  
= 100kΩ  
PULL-UP  
PULL-UP  
TRACE B: V PULSE DRIVEN FROM 3.3V CMOS LOGIC OUTPUT  
TRIP TEMPERATURE (°C)  
TRACE B: V PULSE DRIVEN FROM 3.3V CMOS LOGIC OUTPUT  
CC  
CC  
_______________________________________________________________________________________  
3
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6501 MAX6502 MAX6503 MAX6504  
Ground. Not internally connected. Tie both ground pins togeth-  
er close to the chip. Pin 2 provides the lowest thermal resis-  
tance to the die.  
1, 2  
1, 2  
1, 2  
1, 2  
GND  
Hysteresis Input. Connect HYST to GND for +2°C hysteresis, or  
3
4
3
4
3
4
3
4
HYST  
connect to V  
for +10°C hysteresis.  
CC  
V
CC  
Supply Input ꢀ+2.7V to +5.5Vꢁ  
Open-Drain, Active-Low Output. TOVER goes low when the die  
temperature eꢂceeds the factory-programmed temperature  
threshold. Connect to a 100kpull-up resistor. May be pulled  
5
5
5
5
TOVER  
TOVER  
up to a voltage higher than V  
.
CC  
Push-Pull Active-High Output. TOVER goes high when the die tem-  
perature eꢂceeds the factory-programmed temperature threshold.  
Open-Drain, Active-Low Output. TUNDER goes low when the  
die temperature goes below the factory-programmed tempera-  
ture threshold. Connect to a 100kpull-up resistor. May be  
TUNDER  
TUNDER  
pulled up to a voltage higher than V  
.
CC  
Push-Pull Active-High Output. TUNDER goes high when the die tem-  
perature falls below the factory-programmed temperature threshold.  
________________General Description  
Table 1. Factory-Programmed Threshold  
Range  
The MAX6501–MAX6504 fully integrated temperature  
switches incorporate two temperature-dependent refer-  
ences and a comparator. One reference eꢂhibits a pos-  
itive temperature coefficient and the other a negative  
temperature coefficient ꢀFigure 1ꢁ. The temperature at  
which the two reference voltages are eꢃual determines  
the temperature trip point. Pin-selectable +2°C or  
+10°C hysteresis keeps the output from oscillating  
when the die temperature approaches the threshold  
temperature. The MAX6501/MAX6503 have an active-  
low, open-drain output structure that can only sink cur-  
rent. The MAX6502/MAX6504 have an active-high,  
push-pull output structure that can sink or source cur-  
rent. The internal power-on reset circuit guarantees the  
PART  
THRESHOLD (T ) RANGE  
TH  
MAX6501  
MAX6502  
MAX6503  
MAX6504  
+35°C < T < +115°C  
TH  
+35°C < T < +115°C  
TH  
-45°C < T < +15°C  
TH  
-45°C < T < +15°C  
TH  
Hysteresis Input  
The HYST pin is a CMOS-compatible input that selects  
hysteresis at either a high level ꢀ+10°C for HYST = V  
CC  
or a low level ꢀ+2°C for HYST = GNDꢁ. Hysteresis pre-  
vents the output from oscillating when the temperature  
approaches the trip point. The HYST pin should not  
output is at T = +25°C state at start-up for 50µs.  
TH  
float. Drive HYST close to ground or V . Other input  
CC  
The MAX6501–MAX6504 are available with factory-  
preset temperature thresholds from -45°C to +115°C in  
10°C increments. Table 1 lists the available temperature  
threshold ranges. The MAX6501/MAX6503 outputs are  
intended to interface with a microprocessor ꢀµPꢁ reset  
input ꢀFigure 2ꢁ. The MAX6502/MAX6504 outputs are  
intended for applications such as driving a fan control  
ꢀFigure 3ꢁ.  
voltages cause increased supply current. The actual  
amount of hysteresis depends on the part’s pro-  
grammed trip threshold. ꢀSee the Typical Operating  
Characteristics graphs.ꢁ  
4
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
V
MAX6501  
WITH 100kPULL-UP  
TOVER  
TOVER  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
TEMP  
TEMP  
TEMP  
TEMP  
COLD +25°C  
T
HOT  
TH  
MAX6501  
V
MAX6502  
TOVER  
TOVER  
HYST  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
HYST  
NETWORK  
REFERENCE  
COLD +25°C  
T
HOT  
TH  
MAX6502  
MAX6503  
WITH 100kPULL-UP  
V
TUNDER  
TUNDER  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
COLD  
T
+25°C  
HOT  
TH  
MAX6503  
V
MAX6504  
TUNDER  
TUNDER  
HYST  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
COLD  
T
+25°C  
HOT  
TH  
MAX6504  
Figure 1. Block and Functional Diagrams  
_______________________________________________________________________________________  
5
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
+3.3V  
+5V  
V
V
HYST  
CC  
CC  
R
V
V
CC  
PULL-UP  
100k  
CC  
µP  
FAN  
HEAT  
µP  
MAX6501  
TOVER  
INT  
MAX6502  
GND GND TOVER  
SHUTDOWN  
OR  
RESET  
HYST GND GND  
HEAT  
Figure 2. Microprocessor Alarm/Reset  
Figure 3. Overtemperature Fan Control  
power is dissipated within the IC. This corresponds to a  
0.042°C shift in the die temperature in the SOT23-5.  
Applications Information  
Thermal Considerations  
The MAX6501–MAX6504 supply current is typically  
30µA. When used to drive high-impedance loads, the  
devices dissipate negligible power. Therefore, the die  
temperature is essentially the same as the package  
temperature. The key to accurate temperature monitor-  
ing is good thermal contact between the MAX6501–  
MAX6504 package and the device being monitored. In  
some applications, the SOT23-5 package may be small  
enough to fit underneath a socketed µP, allowing the  
device to monitor the µP’s temperature directly. The  
TO-220 package can monitor the temperature of a heat  
sink directly, and presents the lower thermal resistance  
of the two packages. Use the monitor’s output to reset  
the µP, assert an interrupt, or trigger an eꢂternal alarm.  
Temperature-Window Alarm  
The MAX6501–MAX6504 temperature switch outputs  
assert when the die temperature is outside the factory-  
programmed range. Combining the outputs of two  
devices creates an over/undertemperature alarm. The  
MAX6501/MAX6503 and the MAX6502/MAX6504 are  
designed to form two complementary pairs, each con-  
taining one cold trip-point output and one hot trip-point  
output. The assertion of either output alerts the system to  
an out-of-range temperature. The MAX6502/MAX6504  
push/pull output stages can be ORed to produce a ther-  
mal out-of-range alarm. More favorably, a MAX6501/  
MAX6503 can be directly wire-ORed with a single eꢂter-  
nal resistor to accomplish the same task ꢀFigure 4ꢁ.  
The temperature window alarms shown in Figure 4 can  
be used to accurately determine when a device’s tem-  
perature falls out of the -5°C to +75°C range. The ther-  
mal-overrange signal can be used to assert a thermal  
shutdown, power-up, recalibration, or other temperature-  
dependent function.  
Accurate temperature monitoring depends on the thermal  
resistance between the device being monitored and the  
MAX6501–MAX6504 die. Heat flows in and out of plastic  
packages, primarily through the leads. Pin 2 of the  
SOT23-5 package provides the lowest thermal resistance  
to the die. Short, wide copper traces leading to the tem-  
perature monitor ensure that heat transfers ꢃuickly and  
reliably.  
Low-Cost, Fail-Safe  
Temperature Monitor  
In high-performance/high-reliability applications, multiple  
temperature monitoring is important. The high-level  
integration and low cost of the MAX6501–MAX6504  
facilitate the use of multiple temperature monitors to in-  
crease system reliability. Figure 5’s application uses two  
MAX6502s with different temperature thresholds to ensure  
that fault conditions that can overheat the monitored  
device cause no permanent damage. The first tempera-  
ture monitor activates the fan when the die temperature  
eꢂceeds +45°C. The second MAX6502 triggers a system  
shutdown if the die temperature reaches +75°C. The  
second temperature monitor’s output asserts when a  
wide variety of destructive fault conditions occur, includ-  
ing latchups, short circuits, and cooling-system failures.  
The rise in die temperature due to self-heating is given  
by the following formula:  
T = P  
θ  
JA  
J
DISSIPATION  
where P  
is the power dissipated by the  
DISSIPATION  
MAX6501–MAX6504, and θ is the package’s thermal  
JA  
resistance.  
The typical thermal resistance is 140°C/W for the  
SOT23-5 package and 75°C/W for the TO-220 pack-  
age. To limit the effects of self-heating, minimize the  
output currents. For eꢂample, if the MAX6501 or  
MAX6503 sink 1mA, the output voltage is guaranteed to  
be less than 0.3V. Therefore, an additional 0.3mW of  
6
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
+5V  
+5V  
V
CC  
V
CC  
MAX6502_ _P075  
GND  
GND  
HYST  
MAX6502_ _P075  
HEAT  
OVERTEMP  
TEMPERATURE  
FAULT  
GND  
TOVER  
TOVER  
OUT OF RANGE  
GND  
HYST  
µP  
V
TUNDER  
CC  
UNDERTEMP  
FAN  
MAX6504_ _N005  
HYST  
GND  
CONTROL  
HEAT  
V
TOVER  
CC  
HYST  
GND  
MAX6502_ _P045  
+5V  
GND GND  
R
PULL-UP  
100k  
OUT OF RANGE  
V
CC  
V
CC  
Figure 5. Low-Power, High-Reliability, Fail-Safe Temperature  
Monitor  
TOVER  
TUNDER  
MAX6501_ _P075  
MAX6503_ _N005  
GND  
GND HYST  
GND GND HYST  
Figure 4. Temperature-Window Alarms  
Table 2. Device Marking Codes for SOT23-5 Package  
MINIMUM  
MINIMUM  
ORDER  
DEVICE  
CODE  
DEVICE  
CODE  
ORDER  
MAX6501UKP035  
MAX6501UKP045  
MAX6501UKP055  
MAX6501UKP065  
MAX6501UKP075  
MAX6501UKP085  
MAX6501UKP095  
MAX6501UKP105  
MAX6501UKP115  
MAX6502UKP035  
MAX6502UKP045  
MAX6502UKP055  
MAX6502UKP065  
MAX6502UKP075  
MAX6502UKP085  
MAX6502UKP095  
ABZF  
ABZR  
ACFW  
ABZS  
ACFV  
ACDP  
ABZT  
ACFU  
ACAG  
ABZG  
ABZU  
ACGC  
ABZV  
ACGB  
ACGA  
ABZW  
10k  
MAX6502UKP105  
MAX6502UKP115  
MAX6503UKN045  
MAX6503UKN035  
MAX6503UKN025  
MAX6503UKN015  
MAX6503UKN005  
MAX6503UKP005  
MAX6503UKP015  
MAX6504UKN045  
MAX6504UKN035  
MAX6504UKN025  
MAX6504UKN015  
MAX6504UKN005  
MAX6504UKP005  
MAX6504UKP015  
ACFZ  
ACFY  
ADIZ  
10k  
2.5k  
10k  
10k  
10k  
2.5k  
10k  
2.5k  
10k  
10k  
10k  
10k  
2.5k  
10k  
2.5k  
10k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
10k  
ACAQ  
ACAP  
ACFX  
ACAN  
ABZX  
ACAM  
ACAX  
ACAW  
ACAV  
ACGD  
ACAT  
ABZY  
ADKE  
2.5k  
10k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
_______________________________________________________________________________________  
7
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23 and TO-220  
Selector Guide  
Pin Configurations  
PART  
MAX6501 MAX6502 MAX6503 MAX6504  
TOP VIEW  
OUTPUT  
STAGE  
Open-  
Drain  
Open-  
Drain  
Push-Pull  
Hot  
Push-Pull  
Cold  
GND  
GND  
1
2
3
5
4
TOVER  
(TOVER)  
GND  
GND  
1
2
3
5
4
TUNDER  
TRIP TEMP  
THRESHOLD  
Hot  
Cold  
(TUNDER)  
MAX6501  
MAX6502  
MAX6503  
MAX6504  
-45  
-35  
-25  
HYST  
V
HYST  
V
CC  
CC  
-15  
-5  
SOT23-5  
TO-220-7  
SOT23-5  
TO-220-7  
+5  
+15  
+35  
+45  
+55  
+65  
+75  
+85  
+95  
+105  
+115  
MAX6501  
MAX6502  
MAX6503  
MAX6504  
1 2 3 4  
5
6 7  
1 2 3 4  
5
6 7  
TOVER  
(TOVER)  
V
CC  
HYST GND  
V
HYST GND  
GND  
GND TUNDER  
(TUNDER)  
CC  
( ) ARE FOR MAX6502.  
( ) ARE FOR MAX6504.  
Chip Information  
TRANSISTOR COUNT: 237  
SUBSTRATE CONNECTED TO GND  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maꢂim Integrated Products  
Printed USA  
is a registered trademark of Maꢂim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY