MAX6504UK____+T [MAXIM]

Low-Cost, 2.7V to 5.5V, Micropower Temperature Switches in SOT23;
MAX6504UK____+T
型号: MAX6504UK____+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, 2.7V to 5.5V, Micropower Temperature Switches in SOT23

文件: 总9页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1280; Rev 6; 2/11  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
1–MAX6504  
________________General Description  
____________________________Features  
The MAX6501–MAX6504 low-cost, fully integrated tem-  
perature switches assert a logic signal when their die  
temperature crosses a factory-programmed threshold.  
Operating from a +2.7V to +5.5V supply, these devices  
feature two on-chip, temperature-dependent voltage  
references and a comparator. They are available with  
factory-trimmed temperature trip thresholds from -45°C  
to +125°C in 10°C increments, and are accurate to  
0.5°C ꢀtypꢁ or 6°C ꢀmaꢂꢁ. These devices reꢃuire no  
eꢂternal components and typically consume 30µA sup-  
ply current. Hysteresis is pin-selectable at 2°C or 10°C.  
±±0.5°C (typicalCꢀThreTꢁaꢂCꢃiiꢄhcitCꢅOrh  
FꢄaaCꢀrmyrhc(ꢄhrCRcngr  
NꢁCEx(rhncaC°ꢁmyꢁnrn(eCRrqꢄphrꢂ  
LꢁwC°ꢁe(  
µꢃCSꢄyyatC°ꢄhhrn(  
Fci(ꢁht-PhꢁghcmmrꢂCꢀThreTꢁaꢂeCfhꢁm  
-4.5°C(ꢁC+12.5°CpnC1±5°CInihrmrn(e  
ꢅyrn-DhcpnCꢅꢄ(yꢄ(C MꢃX6.±1/MꢃX6.±3l  
PꢄeT-PꢄaaCꢅꢄ(yꢄ(C MꢃX6.±2/MꢃX6.±4l  
The MAX6501/MAX6503 have an active-low, open-drain  
output intended to interface with a microprocessor ꢀµPꢁ  
reset input. The MAX6502/MAX6504 have an active-  
high, push-pull output intended to directly drive fan-  
control logic. The MAX6501/MAX6502 are offered with  
hot-temperature thresholds ꢀ+35°C to +125°Cꢁ, assert-  
ing when the temperature is above the threshold. The  
MAX6503/MAX6504 are offered with cold-temperature  
thresholds ꢀ-45°C to +15°Cꢁ, asserting when the tem-  
perature is below the threshold.  
Ppn-Srari(cbarC25°CꢁhC1±5°CHte(rhrepe  
Sꢅꢀ23-.CPcikcgr  
Ordering Information  
PART  
TEMP RANGE PIN-PACKAGE  
MAX6501UK_ _ _ _+T -55°C to +125°C 5 SOT23  
MAX6502UK_ _ _ _+T -55°C to +125°C 5 SOT23  
MAX6503UK_ _ _ _+T -55°C to +125°C 5 SOT23  
MAX6504UK_ _ _ _+T -55°C to +125°C 5 SOT23  
The MAX6501–MAX6504 are offered in eight standard  
temperature versions; contact the factory for pricing  
and availability of nonstandard temperature versions.  
They are available in a 5-pin SOT23 package.  
Note: These parts are offered in eight standard temperature  
versions with a minimum order of 2,500 pieces. To complete  
the suffiꢂ information, add P or N for positive or negative trip  
temperature, and select an available trip point in degrees  
centigrade. For eꢂample, the MAX6501UKP065+T describes a  
MAX6501 in a SOT23 package with a +65°C threshold.  
Contact the factory for pricing and availability of nonstandard  
temperature versions ꢀminimum order 10,000 piecesꢁ.  
+Denotes a leadꢀPbꢁ-free/RoHS-compliant package.  
T = Tape and reel.  
Typical Operating Circuit  
+2.7V TO +5.5V  
V
CC  
V
CC  
________________________Applications  
MAX6502  
TOVER  
µP Temperature Monitoring in High-Speed  
Computers  
μP  
INT  
Temperature Control  
Temperature Alarms  
Fan Control  
GND GND HYST  
GND  
Selector Guide and Pin Configurations appear at end of  
data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
ꢃBSꢅLUꢀECMꢃXIMUMCRꢃꢀINGS  
Supply Voltage ꢀV ꢁ Range....................................-0.3V to +7V  
CC  
Output Current ꢀall pinsꢁ .....................................................20mA  
TOVER ꢀMAX6501...................................................-0.3V to +7V  
Continuous Power Dissipation ꢀT = +70°Cꢁ  
A
TOVER ꢀMAX6502.....................................-0.3V to ꢀV  
+ 0.3Vꢁ  
SOT23 ꢀderate 3.1mW/°C above +70°C......................247mW  
Operating Temperature Range .........................-55°C to +135°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature ꢀsoldering, 10sꢁ .................................+300°C  
Soldering Temperature ꢀreflowꢁ .......................................+260°C  
CC  
TUNDER ꢀMAX6503ꢁ ................................................-0.3V to +7V  
TUNDER ꢀMAX6504ꢁ ..................................-0.3V to ꢀV  
All Other Pins..............................................-0.3V to ꢀV  
+ 0.3Vꢁ  
+ 0.3Vꢁ  
CC  
CC  
Input Current ꢀall pinsꢁ ........................................................20mA  
Stresses beyond those listed under “Absolute Maꢂimum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Eꢂposure to  
absolute maꢂimum rating conditions for eꢂtended periods may affect device reliability.  
ELE°ꢀRI°ꢃLC°HꢃRꢃ°ꢀERISꢀI°S  
ꢀV  
CC  
= +2.7V to +5.5V, R  
= 100kΩ ꢀMAX6501/MAX6503 onlyꢁ, T = T  
to T  
, unless otherwise noted. Typical values are  
MAX  
PULLUP  
A
MIN  
at T = +25°C.ꢁ ꢀNote 1ꢁ  
A
PꢃRꢃMEꢀER  
Supply Voltage Range  
Supply Current  
SYMBꢅL  
°ꢅNDIꢀIꢅNS  
MIN  
2.7  
ꢀYP  
MꢃX  
5.5  
85  
UNIꢀS  
V
1–MAX6504  
V
CC  
I
30  
0.5  
0.5  
0.5  
0.5  
2
µA  
CC  
-45°C to -25°C  
-15°C to +15°C  
+35°C to +65°C  
-6  
-4  
-4  
-6  
+6  
+4  
Temperature Threshold  
Accuracy ꢀNote 2ꢁ  
ΔT  
TH  
°C  
+4  
+75°C to +125°C  
HYST = GND  
+6  
Temperature Threshold  
Hysteresis  
T
HYST  
°C  
V
HYST = V  
10  
CC  
V
IH  
0.8 ꢂ V  
0.8 ꢂ V  
CC  
HYST Input Threshold  
ꢀNote 3ꢁ  
V
IL  
0.2 ꢂ V  
CC  
I
= 500µA, V  
> 2.7V  
SOURCE  
CC  
CC  
ꢀMAX6502/MAX6504 onlyꢁ  
Output Voltage High  
V
OH  
V
I
= 800µA, V > 4.5V  
SOURCE  
CC  
V
- 1.5  
CC  
ꢀMAX6502/MAX6504 onlyꢁ  
I
I
= 1.2mA, V  
= 3.2mA, V  
> 2.7V  
> 4.5V  
0.3  
0.4  
SINK  
CC  
Output Voltage Low  
V
OL  
V
SINK  
CC  
Open-Drain Output Leakage  
Current  
V
V
= 2.7V, V  
= 5.5V ꢀMAX6503ꢁ,  
TUNDER  
CC  
10  
nA  
= 5.5V ꢀMAX6501ꢁ  
TOVER  
Nꢁ(rC1: 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Nꢁ(rC2: The MAX6501–MAX6504 are available with internal, factory-programmed temperature trip thresholds from -45°C to +125°C  
in +10°C increments see Selector Guideꢁ.  
Nꢁ(rC3: Guaranteed by design.  
2
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
1–MAX6504  
__________________________________________Typical Operating Characteristics  
ꢀV  
CC  
= +5V, R  
= 100kΩ ꢀMAX6501/MAX6503ꢁ, T = +25°C, unless otherwise noted.ꢁ  
PULLUP  
A
MAX6502/MAX6504  
OUTPUT SOURCE RESISTANCE  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
TRIP THRESHOLD ACCURACY  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
100  
0
SAMPLE SIZE = 300  
V
= 2.7V  
CC  
V
V
= 3.3V  
= 5.0V  
CC  
CC  
0
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-55  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
ACCURACY (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT SINK RESISTANCE  
vs. TEMPERATURE  
SOT23 THERMAL STEP RESPONSE  
IN STILL AIR  
SOT23 THERMAL STEP RESPONSE  
IN PERFLUORINATED FLUID  
MAX6501 TOC5  
MAX6501 TOC4  
160  
140  
120  
100  
80  
V
= 2.7V  
CC  
+100°C  
+100°C  
V
= 3.3V  
CC  
+12.5°C/div  
+15°C/div  
V
CC  
= 5.0V  
60  
2
2
40  
MOUNTED ON 0.75in  
OF 2 oz. COPPER  
MOUNTED ON 0.75in  
OF 2 oz. COPPER  
20  
+25°C  
+25°C  
0
-55  
-25  
5
35  
65  
95  
125  
20sec/div  
5sec/div  
TEMPERATURE (°C)  
MAX6501 STARTUP AND POWER-DOWN  
(T < T  
MAX6501 STARTUP DELAY  
(T > T  
HYSTERESIS  
vs. TRIP TEMPERATURE  
)
TH  
)
TH  
MAX6501 TOC07  
MAX6501 TOC07A  
16  
14  
12  
10  
8
MAX6503  
MAX6504  
HYST = V  
MAX6501  
MAX6502  
HYST = V  
CC  
CC  
A
B
A
B
6
MAX6501  
MAX6502  
HYST = GND  
MAX6503  
MAX6504  
HYST = GND  
4
2
0
TRACE A: TOVER VOLTAGE, R  
= 100kΩ  
TRACE A: TOVER VOLTAGE, R  
TRACE B: V PULSE DRIVEN FROM 3.3V CMOS LOGIC OUTPUT  
CC  
= 100kΩ  
PULLUP  
PULLUP  
-45 -25 -5 15 35 55 75 95 115  
TRACE B: V PULSE DRIVEN FROM 3.3V CMOS LOGIC OUTPUT  
CC  
TRIP TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
Pin Description  
PIN  
NꢃME  
FUN°ꢀIꢅN  
MꢃX6.±1 MꢃX6.±2 MꢃX6.±3 MꢃX6.±4  
Ground. Not internally connected. Connect both ground pins  
together close to the chip. Pin 2 provides the lowest thermal  
resistance to the die.  
1, 2  
1, 2  
1, 2  
1, 2  
GND  
Hysteresis Input. Connect HYST to GND for 2°C hysteresis, or  
3
4
3
4
3
4
3
4
HYST  
connect to V  
for 10°C hysteresis.  
CC  
V
CC  
Supply Input ꢀ+2.7V to +5.5Vꢁ  
Open-Drain, Active-Low Output. TOVER goes low when the die  
temperature eꢂceeds the factory-programmed temperature  
threshold. Connect to a 100kΩ pullup resistor. May be pulled  
5
5
5
5
TOVER  
TOVER  
up to a voltage higher than V  
.
CC  
Push-Pull Active-High Output. TOVER goes high when the die tem-  
perature eꢂceeds the factory-programmed temperature threshold.  
1–MAX6504  
Open-Drain, Active-Low Output. TUNDER goes low when the  
die temperature goes below the factory-programmed tempera-  
ture threshold. Connect to a 100kΩ pullup resistor. May be  
TUNDER  
TUNDER  
pulled up to a voltage higher than V  
.
CC  
Push-Pull Active-High Output. TUNDER goes high when the die tem-  
perature falls below the factory-programmed temperature threshold.  
________________General Description  
ꢀcbarC10CCFci(ꢁht-PhꢁghcmmrꢂCꢀThreTꢁaꢂ  
Rcngr  
The MAX6501–MAX6504 fully integrated temperature  
switches incorporate two temperature-dependent refer-  
ences and a comparator. One reference eꢂhibits a pos-  
itive temperature coefficient and the other a negative  
temperature coefficient ꢀFigure 1ꢁ. The temperature at  
which the two reference voltages are eꢃual determines  
the temperature trip point. Pin-selectable 2°C or 10°C  
hysteresis keeps the output from oscillating when the  
die temperature approaches the threshold temperature.  
The MAX6501/MAX6503 have an active-low, open-  
drain output structure that can only sink current. The  
MAX6502/MAX6504 have an active-high, push-pull out-  
put structure that can sink or source current. The inter-  
nal power-on reset circuit guarantees the output is at  
PꢃRꢀ  
ꢀHRESHꢅLDC ꢀ lCRꢃNGE  
ꢀH  
MAX6501  
MAX6502  
MAX6503  
MAX6504  
+35°C < T < +125°C  
TH  
+35°C < T < +125°C  
TH  
-45°C < T < +15°C  
TH  
-45°C < T < +15°C  
TH  
Hysteresis Input  
The HYST pin is a CMOS-compatible input that selects  
hysteresis at either a high level ꢀ10°C for HYST = V  
CC  
or a low level ꢀ2°C for HYST = GNDꢁ. Hysteresis pre-  
vents the output from oscillating when the temperature  
approaches the trip point. The HYST pin should not be  
T
TH  
= +25°C state at startup for 50µs.  
left unconnected. Drive HYST close to ground or V  
.
CC  
The MAX6501–MAX6504 are available with factory-  
preset temperature thresholds from -45°C to +125°C in  
10°C increments. Table 1 lists the available temperature  
threshold ranges. The MAX6501/MAX6503 outputs are  
intended to interface with a microprocessor ꢀµPꢁ reset  
input ꢀFigure 2ꢁ. The MAX6502/MAX6504 outputs are  
intended for applications such as driving a fan control  
ꢀFigure 3ꢁ.  
Other input voltages cause increased supply current.  
The actual amount of hysteresis depends on the part’s  
programmed trip threshold ꢀsee the Typical Operating  
Characteristicsꢁ.  
4
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
1–MAX6504  
V
MAX6501  
WITH 100kΩ PULLUP  
TOVER  
TOVER  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
HYST  
REFERENCE  
NETWORK  
HYST  
TEMP  
TEMP  
TEMP  
TEMP  
COLD +25°C  
T
HOT  
TH  
MAX6501  
V
MAX6502  
TOVER  
TOVER  
HYST  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
COLD +25°C  
T
HOT  
TH  
MAX6502  
MAX6503  
WITH 100kΩ PULLUP  
V
TUNDER  
TUNDER  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
HYST  
COLD  
T
+25°C  
HOT  
TH  
MAX6503  
V
MAX6504  
TUNDER  
TUNDER  
HYST  
POSITIVE  
TEMPCO  
REFERENCE  
NEGATIVE  
TEMPCO  
REFERENCE  
HYST  
NETWORK  
COLD  
T
+25°C  
HOT  
TH  
MAX6504  
Figure 1. Block and Functional Diagrams  
_______________________________________________________________________________________  
.
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
+3.3V  
+5V  
V
CC  
V
CC  
HYST  
R
V
CC  
V
CC  
PULLUP  
100kΩ  
μP  
FAN  
HEAT  
MAX6502  
GND GND TOVER  
μP  
MAX6501  
TOVER  
INT  
SHUTDOWN  
OR  
RESET  
HYST GND GND  
HEAT  
Figure 2. Microprocessor Alarm/Reset  
Figure 3. Overtemperature Fan Control  
Temperature-Window Alarm  
The MAX6501–MAX6504 temperature switch outputs  
assert when the die temperature is outside the factory-  
programmed range. Combining the outputs of two  
devices creates an over/undertemperature alarm. The  
MAX6501/MAX6503 and the MAX6502/MAX6504 are  
designed to form two complementary pairs, each con-  
taining one cold trip-point output and one hot trip-point  
output. The assertion of either output alerts the system to  
an out-of-range temperature. The MAX6502/MAX6504  
push/pull output stages can be ORed to produce a ther-  
mal out-of-range alarm. More favorably, a MAX6501/  
MAX6503 can be directly wire-ORed with a single eꢂter-  
nal resistor to accomplish the same task ꢀFigure 4ꢁ.  
Applications Information  
Thermal Considerations  
The MAX6501–MAX6504 supply current is typically  
30µA. When used to drive high-impedance loads, the  
devices dissipate negligible power. Therefore, the die  
temperature is essentially the same as the package  
temperature. The key to accurate temperature monitor-  
ing is good thermal contact between the MAX6501–  
MAX6504 package and the device being monitored. In  
some applications, the SOT23 package may be small  
enough to fit underneath a socketed µP, allowing the  
device to monitor the µP’s temperature directly. Use the  
monitor’s output to reset the µP, assert an interrupt, or  
trigger an eꢂternal alarm.  
1–MAX6504  
The temperature window alarms shown in Figure 4 can  
be used to accurately determine when a device’s tem-  
perature falls out of the -5°C to +75°C range. The ther-  
mal-overrange signal can be used to assert a thermal  
shutdown, power-up, recalibration, or other temperature-  
dependent function.  
Accurate temperature monitoring depends on the ther-  
mal resistance between the device being monitored  
and the MAX6501–MAX6504 die. Heat flows in and out  
of plastic packages, primarily through the leads. Pin 2  
of the SOT23-5 package provides the lowest thermal  
resistance to the die. Short, wide copper traces leading  
to the temperature monitor ensure that heat transfers  
ꢃuickly and reliably.  
Low-Cost, Fail-Safe  
Temperature Monitor  
In high-performance/high-reliability applications, multi-  
ple temperature monitoring is important. The high-level  
integration and low cost of the MAX6501–MAX6504  
facilitate the use of multiple temperature monitors to in-  
crease system reliability. Figure 5’s application uses  
two MAX6502s with different temperature thresholds to  
ensure that fault conditions that can overheat the moni-  
tored device cause no permanent damage. The first  
temperature monitor activates the fan when the die  
temperature eꢂceeds +45°C. The second MAX6502  
triggers a system shutdown if the die temperature  
reaches +75°C. The second temperature monitor’s out-  
put asserts when a wide variety of destructive fault con-  
ditions occur, including latchups, short circuits, and  
cooling-system failures.  
The rise in die temperature due to self-heating is given  
by the following formula:  
ΔT = P  
θ  
JA  
DISSIPATION  
J
where P  
is the power dissipated by the  
DISSIPATION  
MAX6501–MAX6504, and θ is the package’s thermal  
JA  
resistance.  
The typical thermal resistance is 140°C/W for the  
SOT23 package. To limit the effects of self-heating,  
minimize the output currents. For eꢂample, if the  
MAX6501 or MAX6503 sink 1mA, the output voltage is  
guaranteed to be less than 0.3V. Therefore, an addi-  
tional 0.3mW of power is dissipated within the IC. This  
corresponds to a 0.042°C shift in the die temperature in  
the SOT23.  
6
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
1–MAX6504  
+5V  
+5V  
V
CC  
V
CC  
MAX6502_ _P075  
GND  
GND  
HYST  
MAX6502_ _P075  
HEAT  
OVERTEMP  
TEMPERATURE  
FAULT  
TOVER  
GND  
OUT OF RANGE  
TOVER  
GND  
HYST  
μP  
V
TUNDER  
CC  
UNDERTEMP  
MAX6504_ _N005  
HYST  
GND  
FAN  
CONTROL  
HEAT  
V
TOVER  
CC  
GND  
HYST  
MAX6502_ _P045  
+5V  
R
100k  
PULL-UP  
GND GND  
OUT OF RANGE  
V
V
CC  
CC  
TOVER  
TUNDER  
Figure 5. Low-Power, High-Reliability, Fail-Safe Temperature  
Monitor  
MAX6501_ _P075  
MAX6503_ _N005  
GND  
GND HYST  
GND GND HYST  
Figure 4. Temperature-Window Alarms  
ꢀcbarC20CCDrOpirCMchkpngC°ꢁꢂre  
MINIMUM  
ꢅRDER  
MINIMUM  
DEVI°E  
°ꢅDE  
DEVI°E  
°ꢅDE  
ꢅRDER  
10k  
MAX6501UKP035  
MAX6501UKP045  
MAX6501UKP055  
MAX6501UKP065  
MAX6501UKP075  
MAX6501UKP085  
MAX6501UKP095  
MAX6501UKP105  
MAX6501UKP115  
MAX6501UKP125  
MAX6502UKP035  
MAX6502UKP045  
MAX6502UKP055  
MAX6502UKP065  
MAX6502UKP075  
MAX6502UKP085  
MAX6502UKP095  
ABZF  
ABZR  
ACFW  
ABZS  
ACFV  
ACDP  
ABZT  
ACFU  
ACAG  
ADQK  
ABZG  
ABZU  
ACGC  
ABZV  
ACGB  
ACGA  
ABZW  
10k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
10k  
MAX6502UKP105  
MAX6502UKP115  
MAX6502UKP125  
MAX6503UKN045  
MAX6503UKN035  
MAX6503UKN025  
MAX6503UKN015  
MAX6503UKN005  
MAX6503UKP005  
MAX6503UKP015  
MAX6504UKN045  
MAX6504UKN035  
MAX6504UKN025  
MAX6504UKN015  
MAX6504UKN005  
MAX6504UKP005  
MAX6504UKP015  
ACFZ  
ACFY  
ADUD  
ADIZ  
2.5k  
25k  
10k  
ADVS  
ADVR  
ACFX  
ADNZ  
ABZX  
ADPN  
ACAX  
ADVU  
ADVT  
ACGD  
ADVX  
ABZY  
ADKE  
10k  
10k  
2.5k  
10k  
2.5k  
25k  
2.5k  
10k  
10k  
10k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
2.5k  
10k  
10k  
2.5k  
10k  
2.5k  
10k  
_______________________________________________________________________________________  
7
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
Selector Guide  
Pin Configurations  
PꢃRꢀ  
ꢅUꢀPUꢀ  
SꢀꢃGE  
MAX6501 MAX6502 MAX6503 MAX6504  
TOP VIEW  
Open-  
Drain  
Open-  
Drain  
Push-Pull  
Hot  
Push-Pull  
Cold  
ꢀRIPCꢀEMP  
GND  
GND  
1
2
3
5
4
TOVER  
(TOVER)  
GND  
GND  
1
2
3
5
4
TUNDER  
(TUNDER)  
Hot  
Cold  
ꢀHRESHꢅLD  
MAX6501  
MAX6502  
-4.  
-3.  
-2.  
MAX6503  
MAX6504  
HYST  
V
HYST  
V
CC  
CC  
-1.  
-.  
+.  
SOT23  
SOT23  
( ) ARE FOR MAX6502.  
( ) ARE FOR MAX6504.  
+1.  
+3.  
+4.  
+..  
+6.  
+7.  
+8.  
+9.  
+1±.  
+11.  
+12.  
Chip Information  
SUBSTRATE CONNECTED TO GND  
1–MAX6504  
Package Information  
For the latest package outline information and land patterns  
ꢀfootprintsꢁ, go to www0mcxpm-pi0iꢁm/ycikcgre. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffiꢂ character, but  
the drawing pertains to the package regardless of RoHS status.  
Pꢃ°KꢃGE  
ꢀYPE  
Pꢃ°KꢃGE  
°ꢅDE  
ꢅUꢀLINE  
Nꢅ0  
LꢃND  
PꢃꢀꢀERNCNꢅ0  
5 SOT23  
U5+2  
21-±±.7  
9±-±174  
8
_______________________________________________________________________________________  
Low-Cost, +2.7V to +5.5V, Micropower  
Temperature Switches in SOT23  
1–MAX6504  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
In Table 2 updated the device marking codes for MAX6503UKN035,  
5
10/06  
MAX6503UKN025, MAX6503UKN005, MAX6503UKP015, MAX6504UKN035,  
MAX6504UKN025, and MAX6504UKN005  
7
Removed the TO-220 package from entire data sheet; changed all leaded parts to  
lead(Pb)-free parts in the Ordering Information table; in the Absolute Maximum Ratings  
section changed the continuous power dissipation numbers (7.1mW/°C to 3.1mW/°C  
and 571mW to 247mW) and added the soldering temperature; added the Package  
Information table  
6
2/11  
All  
Maꢂim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maꢂim product. No circuit patent licenses are  
implied. Maꢂim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 9  
© 2011 Maꢂim Integrated Products  
Maꢂim is a registered trademark of Maꢂim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY